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GENETICS | INVESTIGATION

ABSTRACT Next generation sequencing is an efficient method that allows for substantially more markers

than previous technologies, providing opportunities for building high density genetic linkage maps, which

facilitate the development of non-model species’ genomic assemblies and the investigation of their genes.

However, constructing genetic maps using data generated via high-throughput sequencing technology

(e.g., genotyping-by-sequencing) is complicated by the presence of sequencing errors and genotyping

errors resulting from missing parental alleles due to low sequencing depth. If unaccounted for, these errors

lead to inflated genetic maps. In addition, map construction in many species is performed using full-sib

family populations derived from the outcrossing of two individuals, where unknown parental phase and

varying segregation types further complicate construction. We present a new methodology for modeling

low coverage sequencing data in the construction of genetic linkage maps using full-sib populations of

diploid species, implemented in a package called GUSMap. Our model is based on an extension of the

Lander-Green hidden Markov model that accounts for errors present in sequencing data. Results show

that GUSMap was able to give accurate estimates of the recombination fractions and overall map distance,

while most existing mapping packages produced inflated genetic maps in the presence of errors. Our

results demonstrate the feasibility of using low coverage sequencing data to produce genetic maps without

requiring extensive filtering of potentially erroneous genotypes, provided that the associated errors are

correctly accounted for in the model.
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The emergence of high-throughput sequencing methods that multiplex large numbers of in-30

dividuals has provided a cost-effective approach to perform genome-wide genotyping and31

discovery of genetic variation. Two of the primary multiplexing sequencing methods are whole32

genome sequencing, and reduced representation approaches, including whole-exome sequencing33

(Hodges et al. 2007), restriction-site associated DNA sequencing (Baird et al. 2008), and genotyping-34

by-sequencing (Elshire et al. 2011) among others (Heffelfinger et al. 2014). The introduction of these35

methods has led to the rapid increase in both the number of species being sequenced, especially36

non-model species (Ellegren 2014), and the number of markers available for analysis. Consequently,37

these methods provide opportunities to construct more dense genetic linkage maps compared with38

previous technologies, which is particularly useful in scenarios where alternative high density marker39

systems are infeasible (expensive to establish and validate). Genetic maps are important as they40

facilitate the investigation of many species in terms of their genes, such as associating phenotypes41

to the genome via quantitative trait loci, validating assemblies, ordering contigs in assemblies, and42

performing comparative genome analyses (Cheema and Dicks 2009; Liu et al. 2014).43

Constructing linkage maps using sequencing data is complicated by the presence of two types44

of missing data that can result when the sequencing depth is low. The first is a missing genotype45

resulting from no alleles being called, while the second consists of a heterozygous genotype being46

called as homozygous due to only one of the parental alleles being sequenced at a particular locus47

(Fragoso et al. 2016; Dodds et al. 2015). The latter type is particularly problematic as it usually behaves48

like a genotyping error, which increases the frequency of inferred recombinations and results in49

inflated linkage maps (Cartwright et al. 2007; Lincoln and Lander 1992; Cheema and Dicks 2009).50

Typically, genotyping errors resulting from low sequencing coverage are removed via filtering, such51

as setting genotypes with an associated read depth below some threshold value to missing (Gardner52

et al. 2014; Mousavi et al. 2016) or using genotype quality scores to discard uncertain genotype calls53
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(Mousavi et al. 2016; Hyma et al. 2015; Chen et al. 2014). Nevertheless, this requires sequencing at a54

higher depth, which results in fewer individuals being sequenced and fewer utilized loci for a given55

cost, and can leave a large proportion of the original data unused. Several algorithms have been56

developed for imputing missing genotypes and correcting erroneous genotypes in low coverage57

genome sequencing data (Fragoso et al. 2016; Swarts et al. 2014; Huang et al. 2014; Spindel et al. 2013),58

however, all of these algorithms are designed only for inbred populations and are not applicable59

to outcrossed full-sibling (full-sib) families. Recently, two software packages have been developed60

for performing linkage mapping in full-sib families using sequencing data. These are Lep-MAP61

(Rastas et al. 2013, 2016) and HighMap (Liu et al. 2014), both of which address the computational62

problem associated with high density maps but are not specifically designed to handle low coverage63

sequencing data.64

Another complication is the presence of sequencing errors, reads where the base has been called in-65

correctly. In contrast to errors caused by low read depth, sequencing errors can result in homozygotes66

being called as heterozygotes. Nevertheless, both types of errors lead to inflated genetic distances67

if not taken into account. One approach for removing sequencing errors involves detecting double68

recombinants at very short distances and either correcting the genotypes (e.g., a double recombinant69

becomes nonrecombinant) or setting the genotypes resulting in double recombinants as missing70

(Cheema and Dicks 2009; Liu et al. 2014; Van Os et al. 2005; Wu et al. 2008). The problem with71

correcting double recombinants is the possibility of false positives, particularly if the chromosomal72

order is inaccurate (Wu et al. 2008), while erroneous genotype calls on the outside loci cannot be73

detected using this approach. An alternative is to account for these errors by including additional74

parameters in the model (Cartwright et al. 2007; Rastas et al. 2013), although estimation of these75

parameters is not always straightforward when the error rate is unknown.76

Linkage mapping in plants has often been applied to inbred populations derived from the cross of77
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two fully homozygous parents (e.g., recombinant inbred lines, double haploids) (Maliepaard et al.78

1997; Grattapaglia and Sederoff 1994), although this is dependent upon the breeding system of the79

species. For many plant species and most animals species, self-incompatible, severe inbreeding80

depression or long generation times prevent the production of inbred lines, where an alternative81

mapping population commonly used is an outbred full-sib family derived from the crossing of two82

unrelated individuals (Schneider 2005; Singh and Singh 2015). Examples where outbred populations83

have been particularly utilized in linkage mapping range from forest trees to forages (Grattapaglia84

and Sederoff 1994; Devey et al. 1994; Plomion et al. 1995; Wilcox et al. 2001; Butcher et al. 2002;85

