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Abstract 23 

Large-scale whole cancer-genome sequencing projects have led to the identification of a 24 

handful of cis-regulatory driver mutations in cancer genomes. However, recent studies have 25 

demonstrated that very large cancer cohorts will be required in order to identify low 26 

frequency non-coding drivers. To further this endeavour, in this study, we performed high-27 

depth sequencing across 95 colorectal cancers and matched normal samples using a unique 28 

target capture sequencing (TCS) assay focusing on over 35 megabases of gene regulatory 29 

elements. We first assessed coverage and variant detection capability from our TCS data, and 30 

compared this with a sample that was additionally whole-genome sequenced (WGS). TCS 31 

enabled substantially deeper sequencing and thus we detected 51% more somatic single 32 

nucleotide variants (n = 2,457) and 144% more somatic insertions and deletions (n = 39) by 33 

TCS than WGS. Variants obtained from TCS data were suitable for somatic mutational 34 

signature detection, enabling us to define the signatures associated with germline deleterious 35 

variants in MSH6 and MUTYH in samples within our cohort. Finally, we surveyed regulatory 36 

mutations to find putative drivers by assessing variant recurrence and function, identifying 37 

some regulatory variants that may influence oncogenesis. Our study demonstrates TCS to be 38 

a sequencing-efficient alternative to traditional WGS, enabling improved coverage and 39 

variant detection when seeking to identify variants at specific loci among larger cohorts. 40 

Interestingly, we found no candidate variants that have a clear driver function, suggesting that 41 

regulatory drivers may be rare in a colorectal cancer cohort of this size.  42 

 43 

  44 
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Author Summary 45 

In recent years, some cancer research focus has turned towards the role of somatic mutations 46 

in the 98% of the genome that is non-coding. To investigate such mutations, we performed 47 

deep sequencing of regulatory regions and a selection of coding genes across 95 colorectal 48 

cancer and matched-normal samples. To determine the ability of our targeted deep 49 

sequencing methodology to accurately detect variants, we compared our results with those 50 

from a sample that was additionally whole-genome sequenced. We found target capture 51 

sequencing to enable greater sequencing depth, allowing the detection of 51% and 144% 52 

more somatic single nucleotide and insertion/deletion mutations, respectively. Our study here 53 

demonstrates target capture sequencing to be a useful approach for researchers seeking to 54 

identify variants at specific loci among larger cohorts. Our results also enabled the generation 55 

of mutational signatures, implicating deleterious germline single nucleotide variants in 56 

coding exons of MSH6 and MUTYH in samples within our cohort. Finally, we surveyed 57 

regulatory elements in search of somatic cancer driver mutations. We identified some 58 

regulatory variants that may influence oncogenesis, but found no candidate variants with 59 

clear driver function. These findings suggest that regulatory driver mutations may be rare in a 60 

colorectal cancer cohort of this size.   61 
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Background 62 

In recent years, hundreds of novel cancer driver genes have been characterised 63 

through analyses made possible by the completion of large-scale cancer-genome sequencing 64 

projects. Such genes have been classified as cancer drivers because they harbour frequent 65 

high-impact somatic coding mutations in cancer genomes, with these mutations conferring a 66 

selective advantage to cells in certain tissues-types and resulting in oncogenesis. Identifying 67 

cancer driver mutations outside of protein-coding elements however, has proven to be a 68 

complex task as it can be difficult to assign function to some non-coding mutations (1). 69 

Despite a number of large-scale studies aimed at prioritising either recurrent or functional 70 

mutations (2-4), relatively few somatic driver mutations have yet been discovered in the non-71 

coding genome. One reason for this apparent sparsity of non-coding drivers is that datasets 72 

are underpowered to detect mutations at low to moderate frequency from the considerable 73 

background of somatic passenger mutations in the cancer genome (5-7).  74 

The costs of whole-genome sequencing (WGS) are constantly decreasing, though 75 

performing WGS with sufficient sequencing depth across large cancer cohorts remains 76 

expensive. Whole-exome sequencing (WXS) is a potentially cost-effective sequencing 77 

alternative for large cohorts, allowing researchers to specifically analyse mutations that arise 78 

within protein-coding genes. With the exception of a small proportion of WXS data which 79 

can extend into non-target regions including promoter elements (8), WXS cannot identify 80 

driver mutations which reside in the remaining ~98% of the genome which is non-coding. In 81 

order to refine the potential search area in the non-coding genome, researchers may choose to 82 

focus specifically on variants within regulatory elements, such as promoters and other DNase 83 

