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Abstract 12 

Despite strong interest over many years, the usage of quantitative trait loci in plant breeding has often failed to 13 

live up to expectations.  A key weak point in the utilisation of QTLs is the “quality” of markers used during 14 

marker-assisted selection (MAS): unreliable markers result in variable outcomes, leading to a perception that 15 

MAS products fail to achieve reliable improvement.  Most reports of markers used for MAS focus on markers 16 

derived from the mapping population.  There are very few studies that examine the reliability of these markers in 17 

other genetic backgrounds, and critically, no metrics exist to describe and quantify this reliability. To improve 18 

the MAS process, this work proposes five core metrics that fully describe the reliability of a marker.  These 19 

metrics give a comprehensive and quantitative measure of the ability of a marker to correctly classify germplasm 20 

as QTL[+]/[-], particularly against a background of high allelic diversity.  Markers that score well on these 21 

metrics will have far higher reliability in breeding, and deficiencies in specific metrics give information on 22 

circumstances under which a marker may not be reliable.  The metrics are applicable across different marker 23 

types and platforms, allowing an objective comparison of the performance of different markers irrespective of 24 

the platform.  Evaluating markers using these metrics demonstrates that trait-specific markers consistently out-25 

perform markers designed for other purposes.  These metrics also provide a superb set of criteria for designing 26 

superior marker systems for a target QTL, enabling the selection of an optimal marker set before committing to 27 

design. 28 

Introduction 29 

The world population is expected to top 9 billion people by 2050.  To feed this population, it is estimated that 30 

agricultural output of cereals alone will need to increase by approximately 1 billion tons [1].  It is widely 31 

acknowledged that meeting this growth target will require the integration of new technologies into the breeding 32 

process.  Many authors have discussed the promise of molecular marker technologies for improving the speed 33 

and efficiency of the breeding process, and extensive literature has accumulated on methodologies to incorporate 34 

the use of markers into breeding decisions (e.g. [2]).  At its core, this marker-assisted selection (MAS) is about 35 

two correlations: 36 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2018. ; https://doi.org/10.1101/249987doi: bioRxiv preprint 

https://doi.org/10.1101/249987
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 Trait ↔ QTL 37 

  and 38 

 QTL ↔ marker 39 

A QTL is identified as a genetic position (locus) associated with some degree of phenotypic variation in a 40 

specific trait.  Markers are assayable polymorphisms with some degree of association with a QTL in a specific 41 

gene pool.  Both sets of correlations may be broad-ranging or narrowly applicable, and the success or reliability 42 

of MAS is directly determined by the strength of these correlations.  However, since the middle factor (QTL) is 43 

almost never tracked per se, both correlations are often conflated into the indirect association of the marker with 44 

the trait.  Since this association is indirect, reliable markers may not always result in reliable improvement of the 45 

trait – this depends on the quality of the QTL, and is a topic for a different discussion.  However, unreliable 46 

markers will always result in unreliable improvement, and it is thus essential to identify what constitutes a 47 

reliable marker, and metrics to objectively measure and evaluate this quality. 48 

Current MAS programs use one of several genotyping platforms, depending on requirements for marker density 49 

and sample throughput.  These platforms range from low-throughput, PCR-based techniques such as the 50 

traditional microsatellite/simple-sequence repeats (SSRs) and newer insertion/deletion mutations (indels), to the 51 

explosion of high-throughput single-nucleotide polymorphism (SNP) platforms and new sequencing-based 52 

methods such as genotyping-by-sequencing (GBS) and amplicon sequencing [3, 4, 5, 6].  Most recent literature 53 

has focused on new SNP technologies, but by far the most common systems in use by public sector breeding 54 

programs are traditional SSRs.  These are widely employed in biparental mapping studies such as QTL mapping 55 

and fine-mapping [7, 8, 9, 10, 11, 12, 13, 14], but have also been used in cross-population meta-analyses [12] 56 

and allelic diversity assessments [15, 16].  Given their high throughput nature SNPs and GBS are the platforms 57 

of choice for strategies requiring high sample volumes and/or marker densities, such as genomic selection and 58 

genome-wide association studies (e.g. [ 17, 18]). 59 

Despite the acknowledged importance of incorporating molecular markers into the breeding process, there has 60 

been little discussion on factors influencing the success of such endeavours.  Some studies have investigated the 61 

utility of SSRs in breeding processes [15, 19, 20, 21], however the only criterion for usefulness that is considered 62 
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is genetic linkage with the QTL; other issues such as how reliably the markers classify favourable and 63 

unfavourable alleles are rarely examined, and if so done in a cursory manner. 64 

Poor classification ability in markers can lead to many undesirable outcomes.  For example, a typical MAS 65 

workflow involving SSRs starts with a parental polymorphism survey; SSRs are chosen to introgress a QTL 66 

based on their linkage (position) and the fact they are polymorphic between a donor and the chosen recipient 67 

line.  However, this does not examine whether the chosen recipient already contains the target QTL; the ability 68 

of the QTL to improve the recipient is assumed, not tested.  SSR markers cannot provide information on whether 69 

the chosen recipient already possesses the QTL - this is a circular argument - and there are documented cases 70 

where SSRs give misleading indications as to the presence/absence of a QTL.  This can be seen for example in 71 

[15] and [22], which in both cases confuse varieties with different Saltol alleles and distinguish varieties with the 72 

same allele (compare for example [ 23]).  Many similar situations have arisen in breeding programs, irrespective 73 

of marker platform in use (SNP or gel-based), leading to unreliable outcomes, usually as a result of classifying a 74 

variety as lacking a QTL when in fact the QTL is already present.  To avoid similar problems in future, some 75 

method of characterising markers is required, to help identify markers at risk of giving misleading results and to 76 

aid in the design of superior markers as replacements.  Most importantly, a set of objective measures should be 77 

derived that describe how accurately a marker classifies both QTL[+] and QTL[-] material. 78 