Faville et al. 2004; Griffiths et al. 2013). However, building linkage maps in outcrossed populations is86

complicated by loci having different segregation types (e.g., the number of alleles segregating in each87

parent) and unknown parental phase (Maliepaard et al. 1997; Lu et al. 2004). An early approach for88

performing linkage mapping in these populations was the pseudo-testcross strategy (Grattapaglia89

and Sederoff 1994), which maps the paternal and maternal meioses independently. However, when90

there are loci segregating in both parents, this approach does not use all available information, while91

integration of the two parental maps is complicated (Maliepaard et al. 1997; Van Ooijen 2011). An92

alternative approach is to model both meioses simultaneously using a multipoint likelihood model,93

provided there is a sufficient number of loci segregating in both parents (Van Ooijen 2011). One such94

model is the Lander-Green hidden Markov model (HMM) for general pedigrees (Lander and Green95

1987). Although applicable to full-sib family populations, computation of the Lander-Green HMM is96

infeasible for moderate-to-large pedigrees (Thompson 2000). Several variants of this model derived97

specifically for full-sib family populations in diploid species have been suggested (Ling 2000; Wu et al.98

2002; Tong et al. 2010), which reduces the computational complexity by exploiting the conditional99

independence between individuals given the parental phase.100

In this article, we describe a new statistical method that adjusts for bias in map length estimation101
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due to errors in genotypic data derived from sequencing. Our method is based on the Lander-Green102

HMM for full-sib families in diploid species (Ling 2000; Tong et al. 2010; Wu et al. 2002) that is103

applicable to multi-family and sex-specific situations, but includes an additional component to104

account for errors associated with sequencing data. The performance of the methodology presented105

here is tested and compared with existing full-sib family software packages using simulations and a106

real sequencing data set.107

Materials and Methods108

Segregation type and parental phase109

In full-sib families, the combination of alleles found in the parental genotypes, referred to as segrega-110

tion type (ST), varies from locus to locus. A complete classification of all STs in a full-sib family for111

diploid species has been given by Maliepaard et al. (1997). For sequencing data in diploid species that112

typically consists only of single nucleotide polymorphisms (SNPs), the number of different alleles113

found at a given locus in the parents is usually two. Consequently, the relevant STs are AB× AB,114

AB× AA, AB× BB, AA× AB and BB× AB, where A denotes the reference allele, B denotes the115

alternate allele (maternal × paternal), and AA, AB and BB denote the reference homozygous, het-116

erozygous and alternate homozygous genotypes, respectively. Using the standard nomenclature of117

Groover et al. (1994), we refer to the STs AB× AB as both-informative (BI), AB× AA and AB× BB as118

maternal-informative (MI), and AA× AB and BB× AB as paternal-informative (PI). To distinguish119

between the two MI and PI STs, we refer to AB× AA as MIA, AB× BB as MIB, AA× AB as PIA and120

BB× AB as PIB. The STs of AA× AA, AA× BB, BB× AA and BB× BB are also possible, although121

they are not usually classified as they provide no information of recombination in either parent, and122

are hence referred to as uninformative (U). Uninformative loci are included in this classification since123

it is possible for a locus to be uninformative in one family but informative in another.124
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We let Xp
1 denote the allele on the paternally derived chromosome of the paternal parent, Xp

0 denote125

the allele on the maternally derived chromosome of the paternal parent, Xm
1 denote the allele on the126

paternally derived chromosome of the maternal parent, and Xm
0 denote the allele on the maternally127

derived chromosome of the maternal parent. The ordered parental genotype pair (OPGP) is defined128

as the unique combination of Xp
1 , Xp

0 , Xm
1 and Xm

0 . Across the four STs of BI, PI, MI and U, there are129

sixteen distinct OPGPs (Table 1). Specification of the OPGP for all loci is equivalent to determining130

the parental haplotypes and consequently the allelic phase of the parents.131

Table 1 The OPGPs for both-informative, paternal-informative, maternal-informative and unin-
formative biallelic loci in a full-sib family

ST OPGP Xp
1 Xp

0 Xm
1 Xm

0

BI 1 A B A B

2 B A A B

3 A B B A

4 B A B A

PIA 5 A B A A

6 B A A A

PIB 7 A B B B

8 B A B B

MIA 9 A A A B

10 A A B A

MIB 11 B B A B

12 B B B A

U 13 A A A A

14 A A B B

15 B B A A

16 B B B B
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Data and models132

We begin by assuming that there are no errors present. In such a case, the data are denoted by G f ij, the133

true genotype call (AA, AB or BB) for individual i in family f at locus j for f = 1, . . . , F, i = 1, . . . , N f134

and j = 1, . . . , M, where F is the total number of families, N f is the number of individuals in family135

f and M is the total number of loci. We denote the vector (length N) of true genotypes at locus j136

by G··j = (G11j, . . . , G1N1 j, G21j, . . . , GFNF j)
T, where N = ∑F

f=1 N f and the superscript T denotes the137

transpose. The latent inheritance vectors are denoted S f ij = (s1, s2)
T, where s1 is the inheritance from138

the paternal parent and s2 is the inheritance from the maternal parent. The value of sk is 0 if the allele139

is derived from the parent’s maternal chromosome and 1 if the allele is derived from the parent’s140

paternal chromosome for k = 1, 2. We denote the inheritance vector (length 2N) for all individuals at141

locus j by S··j = (ST
11j, . . . , ST

1N1 j, ST
21j, . . . , ST

FNF j)
T.142

Lander-Green HMM: For multilocus analysis in general pedigrees, Lander and Green (1987) proposed143

using the HMM144

P(G) = ∑
S

P(S··1)P(G··1|S··1)
M

∏
j=2

P(S··j|S··j−1)P(G··j|S··j), (1)

where S = (ST
··1, . . . , ST

··M)T. In HMM theory, P(S··j|S··j−1) is known as the transmission probability,145