I hypersensitive (DHS) sites which are commonly bound by transcription factors. These sites 84 

generally have a greater likelihood of harbouring functional mutations than intergenic 85 
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regions, as variants at these loci may create or destroy transcription factor binding motifs, or 86 

otherwise impact upon nucleosome occupancy or chromatin marks. Recently, sequencing 87 

data from an assay capturing regulatory elements in addition to protein-coding regions in a 88 

large cohort of breast cancers led to the identification of recurrent somatic mutations in the 89 

promoter of the known cancer driver FOXA1 (5).  Therefore, target capture sequencing (TCS) 90 

focused on regulatory regions could be an alternative to other sequencing methods, allowing 91 

greater cohort sizes, along with increased sequencing depths, at costs comparable to WGS of 92 

far fewer samples. 93 

In this study, we perform TCS to generate sequencing data across all promoter 94 

elements and some additional regulatory and coding regions in 95 colorectal cancers and 95 

matched normal samples. We first assess coverage and variant detection capability from our 96 

TCS data, and compare this with a sample that was additionally whole-genome sequenced. 97 

We then apply our TCS data to detect mutational signatures, leading to the identification of 98 

potentially pathogenic germline variants in patients with suspected sporadic CRC. Finally, we 99 

survey somatic mutations in regulatory elements in search of non-coding drivers, finding 100 

recurrent somatic mutations in the promoter of MTERFD3, as well as some additional 101 

variants which may be suitable candidates for further investigation.  102 

Results 103 

Target capture sequencing coverage and variant detection 104 

We designed a TCS assay encompassing 35,726,928 nucleotides of the genome (Fig 105 

1a; Table S1a). The assay was designed to focus on regulatory elements, and primarily 106 

covered promoter regions (n = 26,455 regions) which we determined using FANTOM5 107 

annotations (9). We also incorporated a selection of DHS sites (n = 13,891 regions), long 108 

non-coding RNAs (lncRNA; n = 842 regions) and microRNAs (miRNA; n = 25 regions), at 109 
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sites where we previously observed mutations in other CRC cohorts. Finally, our panel 110 

incorporated coding exons (n = 646 exons; n = 39 genes) of known colorectal cancer-111 

associated genes (Table S1b). With this unique TCS assay, we sequenced 95 colorectal 112 

cancer and matched normal samples randomly selected from a pre-existing biobank (Table 1; 113 

Table S2). We obtained high sequencing depth in both cancer and matched normal samples 114 

across sequenced regions, with average reads per sequenced base of 169.96 ± 25.08 standard 115 

deviation (S.D.) in the cancer samples, and 81.91 ± 17.13 S.D. (S.D. across 95 samples) in 116 

the matched normal samples (Fig 1b).  117 

We detected somatic variants using Strelka (10), finding a total of 137,778 single 118 

nucleotide somatic mutations within sequenced regions, with a median of 557 somatic 119 

mutations per cancer sample. The majority of mutations detected were present at low variant 120 

allele frequencies (VAFs; 68% of mutations at ≤ 8.5% VAF). To ensure that we proceeded 121 

with analyses of only high-confidence mutation calls, we defined a minimum threshold of ≥ 122 

8.5% VAF to apply to subsequent analyses (Fig S1a). Thus, excluding low VAF mutations, 123 

the total mutation count across our cohort was 43,915 single nucleotide somatic mutations. 124 

Our cancer samples had a median of 178 somatic mutations per sample (Table S2), and we 125 

validated a selection of somatic single nucleotide mutations, and a deletion mutation via 126 

Sanger sequencing (see Methods; Fig S1b-c).  127 

We observed similar mutation rates at promoters (median 5.02 mutations per 128 

megabase [mutations/mb]), DHS sites (4.23 mutations/mb), lncRNA and miRNA (median 129 