Surprisingly there is no literature available dealing with this subject, which may contribute to the ambiguity 79 

surrounding the quality of existing marker systems.  The closest parallels in other disciplines are accuracy 80 

metrics used to evaluate clinical tests (e.g. [24]), but the concepts do not map directly to each other.  For 81 

example, medical diagnostics assume a large number of case-[+] and case-[-] datapoints are available, and often 82 

deal with quantitative measures such as enzyme or antibody activity levels.  By contrast, “datapoints” in the case 83 

of molecular markers are characterised varieties with or without the target QTL, which are typically far fewer in 84 

number.  Combined with this, for many genotyping platforms the genotype is essentially a binary output, making 85 

it strictly impossible to distinguish more than two allelic states. 86 

To stimulate discussion in this area, a set of five core and nine supporting metrics is presented along with 87 

strategies for their calculation, which attempt to capture the level and type of association between a marker and 88 
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its target QTL.  These metrics are focused primarily on assessing the classification ability of a marker against a 89 

background of high allelic polymorphism such as is found in rice [25], but also assess several other parameters 90 

related to the reliability of scoring and usefulness of a marker in breeding.  The metrics are then used to evaluate 91 

a set of SSR, SNP and indel markers targeting a range of QTLs in rice (Oryza sativa L.), to illustrate their 92 

application in designing marker systems that give higher confidence for deployment in breeding programs. 93 

Materials and Methods 94 

A summary of proposed marker quality metrics is found in Table 1.  The metrics are comprised of five core 95 

metrics that quantify the reliability of a marker, and a further nine supporting metrics that allow the 96 

determination of the core metrics.  They fall into three main categories: (1) Technical metrics, (2) Biological 97 

metrics, and (3) Breeding metrics.  To evaluate these metrics on existing marker systems in rice several different 98 

kinds of markers from multiple platforms were compared.  These include 20 SSR markers [3], approximately 99 

4500 SNP markers identified as part of the OryzaSNP project [25] and utilised on fixed genotyping platforms 100 

such as the Illumina Infinium chip ([6]; hereinafter the “anonymous SNP panel”), and 137 candidate QTL-101 

specific SNP and indel markers.  A list of markers evaluated can be found in S1 Table.  Markers were evaluated 102 

using one of two main datasets, depending on the metrics to be evaluated: empirically-determined PCR results to 103 

compare technical performance and breeding metrics for gel-based SSR and indel markers, and a large genome 104 

resequencing dataset to compare biological and breeding metrics for anonymous SNPs, QTL-specific SNPs, and 105 

QTL-specific indel markers. 106 
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Table 1.  Summary of core and supporting metrics to describe marker quality 107 

Technical metrics 
Version Support Identifier designating the version of a marker being examined; particularly 

important for technical performance metrics. 
Call rate Core The proportion of samples which give a scorable result.  For gel-based markers 

this is easy to visualise and understand (unless the marker is dominant), but 
many SNP platforms will call an allele even if the underlying data is 
substandard. 

Clarity Core How reliably a sample can be classified as allele A, B or heterozygous.  This is 
a critical parameter, and for each new marker it is worthwhile determining – 
even commercial SNP platforms do not always perform to the standard the sales 
brochure will advertise, and each individual marker will perform in different 
ways.  The clarity can be quantified by determining what proportion of known 
germplasm is correctly classified, and/or how well it correlates with tightly-
linked alternative markers. 

Biological metrics 
Linkage Support Genetic distance of the marker from the QTL peak, it is probably best expressed 

as a genetic distance gained from one or more mapping populations.  Diagnostic 
markers will by definition have a distance of 0cM. 

Position Support Position targeted by a marker, for example chromosomal location (preferable), 
mapping bin or consensus genetic position. 

Derived QTL 
state 

Support Which state appears to be the most derived, and therefore most informative in 
determining presence of the QTL: Favourable or Unfavourable.  This is not a 
property of a specific marker, but rather the QTL. 

Marker Target Support A qualitative description of the allele targeted by the marker, the favourable or 
unfavourable allele. 

Favourable 
allele 

Support Not quality metrics per se but necessary for automated analyses, and helpful for 
new researchers wanting to use a marker.  Depending on the platform these 
could be a size (143bp, Large/Small), allele (A/C/G/T) or even an allele 
definition (e.g. for amplicon sequencing). 

Unfavourable 
allele 
False Positive 
Rate 

Core The proportion of known negative genotypes incorrectly classified as QTL[+].  
Assayed as the number of known recipients identified as not having an 
unfavourable allele(s) of the marker (and thus incorrectly classified as QTL[+]). 

(# recipients withOUT unfavourable alleles) 
(Total # known recipients) 

False Negative 
Rate 

Core This is the converse of FPR, i.e. the proportion of known QTL[+] genotypes 
incorrectly classified as QTL[-] due to not having a favourable allele of the 
marker. 

(# donors withOUT favourable alleles) 
(Total # known donors) 

Breeding metrics 
Breeding 
program False 
Positive Rate 

Support Analogous to the FPR and FNR respectively, but assessed on a particular 
breeding panel.  Since the breeding panel likely has a lower level of allelic 
diversity, markers should score higher on the BpFPR and BpFNR than on the 
true FPR/FNR.  These metrics give more precise information on the behaviour 
of a marker in the target breeding program, but the association is then specific 
to that program, so must be reassessed for other programs. 