P(G··j|S··j) as the emission probability, and P(S··1) as the initial distribution. Usually, the initial146

distribution is taken to be 2N independent Bernoulli trials (Ling 2000; Tong et al. 2010).147

HMM for full-sib families: In its original form, the Lander-Green HMM likelihood can be computed148

in O(N2M) time using the forward-backward algorithm of Baum et al. (1970). Computing the Lander-149

Green HMM likelihood quickly becomes infeasible for pedigrees of moderate-to-large sizes. In150

full-sib family populations, individuals within and between families are conditionally independent151
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given the OPGPs (e.g., parental phases). If z f j denotes the OPGP at locus j in family f , then the HMM152

for full-sib family populations can be expressed as,153

P(G) =
F

∏
f=1

N f

∏
i=1

∑
S f i·

P(S f i1)P(G f i1|S f i1, z f 1)

M

∏
j=2

P(S f ij|S f ij−1)P(G f ij|S f ij, z f j)

]
, (2)

where S f i· = (ST
f i1, . . . , ST

f iM)T. Using model (2), the computational time is reduced to O(NM),154

provided that the OPGPs are known for all families.155

For a single individual in a full-sib family, the four inheritance vectors, S f ij, that are possible in the156

HMM are (0, 0), (0, 1), (1, 0) and (1, 1). Let rp
j and rm

j denote the paternal and maternal recombination157

fraction respectively between locus j and locus j + 1, where these recombination fractions are158

constrained to the interval [0, 0.5]. For model (2), the transition probabilities, P(S f ij|S f ij−1), are given159

in Table 2, while the emission probabilities, P(G f ij|S f ij, z f j), are given in Table S1 in File S1. When160

the genotype is missing, the emission probability is P(G f ij|S f ij, z f j) = 1 for all inheritance vectors.161

Table 2 Transmission probabilities for the full-sib family HMM

S f ij

S f ij−1 (0,0) (0,1) (1,0) (1,1)

(0,0) (1− rp
j )(1− rm

j ) (1− rp
j )r

m
j rp

j (1− rm
j ) rp

j rm
j

(0,1) (1− rp
j )r

m
j (1− rp

j )(1− rm
j ) rp

j rm
j rp

j (1− rm
j )

(1,0) rp
j (1− rm

j ) rp
j rm

j (1− rp
j )(1− rm

j ) (1− rp
j )r

m
j

(1,1) rp
j rm

j rp
j (1− rm

j ) (1− rp
j )r

m
j (1− rp

j )(1− rm
j )

To compute the likelihood of the full-sib family HMM, forward recursion is used. Define α f ij(S f ij)162
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as the forward probability which satisfies the relations163

α f i1(S f i1) = π f iP(G f i1|S f i1, z f 1), (3)

where π f i = P(S f i1), and164

α f ij(S f ij) = ∑
S f ij−1

α f ij−1(S f ij−1)P(S f ij|S f ij−1)P(G f ij|S f ij, z f j), (4)

for j = 2, . . . , M. Under the assumption that the initial distribution is 2N independent Bernoulli165

trials, π f i = 1/4 for all f , i. The likelihood of the HMM for individual i in family f is166

L f i = ∑
S f iM

α f iM(S f iM). (5)

As individuals within and between families are conditionally independent given the OPGPs of all167

the parents, the likelihood for multiple full-sib families is168

L =
F

∏
f=1

N f

∏
i=1

L f i. (6)

In situations where some loci are uninformative in the maternal or paternal parent across all families,169

a slight adjustment to the parametrization of the model is required. If the paternal (maternal)170

genotype at locus j is homozygous in every family or the paternal (maternal) genotypes at all loci171

from locus 1 to j− 1 are homozygous in every family, then the recombination fraction rp
j−1 (rm

j−1)172

cannot be estimated and therefore is excluded from the model. Under this parametrization, the173

sex-specific recombination fraction rp
j−1 (rm

j−1) is now interpreted as the probability of a recombination174

in the paternal (maternal) parent between locus j and the previous locus which is segregating in175
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the paternal (maternal) parent. When the sex-specific recombination fractions are assumed equal176

(rp
j = rm

j ), this adjustment to the parametrization is not required.177

Incorporating errors in the Lander-Green HMM: When there is error present in the sequencing data,178

the genotypes, G f ij, are latent. The observed data are the number of reads for the reference allele, A,179

and alternate allele, B. We denote the number of reads for the reference allele observed for individual180

i in family f at locus j by Yf ij, where Yf ij is an integer value between 0 and d f ij, and d f ij is the181

sequencing depth at locus j for individual i in family f . The sequencing depth, d f ij, is equal to the182

sum of the number of reads for the reference and alternate alleles. We denote the vector (length N)183

of reference allele counts at locus j by Y ··j = (Y11j, . . . , Y1N1 j, Y21j, . . . , YFNF j)
T. If Y ··j is conditionally184

independent between loci given G··j, then the extended HMM for sequencing data becomes185

P(Y) = ∑
S

P(S··1)

(
∑
G··1

P(Y ··1|G··1)P(G··1|S··1)
)

M

∏
j=2

P(S··j|S··j−1)

∑
G··j

P(Y ··j|G··j)P(G··j|S··j)

 . (7)

The transmission probabilities in model (7) are the same as in model (1). The emission probability is186

∑G··j P(Y ··j|G··j)P(G··j|S··j) conditional on the sequencing depth d f ij.187

Full-sib HMM for sequencing data: If the number of reference alleles observed in the sequencing188

data, Yf ij, is conditionally independent between individuals given the true genotypes, G f ij, then the189

full-sib family HMM for sequencing data is190

P(Y) =
F

∏
f=1

N f

∏
i=1

∑
S f i·

P(S f i1)

∑
G f i1

P(Yf i1|G f i1)P(G f i1|S f i1, z f 1)


M

∏
j=2

P(S f ij|S f ij−1)

∑
G f ij

P(Yf ij|G f ij)P(G f ij|S f ij, z f j)

 . (8)
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The only change to model (8) compared with model (2) is in the emission probabilities, which requires

specifying the conditional probabilities P(Yf ij|G f ij). Suppose that Yf ij arises from a random binomial

sample of the alleles found in G f ij (Dodds et al. 2015) and suppose that sequencing errors occur

independently between reads, then

pAA = P(Yf ij = a|G f ij = AA) =

(
d f ij

a

)
(1− ε)aεd f ij−a

pAB = P(Yf ij = a|G f ij = AB) =
(

d f ij
a

)(
1
2

)d f ij

pBB = P(Yf ij = a|G f ij = BB) =
(

d f ij
a

)
(1− ε)d f ij−aεa.