5.01 mutations/mb), with coding exons more highly mutated (median 13.93 mutations/mb), 130 

consistent with our selection of only known colorectal cancer-associated genes for our TCS 131 

assay (Fig 1c; raw counts in Table S2). By analysing mononucleotide markers as previously 132 

described (11), we found 16% (n = 15) of our cohort to be microsatellite unstable (MSI). Of 133 

the microsatellite stable samples (MSS; n = 80), examination of sequencing data revealed that 134 
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three samples harboured Polymerase Epsilon (POLE) exonuclease domain mutations 135 

(CRC_1: p.Pro286Arg; CRC_2: p.Met444Lys; CRC_8: p.Ser297Phe), commonly resulting in 136 

proofreading deficiency and an ultramutator phenotype (12). Mutation loads across our 137 

cohort were generally consistent with previous observations among colorectal cancers (13) 138 

(Fig 1d), with overall increasing mutation loads in samples which were MSS, MSI and POLE 139 

exonuclease domain mutated, respectively. Our cohort further reflected known subtype 140 

characteristics (14-16), with the MSI samples in our cohort more commonly harbouring 141 

BRAF V600E mutations (MSI: 8/15; P < 0.0001 Fisher’s exact test), and less commonly 142 

harbouring APC truncating mutations (MSI: 2/15; P = 0.0209 Fisher’s exact test), than the 143 

POLE exonuclease domain wild-type MSS samples (BRAF V600E mutation: 4/77; APC 144 

truncating mutation: 36/77; Fig 1d).  145 

Comparison of target capture and whole-genome sequencing for coverage and variant 146 

detection  147 

To assess both the coverage and variant detection capability of our TCS dataset, we 148 

selected a sample from our cohort to re-sequence by WGS. We selected the most highly 149 

mutated sample in our cohort (CRC_1, with POLE exonuclease domain mutation) to ensure 150 

that we had large enough numbers of variants for downstream analyses. We performed WGS 151 

at the lower depth more commonly associated with this sequencing method, with read 152 

coverage averaging 63.61 and 14.29 reads per sequenced base in the cancer and matched 153 

normal sample respectively. This coverage was lower than in each of the samples that we 154 

sequenced by TCS (Fig S2a).  In our WGS cancer dataset, the mode coverage was 55-60 155 

reads per sequenced base (11.29%), and 10-15 reads per sequenced base in the matched 156 

normal sample (34.79%; Fig 2b). In our TCS datasets, the mode coverage was ≥ 100 reads 157 

per sequenced base in both the cancer (63.76%) and matched normal (35.34%) samples (Fig 158 

2b). When considering coverage in different region types (Fig S2b-f), promoters had 159 
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somewhat low coverage in both TCS and WGS data, likely due to the high GC content in 160 

these regions which can lead to poorer sequence coverage and greater rates of misalignment 161 

at such loci (5).  162 

We next compared the somatic mutations that we identified by TCS and WGS, 163 

analysing only high-confidence mutations from both datasets (that is, mutations with ≥ 8.5% 164 

VAF) within the regions that we incorporated into our TCS assay. We identified 7,311 165 

somatic mutations in CRC_1 via TCS data, but only 4,854 somatic mutations via WGS data 166 

(Fig 3a). Of these mutations, 4,585 were shared between both TCS and WGS datasets (Fig 167 

3a). Interestingly, despite the difference in the absolute numbers of variants detected, the 168 

mutational signatures for CRC_1 that were produced using somatic variants from each 169 

sequencing method had a Pearson’s correlation coefficient (r) of 0.998 (P < 0.0001; Fig 3b). 170 

Both of these signatures had good correlations with the Catalogue of Somatic Mutations in 171 

Cancer (COSMIC) database’s signature 10, which is associated with POLE exonuclease 172 

domain mutation (TCS: r = 0.785 and WGS: r = 0.768; P < 0.0001; Fig S3a). These findings 173 

suggest that there was little bias in the trinucleotide composition of the mutations detected by 174 

either sequencing method, with the datasets differing primarily in absolute numbers of 175 

variants.  176 

We therefore sought next to investigate why the overall somatic mutation load in 177 