Breeding 
program False 
Negative Rate 
Utility Core The proportion (percentage) of a prospective breeding pool across which a 

marker could be used to introgress a QTL.  This is equivalent to the proportion 
of the pool which does NOT carry the donor allele of a marker: 

(# cultivars withOUT favourable alleles) 
(Total # cultivars assessed) 

 108 
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Technical metrics: Call rate and clarity 109 

Technical metrics such as call rate and clarity must be determined empirically from genotyping data using a 110 

specific marker assay (primers, probes, etc.); it is entirely possible for two independent sets of primers targeting 111 

the same locus to give vastly different results on these metrics.  To this end, a set of 20 SSR and 86 trait-specific 112 

indel markers (S1 Table) were empirically evaluated on a set of 121 diverse varieties released by the 113 

International Rice Research Institute and others, supplemented with various QTL donor and recipient germplasm 114 

characterised as part of QTL mapping exercises by numerous groups.  A list of varieties examined is found in S2 115 

Table.  Indel marker genotypes were scored as Large/Small, while SSR products were assigned to band size 116 

categories as appropriate.  Missing and unclear results were flagged as such.  The call rate was determined as the 117 

percentage of samples giving a visible result (i.e. not “missing”), while clarity was the percentage of samples 118 

giving a clearly scorable result (i.e. as opposed to unclear or ambiguous results). 119 

Biological and breeding metrics: false positive rate, false negative rate, 120 

and utility 121 

These metrics need to be determined against a background of high allelic diversity.  To achieve this, whole-122 

genome resequencing data was obtained for a set of 242 diverse rice accessions, comprising 173 cultivated lines 123 

(named, released varieties) and 69 landraces, most of which were chosen for their status as QTL donors or 124 

recipients.  Much of this data was obtained from the rice 3000 genome dataset [26], supplemented with 125 

resequencing of high-value donors and recipients for specific QTLs.  A list of varieties examined is found in S3 126 

Table.  Raw data (reads) were mapped to the MSU7 rice genome build using bwa, and resulting bam files 127 

processed using samtools [27, 28].  A total of 352 anonymous SNPs (i.e. not designed specifically for a given 128 

QTL) were chosen from the ~4500 useable features represented on the Infinium SNP chip [6], either within QTL 129 

limits (for large QTLs) or within similar distances to the QTL-specific SNP and indel markers.  A total of 482 130 

QTL-specific markers, both SNP and indel, were chosen within QTL limits, or within short physical distances of 131 

known, cloned genes.  Details of the marker positions examined are found in S4 Table.  Nucleotide base calls 132 

were obtained at all SNP sites – both QTL-specific SNPs and anonymous SNP markers – using standard 133 

Samtools/bcftools pipelines [27].  Genotype calls for QTL-specific indel marker positions were determined 134 
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manually from the same dataset, as automated variant-calling algorithms did not produce reliable results for 135 

indels >~5nt. 136 

All data was consolidated in a MS Access database and information on favourable and unfavourable alleles was 137 

recorded for each marker.  For anonymous SNPs, which do not have defined favourable or unfavourable alleles, 138 

data on accuracy metrics was calculated in two ways: first using the assigned allele A as favourable and B as 139 

unfavourable, and secondly classifying the allele with the highest frequency in known donor lines (lowest false 140 

negative rate; FNR) as favourable.  The latter method was designated as “FNR corrected”.  Data was analysed 141 

across 42 target QTLs for various disease resistance, abiotic stress, yield and flowering-related traits (S5 Table).  142 

As each QTL typically spanned a significant physical distance, summary data was calculated first across all 143 

markers of a particular type within a QTL, then averaged across the 42 target QTLs.  The final dataset consisted 144 

of 352 anonymous SNPs, 251 trait-specific SNPs and 223 trait-specific indels, scored across a common set of 145 

242 genomes for the 42 target QTLs. 146 

Results 147 

Derivation of quality metrics. 148 

In developing a set of metrics to assess the performance of a candidate marker, it is necessary to break down the 149 

features of a marker that impact on its reliability.  Broadly speaking, markers may vary in three main areas: 150 

1. Technical aspects related to the assay and scoring of the marker; 151 

2. Biological aspects of the association between the marker and its target locus; 152 

3. Practical aspects of the marker’s use in a breeding pool. 153 

These three areas are quite independent of each other; there are many markers which score well in some 154 

categories but fail completely in others, and thus for an accurate picture of how a marker behaves, all three areas 155 

must be examined.  In addition, to adequately characterise a marker in each area, the areas themselves must be 156 

broken down into several measurable quality metrics (Table 1).  The metrics are divided into five core metrics 157 

that quantify the reliability of a marker, and another nine supporting metrics that enable the calculation of the 158 

core metrics and deal with more difficult case studies (Fig 1). 159 
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 160 

Fig 1.  Overview of the marker quality metrics.  Core metrics capture the most critical information relating to 161 

marker performance, accuracy and usefulness.  Supporting metrics are needed in the calculation of the core 162 

metrics and/or capture other important information, but are not routinely required in making breeding decisions. 163 

 164 

Technical metrics 165 

Technical metrics relate to how confidently a randomly selected sample from a genotyping job gives an accurate 166 

result and can be captured clearly by two core metrics: call rate and clarity.  Call rate is the proportion of 167 

samples that give a scorable result (as opposed to a “missing” result).  Many commercial genotyping platforms 168 

already report call rates as a metric of platform performance; typical claims are >99%.  Less often reported are 169 

estimates of a marker’s clarity. At its simplest, clarity is a subjective opinion on how clear the results are, i.e. 170 

how reliably genotypes A, B and H can be distinguished.  In a more objective sense, an estimate of this could be 171 

obtained from how often samples with known genotype are reported to have the correct score, or how often 172 

duplicate samples match.  Commercial SNP platforms occasionally report statistics on clarity (or repeatability), 173 

but without recourse to raw data – which is rarely available – these are difficult to verify.  Finally, since every 174 

existing technology makes some use of target-specific oligonucleotides, different marker assays on the same 175 

platform will vary in their quality on these metrics, even if they target the same position and polymorphism.  176 

Thus, versioning of the marker is necessary to allow distinguishing the performance of alternate forms of a 177 

marker. 178 

Biological metrics 179 

Biological metrics can be broken down into qualitative metrics that describe the type of association between a 180 

marker and QTL, as well as quantitative metrics that describe the level of association.  These are the most 181 

important metrics for successful MAS, and also the most complex.  The root cause of differences in marker 182 

associations stem from the evolution of traits in an organism, and specifically the relative evolutionary timelines 183 

in which the causative allele for a QTL and the polymorphism at the proposed candidate marker emerged.  An 184 

illustration of this is given in Figs 2 and 3.  In all cases, irrespective of whether the causal allele is favourable or 185 
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unfavourable, the polymorphism most reliable in classifying the donor and recipient lines is one which arose at 186 

the same time (and in the same lineage) as the mutation giving rise to the causal, derived allele.  This is because 187 

the causal mutation and the marker allele are in perfect LD when they emerged and remain in perfect LD in the 188 

gene pool consistent with the probability of a recombination event between them. 189 