(9)

See File S2 for derivation of these probabilities. Under these assumptions, the emission probabilities,191

∑G f ij
P(Yf ij|G f ij)P(G f ij|S f ij, z f j), for model (8) can be derived (Table S2 in File S1). Consequently,192

the likelihood of the HMM for sequencing data equates to Eq (6) with the emission probability193

P(G f ij|S f ij, z f j) replaced by ∑G f ij
P(Yf ij|G f ij)P(G f ij|S f ij, z f j).194

Inferring OPGPs195

The likelihoods for full-sib families derived in the previous sections assume that the OPGPs (or196

parental phases) are known. In practice, this information is unknown, although the OPGPs can, in197

some cases, be inferred from the grandparental genotype information. Nevertheless, if there is no198

grandparental information, then inference of the OPGPs using progeny genotypes (assuming parents199

are known and accurately genotyped) is required.200

We initialize the value of z f j for each locus to a default value, that is, we initialize z f j = 1 if the201

locus is BI, z f j = 5 if the locus is PIA, z f j = 7 if the locus is PIB, z f j = 9 if the locus is MIA, and202

z f j = 11 if the locus is MIB. Inference of the OPGPs for family f can be achieved by relaxing the203
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constraint on rp
j and rm

j such that rp
j , rm

j ∈ [0, 1] and maximising the likelihood204

L f =

N f

∏
i=1

∑
S f iM

α f iM(S f iM), (10)

where α f iM(S f iM) is defined as in Eqs (3) and (4), and the emission probability is P(Yf ij|G f ij) for205

inference under model (2) but ∑G f ij
P(Yf ij|G f ij)P(G f ij|S f ij, z f j) for inference under model (8). The206

OPGP of locus j = 2, . . . , M can be inferred relative to the previous OPGPs based on whether the207

maximum likelihood estimates of rp
j−1 and/or rm

j−1 are greater than or less than 0.5, where the OPGP208

for the first locus is set to a baseline value depending on its ST (see File S2 for details).209

Implementation210

An implementation of the new methodology presented in this paper can be found in the GUSMap211

(Genotyping Uncertainty with Sequencing data and linkage MAPping) software, which is freely212

available as a package for the programming language R (R Core Team 2017) and can be downloaded213

from https://github.com/tpbilton/GUSMap. In this package, numerical maximization methods are used214

to compute the maximum likelihood estimates of the likelihoods. Specifically, we use the ‘BFGS’215

method implemented in the optim() function with the likelihood functions written in C to reduce216

computational time. Since an unconstrained numeric optimizer is used, the likelihoods are solved217

with respect to transformed model parameters using the transformation218

ρ(r) = ln
(

2r
1− 2r

)

for the recombination fractions in all the likelihoods except for likelihood (10) where the logit219

transformation is used, and the logit transformation for the sequencing error parameter, ε. The maxi-220

mum likelihood estimates for the parameters are computed by back transforming the transformed221
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parameter estimates.222

Software comparison223

Using simulated and real data, the performance of GUSMap v0.1.0 (GM) was compared to the four224

linkage mapping software packages: CRI-MAP 2.507 (CM) (Green et al. 1990), JoinMap 4.1 (JM)225

(Van Ooijen 2011), Lep-MAP2 (Rastas et al. 2016) and OneMap v2.0-4 (OM) (Margarido et al. 2007),226

all of which are commonly used for full-sib family populations. In general, the default parameter227

settings were used, except for JM and Lep-MAP2. In JM, the threshold for determining linkage was228

set to zero in order for a complete map to be computed in every data set and the maximum likelihood229

algorithm (Van Ooijen 2011) was used. For Lep-MAP2, detection of duplicate loci was removed230

(argument removeDuplicates=0). In addition, the methodology of Lep-MAP2 includes estimation of231

an error parameter for each locus and was implemented using two sets of parameter options. The first232

corresponds to the model that includes the error parameters, referred to as LM2ε, while the second233

corresponds to the exclusion of all error parameters (using arguments learnErrorParameters=0 and234

initError=0) and is referred to as LM2.235

With sequencing data, some genotype calls may result in apparent Mendelian errors, which occur236

when a genotype call for a PIA or MIA locus is homozygous for the alternate allele, or a genotype237

call for a PIB or MIB locus is homozygous for the reference allele. Genotype calls determined to be a238

Mendelian error were set as heterozygous, since most of the standard linkage mapping packages239

cannot handle data sets with these errors present. Mendelian errors were not corrected with GM as240

they are accounted for in the HMM. In addition, some heterozygous genotype calls in the sequencing241

data were supported by more than nine reads for one allele but only a single read for the other242

allele. As these genotype calls are likely to be sequencing errors, they were set to missing for the243

standard packages, but not for GM, as they provide information used to estimate the sequencing244
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error parameter ε.245

Simulation246

Sequencing data were simulated using the following procedure. Inheritance vectors for progeny247

were generated based on the true parental recombination values assuming no interference and248

equal probability of the first locus being derived from either parent. These inheritance vectors were249

converted to genotype calls for a pre-specified set of OPGPs. From these true genotype calls, the250

simulated sequencing data sets were generated as follows:251

• A sequencing depth at each locus in each individual was generated by simulating realizations252

from a negative binomial distribution with mean µdj and dispersion parameter of 2, that is253

P(d f ij = d) =
Γ(d + δ)

d!Γ(δ)