CRC_1 differed by TCS or WGS. Hypothesising that low sequencing coverage at some loci 178 

might underlie this variation, we examined the sequencing coverage at mutant loci from both 179 

TCS and WGS data. Of the 269 somatic mutations that we identified only via WGS data (Fig 180 

3a), 47.6% (n = 128) had a sequencing depth of ≤ 10 reads in either (or both) of the cancer 181 

and matched normal TCS datasets. This is significantly more than in the 4,585 shared somatic 182 

mutations identified in both TCS and WGS datasets (0/4,585 [0%]; P < 0.0001 Fisher’s exact 183 

test). Similarly, of the 2,726 somatic mutations that we identified only via TCS data (Fig 3a), 184 
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41.6% (n = 1,133) had a sequencing depth of ≤ 10 reads in either (or both) of the cancer and 185 

matched normal WGS datasets. This too was significantly more than in the 4,585 shared 186 

somatic mutations that we identified in both TCS and WGS data (8/4,585 [0.174%]; P < 187 

0.0001 Fisher’s exact test). Upon further examination of the sequencing data for the variants 188 

with sequencing depth of ≤ 10 reads in WGS data, we found that the low sequencing depth 189 

occurred only in sequencing data from the matched normal WGS sample. Of the remaining 190 

mutations that had a sequencing depth of > 10 reads in both cancer and matched normal 191 

samples, we observed significantly lower coverage at mutant loci in the sequencing dataset 192 

from which the mutation was not detected (P < 0.0001 unpaired t-test; Fig S3b-c). These 193 

findings pinpoint sequencing depth as the primary factor underlying the lack of overlap 194 

amongst variants detected by the differing sequencing methods. Notably, as matched normal 195 

samples are commonly sequenced at lower depths by WGS than the corresponding cancer 196 

sample, our study demonstrates this benefit of TCS – which is the increased sequencing depth 197 

enabled by focusing only on specific genomic loci.  198 

We next considered the utility of both TCS and WGS for the detection of insertion 199 

and deletion (indel) mutations. To do so, we applied three indel callers to both datasets: 200 

Strelka (10), SvABA (17) and Lancet (18). Analysing just indels falling into the regions 201 

sequenced by our TCS assay, we found that our TCS data enabled the identification of greater 202 

numbers of indels (n = 66) than did WGS data (n = 27, of which 20 indels were shared by 203 

both datasets; Fig 3c). Lancet detected the highest total number of indels across both samples 204 

(n = 50), followed by Strelka (n = 43) and then SvABA (n = 36) (Fig 3c). Interestingly, there 205 

was very little overlap between the indels identified by all three variant detectors in the WGS 206 

data (4/27 [15%] common to two indel callers; 0/27 [0%] common to all three indel callers; 207 

Fig 3d). In contrast, in the TCS data, 35/66 indels (53%) were common to at least two indel 208 

callers, with 17/66 (26%) identified by all three indel callers (Fig 3d). Further, 14/17 (82%) 209 
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of the indels commonly identified by all three indel callers from the TCS data were among 210 

the 20 indels identified by both WGS and TCS. These findings demonstrate TCS to provide 211 

greater indel detection sensitivity, and suggest that the variants found from TCS data may be 212 

more robust indel calls than those detected by WGS. 213 

Application of TCS-defined mutational signatures to study cancer pathogenesis 214 

We next investigated cancer pathogenesis via our TCS data through analyses of 215 

colorectal cancer subtypes and mutational signatures. We first studied indels detected from 216 

our 95 colorectal cancer samples by Strelka (10), SvABA (17) and Lancet (18). We found 217 

similar numbers of indels to have been detected by each of the three indel callers (Strelka: n = 218 

6,545, SvABA: n = 6,603 and Lancet: n = 5,649 total indels; Fig 4a), with 2,664 indels 219 

common to all three variant detectors, and greatest overlap between Strelka and SvABA (total 220 