 190 

Fig 2.  Illustration of the evolution of a QTL.  A Starting from an ancestral point, mutations in a particular 191 

gene accumulate (numbered black bars, representing mutations in B), resulting in new alleles.  At some point, a 192 

mutation arises which improves a trait, resulting in a donor allele for a QTL (dark/red), distinguishing it from 193 

known recipient alleles (light/blue); typically the status of many alleles is unknown (white).  C Each mutation (1 194 

– 21) is a potential marker, and all are found in the same gene, but some are more informative than the others.  195 

Comparing the false positive and false negative rates for each mutation allows the determination of which 196 

polymorphism gives the most reliable discrimination between the donor and recipient phenotype classes. 197 

 198 

Fig 3.  Determining the optimal polymorphism under several evolutionary scenarios.  Depending on when 199 

the causative mutation arose (arrowed bars; outwards pointing for mutations conferring favourable or inwards 200 

facing for unfavourable alleles respectively), there may be only one favourable allele (A), a small number of 201 

alternative favourable alleles and multiple unfavourable alleles (B), or multiple favourable alleles and a few 202 

unfavourable (C).  In A and B, the derived allele for the QTL is the favourable allele(s); in C it is the 203 

unfavourable.  In all cases the polymorphism which gives the most accurate classification of donor and recipient 204 

status is one which arose in the same lineage and at a similar time to the causal, derived mutation. 205 

 206 

From this theoretical consideration, it is clear that a number of parameters must be specified in order to 207 

accurately describe the association of a marker with its target QTL.  Descriptive metrics such as which allele of 208 

the QTL (favourable or unfavourable) represents the derived state, the allele (favourable or unfavourable) 209 

targeted by a marker, and specifications of marker linkage, favourable and unfavourable alleles, all describe the 210 

type of association the marker has with its target QTL.  Most are easily determined, although determining which 211 

QTL allele is derived may require a detailed genomic investigation.  Nonetheless, if this can be determined 212 

accurately, then markers specific to the derived allele have the greatest chance of also providing a reliable 213 

classification across novel allelic diversity, reducing the risk of incorrect classification in future breeding efforts.  214 
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Therefore, expending some effort to determine the derived QTL allele before designing large numbers of 215 

markers is justified. 216 

The proposed quantitative QC metrics of false positive rate and false negative rate (FPR and FNR) describe the 217 

level of association between the marker and its target QTL and are arguably the most important of the metrics 218 

presented, but also the most difficult to estimate.  The FNR is the proportion of known donor lines that are 219 

incorrectly classified as QTL[-] by the marker.  Since the lines are known to carry favourable alleles of the QTL, 220 

classification of any of these lines as QTL[-] thus represents a false-negative call by the marker.  This is the 221 

converse of the marker’s specificity.  Markers with a high FNR pose a significant risk of mis-classifying samples 222 

as QTL[-] when they do in fact carry a favourable allele; thus breeding material may be discarded which in 223 

reality could have been advanced.  Markers with a low FNR will correctly identify all samples that possess the 224 

QTL[+] state but may still mis-classify samples with an unfavourable (non-donor) alleles as QTL[+], in other 225 

words a low FNR does not imply a low FPR. 226 

The FPR is simply the converse and represents the proportion of non-donor (recipient) lines that are incorrectly 227 

classified as QTL[+], and is the converse of the marker’s sensitivity.  In a breeding context, a high FPR means 228 

there is a significant risk of investing in and advancing lines based on MAS results that indicate the presence of 229 

the QTL[+] allele, but in reality are QTL[-]. 230 

It is important to reiterate here that the FPR and FNR are the proportion of lines with known QTL[+]/[-] alleles 231 

that are correctly classified as such.  They are fundamentally linked to the diversity of alleles with known 232 

function, which is determined by the effort that has been put into characterising/mapping donor and non-donor 233 

diversity.  Many markers are chosen for breeding applications based on their linkage with QTL alleles in specific 234 

mapping populations where the QTL is discovered.  But those markers – while informative in the chosen 235 

mapping population – could still score poorly on both FPR and FNR, resulting in poor performance once 236 

deployed as MAS targets.  The difficulty arises because the marker is being applied to new populations, where at 237 

least one of the parents is of unknown status with respect to the QTL.  Markers with low FPR and low FNR will 238 

faithfully report the presence or absence of the QTL in any sample, irrespective of allelic diversity in any gene 239 

pool of interest. 240 
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Breeding metrics 241 

Breeding QC metrics describe the relative value of applying a marker in a specific breeding program.  These 242 

consist of three metrics: Breeding program false positive rate (BpFPR), Breeding program false negative rate 243 

(BpFNR) and Utility.  BpFPR and BpFNR are equivalent to the FPR and FNR metrics described above, but are 244 

specific to particular breeding program in which they are assessed, rather than on the full diversity of known 245 

donors and recipients.  Since the breeding pool may be expected to have lower allelic diversity than occurs 246 

species-wide, and because selection and genetic drift are modifying patterns of LD independently across 247 

breeding programs, these rates can be quite different from the true FPR and FNR (the usual expectation would 248 

be the breeding program rates to be lower than the true rates, though the opposite could also occur).  They may 249 

also be different for different breeding programs, and must be assessed independently for each.  They will 250 

require the determination of donor and recipient lines within a breeding program, which will involve collecting 251 

phenotype data for each program under investigation.  But once gathered, the QC metrics directly quantify the 252 

marker’s reliability for making breeding decisions in that specific program.  It’s worth noting however, that this 253 

is predicated on the assumption that the assessed panel represents the complete allelic constituency present in a 254 

breeding program, and that the breeding strategy focuses on increasing the frequency of favourable haplotypes 255 

through recombination in a closed gene pool, minimizing the introduction of novel allelic variation which may 256 

introduce marker alleles that are not in LD with the causal polymorphism. 257 

Finally, utility is the proportion of a breeding panel over which a marker could be used to select for its associated 258 