(
δ

µdj + δ

)δ(
µdj

µdj + δ

)d

, (11)

where δ = 2, µdj corresponds to the mean sequencing depth for locus j and Γ(·) denotes the254

gamma function.255

• A sample of d f ij alleles are found by randomly sampling the alleles of the true genotype, G f ij,256

with replacement, where a miscall of the sampled allele (e.g., a B allele called as A and vice257

versa) occurred with probability ε.258

Two sets of simulations were conducted. In the first set, the performance of the five software259

packages is examined and compared under different read mean depths and sequencing error rates.260

This set of simulations consisted of simulating a 1,000 single full-sib families (F = 1) with a hundred261

offspring (N1 = 100), twelve loci (M = 12) and a fixed recombination rate of 1% in both parents262

(rp
j = rm

j = 0.01), where the segregation types and OPGPs of the loci are given in Table 3. Different263

combinations of mean read depth, µdj , and sequencing error, ε, were used, where the mean read264
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depth was either low (µdj = 2), moderate (µdj = 10) or high (µdj = 20), and the sequencing error rate265

was either absent (ε = 0), small (ε = 0.002) or large (ε = 0.01). To remove errors associated with low266

sequencing depth, the simulated data were filtered such that all genotype calls with an associated267

read depth below some threshold were set to missing. The threshold used was eleven for the high268

depth setting (µdj = 20), six for the moderate depth setting (µdj = 10), but wasn’t applied for the low269

depth setting (µdj = 2) since an insufficient number of non-missing genotypes would remain. This270

filtering step was also not performed for GM as it models under-called heterozygous genotypes.271

Table 3 Segregation type and OPGP for loci used in the first set of simulations

Locus

1 2 3 4 5 6 7 8 9 10 11 12

ST PI BI BI MI PI MI BI BI MI BI PI MI

OPGP 5 1 2 9 6 10 3 4 9 1 6 1

The second set of simulations investigates the optimal sequencing depth for a given sequencing272

effort (defined as the number of individuals times the number of loci times the mean read depth).273

The parameters used in this set corresponded with the previous set, with the exception that the274

sequencing error rate was fixed at 0.2% (ε = 0.002), the number of individuals was varied and275

the mean read depth was set such that an average sequencing effort of 10,000 was maintained.276

Recombination fractions were estimated using GM assuming a known OPGP.277

Code for implementing the simulations is found in File S3. GM, CM, LM2, LM2ε, and OM were278

all run on a Linux desktop computer with four Intel Core i7-870 central processing units running279

at 2.93 GHz frequency, while JM was run on a Windows 10 Enterprise desktop computer with four280

Intel Core i7-3770 central processing units running at 3.40 GHz frequency. As JM has no scripting281

functionality, it was automated using a custom C# script coupled with a coded user interface test, a282

program which can automate mouse clicks and keyboard strokes on Windows operating systems.283
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Mānuka data284

A single full-sib bi-parental family (n = 180) of mānuka (Leptospermum scoparium, J.R. Forst. et G.285

Forst.; Myrtaceae) derived from a reciprocal pair-cross of heterozygous individuals, was genotyped286

along with the parents, using a genotyping-by-sequencing (GBS) approach (Elshire et al. 2011).287

Samples consisted of young expanding leaves collected from three month old seedlings grown in288

the glasshouse. Two GBS libraries were prepared based on the Elshire method (Elshire et al. 2011)289

using a double digest with the restriction enzymes ApeKI/MspI and sequenced at AgResearch,290

Invermay, Animal Genomics laboratory. A size selection step was performed on the DNA such that291

the genomic part of each read was between 27 and 377 base pairs. The samples were sequenced292

on an Illumina HiSeq 2500 v4 chemistry producing 1x100 single end reads. Each GBS library was293

sequenced on two lanes of a flow cell generating approximately 29.2 giga base pairs of raw sequence294

data per lane. The two parents were run on both lanes to obtain higher sequencing depths, while295

each progeny was run on one of the two lanes. Quality control was performed using DECONVQC296

(https://github.com/AgResearch/DECONVQC) and KGD (Dodds et al. 2015). Three progeny were297

excluded from further analysis, one due to having a sample call rate below 0.05 while two other298

samples were identified as being a duplicate of another sample. Sequence reads were mapped using299

Bowtie2 version 2.1.0 (Langmead and Salzberg 2012) and SNP variants were called using Tassel3300

version 3.0.173 (Bradbury et al. 2007).301

To compare the performance of GM relative to the other packages, only variants called on chromo-302

some 11 were retained for further analysis, with additional filtering performed as follows. SNPs with303

a minor allele frequency less than 0.05 or 20% or more missing genotypes were discarded. The ST of304

each SNP was inferred based on the parental genotypes provided that the read depth for both parents305

was greater than five, where SNPs were discarded if the ST could not be inferred. A segregation306
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test was performed on each SNP using a chi-square test, where a P-value of 0.05 was used and the307

expected counts were adjusted for low read depth calls (see File S2 for details). To ensure that each308

tag was only represented by a single variant, adjacent SNPs were placed into bins if the distance309

separating them was less than 180 base pairs, with one SNP from each bin retained for the final310

analysis by random selection. After filtering, 680 SNPs remained with 270 PI, 294 MI and 116 BI loci.311

This data is available in the R package GUSMap.312

To assess the ordering of the SNPs called on chromosome 11, heatmaps of the 2-point recombination313

fraction estimates between all the SNPs segregating in the same parent were produced. GM was314

used to compute the 2-point recombination fractions (with ε = 0), where the phase between the SNP315

pair was taken as the one which maximized the likelihood value. Linkage maps were computed316

using two independent sets of SNPs: a low depth set consisting of all the SNPs with a mean read317

depth below six and a high depth set which was obtained by setting all genotype calls with a read318

depth below twenty to missing and selecting all the SNPs such that a call rate of at least 80% was319

maintained. In total, there were 95 Low Depth SNPs and 54 High Depth SNPs.320

Data availability321

The mānuka data set used to construct linkage maps is available in the software package GUSMap322