4,700 indels; Fig 4a). Analysing only high confidence indels detected by at least two of these 221 

variant detectors, as expected, we found that MSI samples harboured significantly greater 222 

numbers of indels than MSS samples (P < 0.0001, unpaired t-test; Fig 4b). We then defined 223 

the mutational signatures for each of the samples in our cohort, using trinucleotide 224 

frequencies that have been normalised to match the trinucleotide context of the whole 225 

genome. We correlated these signatures with known mutational signatures (19) from the 226 

COSMIC database (20, 21). We specifically investigated samples with high correlations with 227 

any known signature, in order to assess the utility of TCS for mutational signature analyses.  228 

We observed strong correlations between the mutational signature of CRC_4 and the 229 

COSMIC database’s signatures 14 and 6 (r = 0.784 and r = 0.767, respectively; and P < 230 

0.0001 by Pearson’s correlation; Fig 4c). Signature 14 has unknown aetiology but occurs in 231 

cancer samples with high mutation loads (19), consistent with CRC_4 being the most highly 232 

mutated MSI sample in our cohort (n = 1,712 mutations). Signature 6 has been associated 233 
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with defective mismatch repair and microsatellite instability (19). Given these findings, 234 

together with the relatively early age of colorectal cancer diagnosis in this patient (51 years, 235 

presenting with synchronous cancers of the rectum and sigmoid), we investigated whether 236 

CRC_4 exhibited any germline defects in mismatch repair which might suggest a hereditary 237 

cancer predisposition such as Lynch Syndrome. We found CRC_4 to harbour a germline 238 

heterozygous C>T SNP at chr2:48,030,588. This SNP is within a coding exon of the 239 

mismatch repair gene MSH6 and results in the introduction of an early stop codon at 240 

p.Arg1068* (Fig S4a), a variant recorded in the InSiGHT database (22) as Class 5 241 

pathogenic. As a potential somatic second hit that may have contributed to cancer 242 

development, CRC_4 also harbours a somatic MSH6 truncating G>A mutation at 243 

chr2:48,026,216 (p.Trp365*). This somatic mutation was present at a VAF of 29%, and loss 244 

of MSH6 was evident via immunohistochemistry in both resected tumours. CRC_4 245 

sequencing data exhibited no evidence of BRAF V600E mutation, which is additionally 246 

consistent with Lynch Syndrome (23) and further supports the results of our mutational 247 

signature analysis.  248 

Our mutational signature analyses also highlighted CRC_3 for further investigation, 249 

as the mutational signature of this sample was highly correlated with the COSMIC database’s 250 

signature 18 (r = 0.825 and P < 0.0001 by Pearson’s correlation; Fig 4d). This sample was 251 

the third most highly mutated in our cohort (n = 2,767 mutations), which is of particular 252 

interest since CRC_3 was neither MSI nor POLE exonuclease domain mutated. Signature 18 253 

is characterised by high proportions of C>A variants (19), and has been associated with 254 

defects in the base excision repair pathway and MUTYH deficiency (24). We found 57% of 255 

somatic mutations in CRC_3 to be C>A variants, and so we next examined coding exons of 256 

MUTYH for deleterious variants. We found no somatic alterations, but instead identified a 257 

heterozygous germline C>T SNP at chr1:45,798,117 (Fig S4b). This variant has an allele 258 
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frequency of 1.339x10-4 in the Exome Aggregation Consortium (ExAC) database (25), and it 259 

causes a non-synonymous amino acid change in MUTYH (p.Arg242His) which has been 260 

shown in vitro to lead to severely defective glycosylase and DNA binding activity (26). 261 

While CRC_3 exhibited no clinicopathological features of MUTYH-Associated Polyposis 262 

(MAP), the association with signature 18 suggests that MUTYH alteration by some 263 

alternative or additional pathway may have contributed to cancer development in this patient. 264 

Our cohort also contained another three samples which had r > 0.75 by Pearson’s correlation 265 

between their mutational signatures and signature 18 (Fig S4c). These samples each had 266 

higher mutation loads than the median for MSS samples (median n = 162 total mutations), as 267 

well as a high proportion of C>A mutations (CRC_19: n = 450 total mutations with 50% 268 