QTL[+] allele.  This is basically an assessment of the frequency of QTL[+] alleles in the breeding program, 259 

easily calculated as the proportion of breeding lines which possess non-donor allele(s) of the marker (Fig 4).  A 260 

program where the marker offers high utility by definition has the QTL[+] allele at low frequency.  Note that this 261 

is entirely separate from the FPR and FNR: a marker may perfectly classify all material as to its QTL status, but 262 

if the QTL is fixed in the breeding program then the marker (QTL) is of little utility in improving the trait.  A 263 

good example of this in rice would be sd1, which due to intense selection pressure for plant height and heavy 264 

usage of QTL[+] sd1 green revolution varieties by breeding programs is fixed in nearly all breeding populations 265 

and therefore is not available to manipulate plant height. 266 
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 267 

Fig 4.  Utility of a marker.  Alternative markers within a QTL region (markers A – E) each have multiple 268 

alleles (numbered).  Alternative alleles of each marker are found at differing frequencies within a breeding pool.  269 

Those markers with a high frequency of the favourable allele in the breeding pool (B, C, D) – and thus low 270 

utility – can only distinguish the donor genotype in a small number of breeding backgrounds.  By contrast 271 

markers A and E have high or very high utility, as they are polymorphic with respect to nearly all target genomes 272 

in the breeding pool. 273 

 274 

A summary of all the proposed metrics is presented in Table 1.  Several of these metrics are purely descriptive 275 

(derived QTL allele, marker target allele, donor and recipient alleles), but are required to allow the calculation of 276 

the more quantitative parameters; these are called supporting metrics.  The quantitative parameters then provide 277 

a detailed assessment of the performance of a marker; these are the core metrics, and provide the best criteria for 278 

assessing markers.  Ideal target values and consequences using markers with unfavourable performance scores 279 

using these metrics are explained in Table 2.  Of particular note are the core metrics FPR and FNR; poor scores 280 

on these will increase the probability of discarding valuable breeding germplasm, or worse, wasting resources 281 

advancing QTL[-] lines.  Assuming good scores on FPR and FNR (or BpFPR and BpFNR), a poor utility value 282 

indicates the marker (and thus the QTL[+]) allele is nearly monomorphic in the breeding program and can only 283 

be used to select for the QTL across a narrow/small proportion of the breeding pool.  Finally the derived marker 284 

allele (donor/recipient) should ideally match the derived allele of the QTL; if so, the marker stands a much better 285 

chance of correctly classifying additional unknown or uncharacterised alleles. 286 
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Table 2.  Ideal target values for key metrics 287 

Metric Target value Consequences of unfavourable score 

Call rate 100% 
High number of samples with missing data (cannot be 
genotyped); reduction in efficiency of program and possibility of 
missing high-value germplasm. 

Clarity 100% 

High number of samples with ambiguous genotype.  Possibility 
of misclassifying material in the donor/recipient categories; 
propagating germplasm with low value, or discarding germplasm 
with high value. 

Linkage 0cM 
High chance of recombination between the marker and actual 
QTL, leading to a breakdown in the marker-trait association. 

Marker target 
Derived QTL 
state 

Misclassification of new, unrecognised or uncharacterised allelic 
diversity.  This is of particular use in situations where few donor 
and recipient lines have been characterised; if the marker target 
allele matches the derived QTL allele (favourable or 
unfavourable), the marker is more likely to correctly classify new, 
uncharacterised alleles. 

FPR/BpFPR 0% 

Failure to distinguish some unfavourable alleles from some 
favourable alleles; reports presence of QTL when it is actually 
absent.  May result in use of a line as donor when it is not, or a 
lack of effort to use a QTL to improve a trait when this would be 
appropriate.  This is in general a more serious failure than low 
FNR. 

FNR/BpFNR 0% 

Failure to distinguish some favourable alleles from unfavourable 
ones; reports absence of QTL when it is present.  May result in 
ineffective MAS (wasted effort) due to recipient lines being 
classified as QTL[-] and thus the QTL being introgressed, when 
in fact it is already present. 

Utility 100% 
Marker can be used to track/introgress QTL across only a narrow 
range of germplasm.  For most populations alternative markers 
are needed. 

 288 

Applying quality metrics: Evaluation of existing marker systems 289 

Technical metrics: Indels vs. SSRs. 290 

Since technical metrics relate to the performance of a specific marker assay, they are by necessity empirical and 291 

may vary widely between markers even when these have the same biological properties and are run on the same 292 

platform.  Indeed, wide variation was seen between markers for both call rate and clarity, even within trait-293 

specific indel markers in specific QTL regions such as qDTY4.1 and qNa1L (Fig 5). 294 

 295 
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Fig 5.  Technical metrics for candidate indel markers.  Markers were evaluated within the qDTY4.1 (A) and 296 

qNa1L (B) QTL regions.  Significant variation was seen for different markers in both QTL regions, showing 297 

some markers clearly performed better than others. 298 

 299 

Technical metrics can be used to assess the relative performance of platforms as well as specific markers.  The 300 

mean call rate and clarity were compared between a set of SSR and QTL-specific indel markers on a panel of 301 

122 diverse cultivars (Fig 6).  Trait-specific indel markers significantly out-performed SSR markers for clarity (P 302 

< 0.05).  They also scored better than SSRs for missing data, though this was not significant (0.05 < P < 0.12), 303 

and may reflect a greater-than-average contribution from a few specific indels that scored very poorly, due 304 

largely to a few markers that covered genomic deletions in qHTSF4 and qDTY4.1. 305 