(https://github.com/tpbilton/GUSMap). Code for generating the simulated data is found in File S3.323

Supplementary tables and figures are given in File S1 and supplementary methods used in this paper324

are given in File S2.325
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Results326

Simulations327

The distribution of the overall map distance estimates obtained using the various software packages328

in the first set of simulations is given in Figure 1, while the distribution of the recombination fraction329

estimates for each simulation are given in Figures S1-S9 in File S1. Across all of the simulations,330

LM2, OM and CM performed similarly and at high depth with no sequencing error, gave relatively331

unbiased estimates. However, at moderate read depth with no sequencing error, the overall map332

distance estimates from LM2, OM and CM were slightly larger that the true value, which suggests333

that the cut-out of six has not removed all the errors associated with low sequencing depth. The334

bias in the map distance and recombination fractions estimates increased as the level of sequencing335

error increased for the high and moderate depth scenarios. In comparison to LM2, OM and CM,336

JM produced maps that were on average slightly longer and more biased across all the low and337

moderate depth simulations. These inflated maps seem to be driven by biases in the recombination338

fraction estimates for r4 and r5 (see Figures S1-S6 in File S1), particularly when the sequencing error339

was small or absent. These recombination fraction parameters all include one of the loci in the region340

between locus 4 and locus 6, where a PI locus is wedged between two MI loci. As JM uses only a341

3-point approach, the lack of informativeness between adjacent loci in this region may explain the342

observed bias.343

LM2ε was able to produce accurate estimates of the recombination fractions and overall map344

distance when the sequencing error was absent or low for the moderate and high read depth345

scenarios. Nevertheless, when the sequencing error was large, LM2ε produced biased estimates346

of the the overall map distance, which was driven by large biases in the recombination fraction347

estimates that include an outside locus (see Figure S3 and Figure S6 in File S1). At low depth, the348
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Figure 1 Distribution of the map distance estimates for the first set of simulations across varying
mean read depths (rows) and varying sequencing error rates (columns). The solid point represents
the mean, the vertical solid line represents the interquartile range, the vertical dashed line repre-
sents the range between the 2.5th and 97.5th percentiles, the five horizontal solid lines represent, in
ascending order, the 2.5th percentile, lower quantile, median, upper quantile and 97.5th percentile,
and the horizontal black dotted line represents the true parameter value. Map distances are in
centimorgans (cM) and were computed using the Haldane mapping function.
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four existing software packages all gave very poor map distance estimates across all of the various349

sequencing error rates, which was expected given the large number of errors in the data sets. Of these350

methods, LM2ε performed the best although its map distance estimates were still approximately351

four to five times larger than the true value (Figure S10 in File S1). In addition, the recombination352

fraction estimates for LM2ε at low depth were biased (see Figures S7-S9 in File S1), although for the353

middle sections of the map, the bias was in both directions resulting in less inflation of the overall354

map distance but a distortion of the distribution of the SNPs across the linkage map. In contrast,355

GM was the only package which was able to give accurate estimates of the overall map distance and356

recombination fractions across all the simulation scenarios.357

The distribution of the sequencing error estimates obtained from GM are given in Figure 2. For the358

high and moderate depth simulations, the estimates were relatively accurate, while there was a small359

bias for the low depth simulations. The variability of the estimates increased as the mean read depth360

decreased, which is not surprising given that there is more variability in the data at low sequencing361

depths.362

Figure 3 gives the distribution of the computation time required for each package across all of the363

first set of simulations. Of all the packages, LM2 was the fastest, regardless of whether the error364

parameters were included, while CM, GM and OM was approximately three times, five and a half365

times and forty five times slower than LM2 respectively. As JM is a non-scripting program, providing366

a sensible measure of computation time is difficult. For these simulations, the time recorded was367

only for the step to compute the map, which on average required four times more computational368

time than LM2, but did not include the extensive user interaction time needed to import the data and369

create the required nodes.370

The percentage of data sets in which the vector of OPGPs was correctly inferred in the first set of371

simulations is displayed in Table 4. For the moderate and high depth simulations, all the packages372
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Figure 2 Distribution of the sequencing error estimates obtained from GM for the various com-
binations of mean read depths and sequencing error rates. The solid point represents the mean,
the vertical solid line represents the interquartile range, the vertical dashed line represents the
range between the 2.5th and 97.5th percentiles, the five horizontal solid lines represent, in ascend-
ing order, the 2.5th percentile, lower quantile, median, upper quantile and 97.5th percentile, and the
horizontal black dotted lines represent the true parameter values.

apart from JM were able to correctly infer the parental phase, regardless of the amount of sequencing373

error present. In contrast, for the low depth simulations, only GM and LM2ε were able to correctly374

infer phase across all the simulations, while OM rarely inferred phase correctly and LM2 incorrectly375

inferred phase for a few data sets. There were a small number of phasing errors for JM across376

the various scenarios, with the frequency of these errors increasing as the number of erroneous377

genotypes increased. For CM, phase inference was not required since it is an implementation of the378

Lander-Green HMM for general pedigrees.379

For the second set of simulations, a plot of the sum of the mean square errors of the recombination380

fraction estimates verses the sequencing depth is given in Figure 4. This plot suggests that the381

optimal sequencing depth was around three or four as the mean square error was lowest around382

these depths.383
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Figure 3 Distribution of the log transformed computational time used on each data set across all
nine simulation scenarios for the first set of simulations and for each software package. The solid
point represents the mean, the vertical solid line represents the interquartile range, the vertical
dashed line represents the range between the 2.5th and 97.5th percentiles, the five horizontal solid
lines represent, in ascending order, the 2.5th percentile, lower quantile, median, upper quantile and
97.5th percentile.