 306 

Fig 6.  Comparison of performance of PAGE-based marker systems.  The performance of SSRs was 307 

compared to that of trait-specific indels.  Indels consistently out-performed SSRs, particularly in marker clarity 308 

but also in call rate. 309 

 310 

Biological metrics: Anonymous vs. Trait-specific markers. 311 

Working with whole-genome resequencing data it is evident that numerous polymorphisms can be easily 312 

identified between two varieties.  However, these polymorphisms vary widely in their level of association with a 313 

target QTL.  The level of association (FPR and FNR) for candidate markers throughout a salinity tolerance QTL 314 

in rice between 37 and 41Mb on the long arm of chromosome 1 shows wide variation, all through the QTL 315 

interval (Fig 7).  This shows linkage with a QTL is not sufficient to give reliable selection.  Secondly, none of 316 

the anonymous SNPs found on the Infinium chip within the QTL region (Fig 7a) scored perfectly on both the 317 

FPR and FNR, indicating they all suffer from errors in classifying known varieties.  These SNPs have been 318 

filtered for those which show polymorphism between known donors and recipients, and corrected to minimise 319 

the false negative rate (correctly identifying as many donors as possible).  In contrast, while QTL-specific indel 320 

and SNP markers (Figs 7b and c) also show variation in their association across the QTL, both classes have 321 

several markers achieving ideal scores (0%) on both metrics.  Those markers scoring >0% on either the FPR or 322 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2018. ; https://doi.org/10.1101/249987doi: bioRxiv preprint 

https://doi.org/10.1101/249987
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

FNR may find niche applications in fine-mapping or specific populations, but those with perfect scores would 323 

make the most reliable marker system for breeding purposes.  These metrics thus give information allowing the 324 

identification and design of optimal marker systems, even for quite large QTL regions. 325 

 326 

Fig 7.  Use of marker quality metrics to determine optimal markers for a QTL.  Comparison of quality 327 

metrics for different markers within a QTL region for salinity tolerance, qNa1L, between 37 and 41Mb on the 328 

long arm of chromosome 1.  Multiple markers from the Illumina Infinium chip (Anonymous SNPs; favourable 329 

allele corrected to minimise FNR), QTL-specific SNPs and QTL-specific indels were assessed for their utility 330 

(A), false-positive rate (B) and false-negative rate (C) across IRRI germplasm.  Anonymous SNPs typically 331 

scored poorly on FPR, FNR and Utility, and none scored well on all metrics.  QTL-specific SNP and indel 332 

markers typically showed low or perfect scores on the FPR, and several markers scored 0% (no misclassified 333 

entries) on both FPR and FNR metrics.  In addition QTL-specific markers scored far better for utility, indicating 334 

wider applicability in breeding.  Arrows to the right indicate ideal target values for a new marker. 335 

 336 

Improvements in the false positive and negative rates with QTL-specific markers are also seen for other QTL 337 

targets.  Mean values from 42 QTLs for a range of traits including stress tolerance, grain quality, disease 338 

resistance etc. show that anonymous SNPs derived from the 6k diversity set consistently under-perform (Fig 8).  339 

Re-assignation of favourable and unfavourable alleles to minimise the false negative rate improves that metric to 340 

a level equivalent to those seen for the QTL-specific markers, but no better (P > 0.05).  Optimising the FNR also 341 

improved the FPR, but not to a level equivalent to QTL-specific markers, so anonymous markers still performed 342 

worse on average (P < 0.0001).  This means these anonymous markers, even with “corrected” assignations of 343 

favourable allele, have no relative benefit in detecting presence of the QTL, but do have a significant penalty in 344 

their FPR, incorrectly classifying lines as QTL[+]. 345 

 346 

Fig 8.  Comparison of mean accuracy metrics for diversity SNPs and QTL-specific SNP and indel 347 

markers.  Anonymous SNP markers initially have very low scores on both the FPR and FNR.  Correcting the 348 

assignation of favourable and unfavourable alleles to minimise the FNR improves that score to equivalent levels 349 

with the QTL-specific markers, but the FPR remains poor and no benefit is seen for the utility. 350 

 351 
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Breeding metrics: Utility. 352 

Anonymous SNPs also showed lower average utility values (Fig 8), i.e. the designated favourable allele is 353 

present at higher frequencies in elite germplasm, and so the marker is less useful for introgressing a given QTL 354 

into a range of elite material.  The utility metric is especially useful in the case of diagnostic markers, as it then 355 

indicates directly the proportion of elite material that a QTL may improve.  Utility values for a range of QTL 356 

controlling various yield, grain quality, disease resistance and stress tolerance traits show a wide range in 357 

variation (Fig 9).  These range from less than 20% for LTG1, qSCT1 and SCM2, which appear to be fixed in 358 

nearly all indica elite material, to 100% for many disease resistance QTL.  The latter observation is surprising 359 

considering the substantial selective pressure exerted on disease resistance in most breeding programs, and 360 

further work to determine its cause seems warranted. 361 

 362 

Fig 9.  Variation in utility between various QTL for agronomic traits in indica breeding germplasm.  QTL 363 

were selected that have diagnostic markers or markers scoring 0% on both FPR and FNR (and thus could be 364 

accurately scored).  Wide variation in QTL utilities were seen, from near-fixation (utility ~0%) to absent (utility 365 