Mānuka data384

Heatmaps of the 2-point recombination fraction estimates for SNPs located on chromosome 11 are385

given in Figure S11A in File S1 for SNPs segregating in the paternal parent and in Figure S1B in File S1386

for SNPs segregating in the maternal parent. A number of SNPs appeared either to be incorrectly387

ordered on the chromosome or located on the wrong chromosome and therefore were discarded from388

the analysis (164 in total). The heatmaps of the remaining SNPs (see Figure S11C and Figure S11D in389

File S1) suggests that the order of these SNPs was fairly accurate. For the remainder of this analysis,390

we assume that this order is correct.391

Linkage maps of chromosome 11 were computed for both the Low Depth and High Depth set of392

SNPs using GM and the standard software packages. These linkage maps are given in Figure S12 in393
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Table 4 Percentage of simulated data sets in which the vector of OPGPs was correctly inferred

Mean Depth Sequencing error Software package

µdj ε GM LM2ε LM2 OM JM

20 0 100.0 100.0 100.0 100.0 99.9

0.002 100.0 100.0 100.0 100.0 100.0

0.01 100.0 100.0 100.0 100.0 98.8

10 0 100.0 100.0 100.0 100.0 99.9

0.002 100.0 100.0 100.0 100.0 100.0

0.01 100.0 100.0 100.0 100.0 99.4

2 0 100.0 100.0 99.9 2.8 94.0

0.002 100.0 100.0 99.6 3.6 94.8

0.01 100.0 100.0 99.6 4.5 93.2

File S1 (all maps) and Figure 5 (maps that were less than 150 centimorgans (cM)), with the overall394

map distance estimates given in Table 5. For the Low Depth set, the maps obtained from LM2,395

OM, CM and JM were between eight to nine times longer compared to the High Depth set. These396

inflated map estimates were expected given the substantial proportion of under-called heterozygous397

genotypes present at low depth and is consistent with the simulation results. Compared to GM and398

LM2ε at high depth, LM2ε produced a map that was approximately 20 cM longer when using the399

Low Depth SNPs, with large distances between the SNPs at the chromosome ends. For the high400

depth setting, the maps produced by LM2ε and GM were similar in length and shorter than the401

maps obtain using LM2, OM, CM and JM by approximately 30 cM. This suggests that there was402

sequencing error present in this data set, where both LM2ε and GM are accounting for these errors.403

The overall map distance estimated using GM was consistent across both SNP sets at approximately404

76.5 cM, with estimated sequencing error rates of 0.31% for the Low Depth SNPs and 0.20% for the405

High Depth SNPs. Overall, these results resemble those observed in the simulations and suggests406

that GM has accounted for most of the errors present in both the low and high depth settings. In407
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Figure 4 Sum of recombination fraction estimates mean square errors for fixed sequencing effort.
Recombination fraction estimates were computed using GM, where the OPGP is known and the
sequencing effort was fixed at 10,000 reads. The parameters used to generate the data sets cor-
responds to the first set of simulations, with the exception that the mean depth and number of
individuals were set to maintain a sequencing effort of 10,000. The sum of the mean square errors
was calculated using ∑11

j=1 MSE(r̂j). The number of individuals range from 833 for a mean depth
of 1 to 55 for a mean read depth of 15.15.

terms of phasing, all packages inferred the same phase under both SNP sets, apart from CM which408

does not require the parental phase to compute the recombination fractions.409

Table 5 Overall map distance estimates (cM) for chromosome 11 of mānuka

SNP set GM LM2ε LM2 OM CM JM

Low Depth 76.6 104.8 990.0 989.1 977.1 950.7

High Depth 76.5 79.9 108.2 108.7 108.7 117.9

Map distances were computed using the Haldane mapping
function.
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Figure 5 Subset of linkage maps for chromosome 11 of mānuka computed using the various soft-
ware packages. Low Depth refers to the maps produced using SNPs with a mean read depth be-
low 6, while High Depth refers to maps produced using SNPs with less than 20% missing data
after setting genotypes with a read depth below 20 to missing. Map distances are in centimorgans
and were computed using the Haldane mapping function.

Discussion410

We have developed a new statistical method for constructing genetic maps from a set of ordered411

loci on outcrossed full-sib families in diploid species that have been genotyped using multiplexing412

sequencing methods. Our methodology uses a HMM approach to overcome the issues associated413

with mapping in full-sib families and to account for errors resulting from low sequencing depth414

and miscalled bases. In addition, our methodology is applicable to multi-family and sex-specific415

situations and has been implemented in the software package GUSMap.416
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Our simulation results show that GUSMap was able to accurately estimate the recombination417

fractions and overall map distance for varying sequencing error rates and read mean depth scenarios.418

In contrast, most of the other software packages were unable to produce reasonable results when419

there were errors present in the data resulting in biased estimates. In particular, the overall map420

distances obtained using these packages were inflated, which is known to occur in linkage mapping421

when genotypes errors are present and not taken into account (Cartwright et al. 2007; Lincoln and422

Lander 1992). Of all the standard software programs, the implementation of Lep-MAP2 that included423

error parameters was less sensitive to inflation in the overall map distance estimates and was able to424

provide reasonable results when the number of erroneous genotypes was not too large. However,425

in the low coverage settings, it still contained substantial bias in the map distance estimates and426

distortion in the distribution of the SNPs across the map. The maps produced by the packages427

CRI-MAP, OneMap and Lep-MAP2 without an error parameter gave very similar results since these428

packages are essentially implementing the same model. In comparison, JoinMap tended to produce429

maps that were slightly longer in length.430

The analysis of the mānuka data set suggests that GUSMap performs well under real life low431

depth sequencing scenarios. This observation is based on the fact that GUSMap produced consistent432

estimates of the overall map distance from two independent set of SNPs with different sequencing433

coverage, and gave a similar map length compared with LM2ε at high depth. In contrast, the other434

packages all produced hugely inflated genetic maps, except for LM2ε, although there still appeared435

to be some inflation under the low depth setting. Thus, this analysis shows that GUSMap is able to436

reduce map inflation caused by errors in the data and provide better linkage maps and estimates of437

overall map distance, particularly in low coverage sequencing scenarios.438

Of the software packages considered in this paper, only Lep-MAP2 and GUSMap account for439

errors using information provided by the observed data. For Lep-MAP2, estimation of these errors440
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seems to be based on detecting double recombinants. Thus, the error parameters for the end loci441

are always zero, since double recombinants cannot be counted, resulting in bias for recombination442

fraction estimates that include an outside locus when these loci contain erroneous genotype calls.443