100%), but most were rare or absent. 366 

 367 

Discussion 368 

Since the 1980s with the advent of SSR markers, it has become almost a mantra that the ideal marker should be 369 

highly polymorphic.  This is certainly a useful feature for certain applications such as in bi-parental mapping, 370 

where high polymorphic information contents (PIC) increase the chances a given marker will be polymorphic 371 

between random parents.  However, marker-assisted selection places different demands on the markers – the 372 

number of alleles displayed by the marker is not relevant, rather the ability to unambiguously discriminate 373 

between all donor and recipient material becomes critical. 374 

Surprisingly, there is a dearth of literature on designing reliable markers and almost no criteria for judging what 375 

makes a marker “good” or “bad”.  Most MAS programs use markers identified in QTL mapping populations – 376 

typically SSRs, applying them to other genetic backgrounds, and even attempting to use them to determine the 377 
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presence of a QTL in diverse germplasm panels.  These applications require very stringent false positive and 378 

false negative rates, but few examples exist where some validation of these false positive and negative rates has 379 

been conducted.  Bernardo et al. [20] examined the reliability of SSR markers in selecting for stem rust 380 

resistance in wheat.  Association of the markers with donor and recipient germplasm was analysed, but not 381 

quantified as a metric; association was not always good, for example markers for Sr32 targeted the recipient 382 

allele not the (derived/wild) donor allele, and so run the risk of classifying some lines without the QTL as 383 

positive.  Similarly, markers for other resistance genes variously failed to distinguish some or all known 384 

recipients from known donors (poor FPR; many SSRs had this difficulty), while others showed poor separation 385 

of donor and recipient alleles, produced major stutter bands, or produced non-target amplicons (poor clarity, 386 

figures 1 and 3 in their paper).  In another strategy, Mohammadi-Nejad et al. [15] performed allele mining of the 387 

Saltol QTL using SSRs.  Of particular note is their table 3, which lists the SSR haplotype and varieties which 388 

possess this haplotype.  This can be related to alleles of the HKT1;5 gene [23], which is causal for this QTL [29].  389 

This reveals the SSR markers confounded (failed to distinguish) lines that had different alleles, such as IR64 and 390 

Kala Rata.  Likewise, the converse was even more common: IR64 / IR29, and Pokkali / Kala Rata / Sadri were 391 

placed in separate haplotypes while sharing the same allele at the causal gene.  Thus again the SSR genotype, 392 

and even haplotype, was not sufficient to reliably classify donor and recipient material for the QTL. 393 

In a counter-example, Tian et al. [30] designed indel markers for the allelic major rice bast resistance gene 394 

Pi2/Pi9 based on sequence comparisons of parental varieties.  The FPR and FNR were not quantified, but the 395 

inclusion of multiple reference alleles presumably helped in the design of markers highly specific to the 396 

favourable alleles.  This marker was then able to demonstrate near-zero occurrence of this gene in a set of 397 

Chinese breeding germplasm, where previous marker sets were prone to false positives (see [31]) – incidentally 398 

indicating a potentially very high utility, though this was not articulated as a metric.  A similar effort was 399 

conducted by Scheuermann and Jia [32] using a different approach.  The latter marker from Scheuermann and 400 

Jia [32] should have the same FPR and FNR as that designed by Tian et al. [30], but suffered very low apparent 401 

call rates and clarity.  In neither case were any metrics similar to FPR, FNR, Utility and Clarity quantified by 402 

either group, despite their datasets being sufficient to do so.  Had these metrics been quantified, they could easily 403 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 27, 2018. ; https://doi.org/10.1101/249987doi: bioRxiv preprint 

https://doi.org/10.1101/249987
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

demonstrate which marker system is better and how reliably these markers could be used in other breeding 404 

programs, thereby greatly enhancing the impact of this work. 405 

These examples show the need for a better system for describing the association of a marker with its target QTL.  406 

The fourteen metrics described in Table 1 are a substantial step towards providing such a description.  407 

Association of a marker with its target QTL is captured by a range of biological metrics rooted in the preceding 408 

discussion on the evolution of markers.  Additional metrics describe parameters relating to reliability of the 409 

genotyping information, and the applicability of a marker in specific breeding situations.  The preceding 410 

considerations have shown how the ideal marker – one which reliably identifies all donor and recipient 411 

germplasm – is based on the same polymorphism as gives rise to the QTL phenotype.  Such a marker can be 412 

called diagnostic, and requires the identification of the gene and the mutation giving rise to a QTL – something 413 

that is very rarely done, even in rice.  While ideal, this is difficult and time consuming.  Alternative, flanking 414 

markers can still accurately classify observed alleles provided they arose at similar times and in the same lineage 415 

as the causative mutation (i.e. the derived marker allele matches the derived QTL allele; Fig 3).  Again, the 416 

metrics in Table 1 provide a means to evaluate and validate candidate markers before committing to design and 417 

implementation (very important for expensive SNP systems) as well as assess performance after implementation. 418 

Validating existing marker systems with these metrics illustrates several points.  First and foremost, QTL-419 

specific marker systems consistently out-perform both older SSR and new anonymous SNP systems in most of 420 

these metrics, but most notably in the accuracy metrics FPR and FNR.  For many QTL, no anonymous markers 421 

showed the required level of association with the target QTL.  Thus QTL-specific markers will give consistently 422 

more reliable results in selection.  In addition, accurate markers (scoring 0% on both FPR and FNR) can be used 423 

to determine the proportion of a breeding panel that may benefit from that QTL – the utility.  Utility values vary 424 

widely between QTL (Fig 9), which reflects a complex interplay of the QTL’s origin and the artificial and 425 

natural selective pressures it has been subjected to in breeding programs.  For example, SCM2 is widely regarded 426 

as a candidate to reduce lodging, a major problem even in semi-dwarf rice.  Unfortunately, however, the 427 

characterised donor allele of SCM2 from Habataki [33] appears identical to that already found in the vast 428 

majority of indica breeding germplasm.  This means the donor allele is already present in most or all improved 429 
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indica material, and therefore the Utility of SCM2 (and accurate markers for this gene) is very low in most indica 430 

breeding programs.  By contrast many of the disease resistance loci have high utility, despite being under strong 431 

selective pressure in breeding programs. 432 

Secondly, there is no inherent advantage of SNP genotyping platforms in terms of selection accuracy.  Existing 433 

anonymous SNP marker sets such as the 6k Infinium chip were designed to maximise the probability of 434 

polymorphism (discriminatory power) between randomly-chosen varieties [6].  This makes them ideal for 435 

population genetics and as a fixed panel of markers to genotype any random set of parents and progeny.  436 

Ironically though, this means they have the least power to track specific QTL, and indeed they perform rather 437 

poorly in accuracy metrics overall.  By contrast, QTL-specific markers, whether high-throughput SNP or low-438 

throughput indel, perform quite well on accuracy metrics – and it is certainly possible to use these metrics to 439 

identify both SNP and indel markers with “perfect” associations with their target QTL (Fig 7).  Therefore, the 440 

choice of marker platform has less to do with selection accuracy than with the expected sample throughput.  441 

However, the choice of best marker will be based on the level of association with the target QTL. 442 

Thirdly the application of the metrics in evaluating individual markers is easily demonstrated (Figs 5 and 7).  443 

Biological and breeding metrics are mostly useful in distinguishing between candidate markers prior to 444 

committing time and resources to implementing these on a particular genotyping platform; these are about 445 

choosing the optimal target polymorphisms.  Yet although a candidate marker may have perfect biological and 446 

breeding metrics, a given assay for that polymorphism may perform very poorly on its technical metrics (call 447 

rate and clarity), such as seen for qDTY4.1 (Fig 5).  For PCR-based systems such as SSRs, indels and some SNP 448 

technologies, much of this variation in the technical metrics is due to inherent issues with primer efficiency.  449 

However, while SNP assays also utilise oligonucleotides as either probe or primer sequences, it is unfortunately 450 

rare to see “validation” of the performance of new markers on SNP platforms due to the expense of an assay.  In 451 

addition, SNP assays very rarely return the raw data, instead reporting a digested summary –the actual SNP call 452 

–thus glossing over such factors as whether the clustering of fluorescence intensities was unambiguous.  It seems 453 

advisable going forward to implement some form of technical and biological replication when validating a new 454 

assay to determine its clarity. 455 
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Allied to this discussion on technical metrics, it is evident that a given polymorphism may be interrogated by 456 

multiple different “markers”.  For example, a SNP could be targeted by one of several gel-based assay systems, 457 

any of the many SNP platforms, or an amplicon/sequencing approach.  All are based on the same polymorphism, 458 

but as each platform has its own design quirks and even a single platform may use alternate primer pairs for 459 

amplification, different instances of a marker could have very different scores on technical metrics, despite 460 

targeting the same polymorphism.  Therefore, information on the version/instance of a marker under 461 

consideration is needed to distinguish between alternate forms and platforms targeting the same polymorphism. 462 

These quality metrics thus provide a good framework for assessing the accuracy and reliability of any specific 463 

marker.  This information can be used to evaluate existing markers, design better markers, and even to compare 464 

performance of different marker types and platforms.  Nevertheless, they are by no means complete or perfect.  465 

Two issues worth highlighting concern the Clarity metric and estimation of the FPR and FNR metrics. 466 

The Clarity metric is currently slightly ambiguous; it could refer to either how clearly/reliably genotyping data 467 

(bands on a gel, fluorescence signal clusters on a SNP platform, or other measures) can distinguish between the 468 

allelic states of the marker.  It could also refer to how often duplicate samples cluster together – repeatability.  469 

This is of course closely related to the former situation, but is also subtly different.  For the sake of simplicity 470 

these are not distinguished here, but further discussion on whether Clarity as described here should be broken 471 

down into two metrics – clarity and repeatability – seems warranted. 472 

Of the metrics presented, the accuracy metrics FPR and FNR are arguably the most important in distinguishing 473 

between candidate markers.  A common objection and difficulty in the assessment of these is that they require a 474 

large number of case-[+] and case-[-] data points to accurately estimate, whereas in most cases the number of 475 

defined donor and recipient lines is limited.  This is absolutely true – and should inform how QTL mapping and 476 

validation efforts are undertaken – but is not a justification to reject the importance of these metrics.  On one 477 

hand, some estimate is better than none, and it should be recognised that all datasets are inadequate, to some 478 

extent.  It is thus better to report the statistics, together with data on how accurate these might be – such as the 479 

total number of defined donor and recipient lines available, where a greater number of both implies greater 480 

accuracy in estimation.  On the other hand, estimates of FPR and FNR based on inadequate (small) datasets 481 
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actually inflate their values.  In the extreme case of a single known donor and recipient line, any marker 482 

polymorphic between these parents will then score 0% on both metrics.  An inadequate dataset thus does not 483 

lead to a rejection of markers, but rather the opposite: the power to distinguish between them is limited, and so 484 

any feature that shows polymorphism will be accepted.  In this situation an educated guess as to whether the 485 

favourable or unfavourable allele is likely to be derived (i.e. the derived QTL allele).  Markers targeting this (i.e. 486 

the marker target allele is the same as the derived QTL allele) are then effectively making the assumption that 487 

the derived QTL allele is rare in the overall allelic diversity, thus deliberately biasing the error towards false-488 

negatives and away from false positives – maximising the probability of a good FPR at the potential penalty of 489 

FNR – and thus biasing risk away from advancing unfavourable genotypes at the penalty of increasing risk of 490 

discarding favourable ones. 491 

In summary, the metrics proposed in Table 1 quantify all significant parameters describing a marker’s behaviour 492 

when assayed, the level and type of association it displays with its target QTL (both species-wide and in 493 

specified breeding panels), and its distribution within a breeding panel.  These metrics give a fast, 494 

comprehensive and objective means to discriminate between and evaluate alternative markers (e.g. Fig 7), 495 

allowing an optimal marker system to be designed.  In addition, by including such “housekeeping” metrics as the 496 

favourable and unfavourable alleles, it is possible to automate these calculations, providing the possibility to 497 

scan genomic datasets for optimal SNP markers programmatically, greatly simplifying the deployment of QTL 498 

in breeding.  It also allows the development of a marker database with live updating of metrics as new data is 499 

added, enabling continual refinement of marker systems.  The advantages of adopting a set of metrics are 500 

manifold, and it is hoped that the proposed system will assist in developing a new generation of reliable marker 501 

systems to improve the efficiency of plant breeding. 502 
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