Furthermore, for situations when many errors are present in the data, such as low coverage data,444

determining which genotypes are incorrect based on double recombinants is difficult. GUSMap, on445

the other hand, uses the allele count information to model errors due to missing parental alleles and446

sequencing errors. In particular, it is able to differentiate between the two error types, allowing it to447

produce accurate maps in low coverage scenarios. What is more, GUSMap can account for errors448

associated with low read depths in a 2-point analysis, which is not the case when error estimation449

is based on detecting double recombinants. This is particularly useful for producing heatmaps of450

2-point recombination fraction estimates to examine chromosomal ordering. GUSMap also uses only451

a single parameter to model sequencing error, whereas LM2ε specifies a separate error parameter for452

each locus. Consequently, GUSMap makes the assumption that the sequencing error rate is constant453

across individuals and loci. In practice, this assumption may not hold, although the mānuka results454

suggest that it may be reasonable in some situations.455

The simulation results suggest that GUSMap is able to provide reasonably accurate estimates456

of the sequencing error rate, although there was a small bias at low depth. For the mānuka data457

set, the estimates from GUSMap suggest that between 0.2% to 0.3% of the reads in the filtered data458

were sequencing errors, although there was discrepancy in the sequencing error rates estimated459

between the two SNP sets. This discrepancy could be due to natural variation, particularly as the460

simulation results suggest that there is large variability in the sequencing error estimates at low461

depth. Alternatively, it could be that high depth SNPs with large sequencing errors were removed462

through the filtering process as detection of these SNPs would be easier since the sequencing errors463

are not confounded with the errors resulting from low sequencing depth.464
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Nearly all full-sib family software packages require inferring parental phase. Phasing errors can465

result in estimates that are close to or equal to 0.5. GUSMap and Lep-MAP2 were mostly able to466

correctly infer phase across all the simulations. Both of these packages use a similar phasing approach467

in that they infer phase based on sex-specific recombination fractions estimated on the interval [0, 1]468

using a multipoint likelihood containing all the loci. In contrast, OneMap failed to correctly infer469

phase in the low depth simulations, which suggests that phase inference based on maximizing the470

likelihood value is unreliable in the presence of severe model misspecification. JoinMap also failed471

to infer phase in some data sets, which suggests that phasing using a multipoint approach can be472

superior to using a 3-point approach. The ability to correctly infer phase also depends on a number473

of factors; namely, the density of the markers, the family size, and for sequencing data, the average474

sequencing depth. Simulation results (Figure S13 in File S1) suggest that GUSMap is able to infer475

phase for low coverage data provided that the maps are at moderate-to-high density, the mean read476

depth is at least 2, and that there are at least 25 progeny in the family.477

A number of assumptions have been made in the methodology we have outlined. Firstly, the order478

of the loci is assumed to be known beforehand, which is often not the case with sequencing data,479

particularly for de novo assemblies. One approach to ordering loci is to evaluate the likelihood under480

different chromosomal orders, where the best order is the one that gives the highest likelihood value.481

This approach is feasible for improving order locally, provided that the initial order is fairly accurate,482

but is impractical for ordering large number of loci that are randomly ordered. A reasonable initial483

order could be computed by combining 2-point estimates obtained from GUSMap with existing484

ordering algorithms. More research is required to investigate loci ordering in low coverage settings.485

Another assumption is that all the parental genotypes are known for all loci, so that the STs can be486

determined unequivocally. In practice, all the parents will be sequenced using multiplexing methods487

and therefore are subject to the same type of genotyping errors as the progeny. One way to circumvent488
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this issue is to sequence the parents multiple times to obtain higher sequencing depths, although this489

still results in some loci having insufficient depths to accurately infer the ST. Alternatively, if there is490

a sufficient number of individuals in each family, the ST of each locus could be inferred from progeny491

genotypes using a segregation test. Other assumptions include independence of the reads observed492

in the sequencing data between loci, which is a reasonable assumption provided there is only a493

single locus on each read, and the sampling of the alleles from the true genotype is random. For the494

latter assumption, the probabilities in Eq (9) can be adjusted to reflect any prior knowledge of the495

sampling of the true genotypes (e.g., preferential sampling of alleles). This methodology is limited496

to autosomal biallelic loci in diploid species or functionally diploid species (e.g., allopolyploids).497

Extension of this methodology to allosomal (sex-linked) loci and multiallelic loci (e.g., microsatellite498

markers) would require deriving the correct emission probabilities in Eq (9) for the HMM.499

GUSMap provides researchers with a tool to compute genetic maps from a set of ordered loci500

using sequencing data and overcomes a number of issues related to this data. Firstly, it is able to501

handle varying sequencing depths across SNPs, which is typical of sequencing data, allowing more502

SNPs to be utilized that would otherwise be discarded in a high depth analysis. Secondly, SNPs503

called in the bioinformatics process must meet a minimal set of filtering criteria, which is aimed at504

removing erroneous genotypes and fictitious SNPs. GUSMap removes the need for filtering based on505

discarding genotyping calls based on read depth information or skewed apparent segregation and506

correcting erroneous genotypes through detecting double recombinants. This allows researchers to507

use low coverage data, especially when cost constraints may prohibit the production of sufficiently508

high coverage data, to construct genetic maps. Another advantage of GUSMap is its use of a statistical509

approach to model errors, which allows it to be combined with existing statistical techniques to make510

inference on model parameters, such as quantifying the rate of sequencing errors, and assessing511

modeling assumptions. Although the methodology of GUSMap is derived specifically for outbred512
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full-sib populations, it can also be applied to inbred backcross populations, since the segregation type513

of all the loci are either paternal-informative or maternal-informative, and inbred F2 populations514

where the segregation type of all the loci are both-informative.515
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