C>A; CRC_20: n = 393 total mutations with 43% C>A; and CRC_26: n = 297 total 269 

mutations with 53% C>A). However, we found no germline non-synonymous variants in 270 

MUTYH that were unique to these samples, nor any somatic MUTYH mutations. Our findings 271 

suggest that these samples may possess larger structural variation affecting MUTYH that we 272 

are unable to detect via TCS, or that instead some other base excision repair deficiency that 273 

would be evident only by examining loci outside of our sequenced regions.  274 

The final signature association that we investigated in detail was between the 275 

mutational signature of CRC_16 and the COSMIC database’s signature 16 (r = 0.754 and P < 276 

0.0001 by Pearson’s correlation; Fig 4e). CRC_16 is a MSS colorectal cancer with a mutation 277 

load equivalent to some MSI tumours (n = 813 mutations; Fig 1d). Recent research suggests 278 

that signature 16 in esophageal squamous cell carcinoma may be associated with alcohol 279 

intake (27), though signature 16 has primarily been observed in liver cancers and its aetiology 280 

remains unconfirmed (19). We found no germline SNPs unique to CRC_16 in any of the 281 

exons of the colorectal cancer genes that we sequenced, suggesting that if a germline 282 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/249300doi: bioRxiv preprint 

https://doi.org/10.1101/249300


13 

 

alteration does explain this signature association, it too may lie outside of our sequenced 283 

regions.  284 

In summary, we found that mutational signatures defined only by TCS data that 285 

covers a limited portion of the genome can still be sufficient to reveal underlying germline 286 

variants involved in cancer pathogenesis. 287 

Regulatory regions harbouring an excess of functional or recurrent somatic variants 288 

 Finally, we sought to identify any regulatory regions that might harbour cancer driver 289 

mutations, by examining all somatic single nucleotide and indel variants that we detected 290 

from our TCS dataset. To assess the accumulation of functional somatic variants, we applied 291 

OncodriveFML (28) to our variants across all sequenced regions listed in Table S1a. We first 292 

analysed just coding regions of the colorectal cancer driver genes that we sequenced (Table 293 

S1b), and found many of these genes to be enriched for functional mutations. APC, KRAS 294 

and TP53 were the most significantly enriched for functional variants when compared with 295 

the expected background mutation load for each gene (Fig 5a). In search of regulatory driver 296 

mutations, we next excluded coding regions, and used the remaining variants as input for 297 

OncodriveFML (28). However, we did not find any regions to be enriched for functional 298 

variants in our cohort (Fig 5b).  299 

Assigning function to a non-coding variant can be imprecise due to the variety of 300 

ways in which a variant can impact upon gene regulation (1), which can be difficult to 301 

capture via a single measure. Hence, in addition to our analyses of functional enrichment in 302 

genomic regions via OncodriveFML (28), we also considered base pair recurrence of somatic 303 

variants in our cohort. To increase our sample sizes, and to exclude variants which were 304 

unique to only our TCS cohort (n = 95 samples), we also incorporated single nucleotide 305 

variants from WGS colon cancer samples from The Cancer Genome Atlas (TCGA; n = 46 306 
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samples, Table S3) into our analyses. We then selected single nucleotide variants that were 307 

present in ≥ 4 samples across cohorts, and at least one TCGA and TCS sample each. 308 

Excluding any variants within coding regions of the driver genes that we sequenced, we 309 

found 82 recurrent somatic single nucleotide variants (Table S4). To prioritise this list for 310 

mutations that are more likely to be functional, we annotated these variants using FunSeq2 311 

(29). FunSeq2 annotated 43 of these variants as candidate functional mutations, selected via a 312 

high non-coding variant score or an association with any cancer genes (Fu et al., 2014). The 313 

15 mutations with the highest non-coding variant scores are shown in Table 2, with the 314 

remaining variants listed in Table S4. This list of putative functional mutations includes 315 

mutations with proximity to cancer related genes such as JUN, CDKN1B and ASF1A (Table 316 

2). The transcription factor binding motif that was most commonly disrupted by the 317 

mutations listed in Table 2 is that for E2F1 (n = 5/15 mutations). The E2F1 protein 318 

recognises a binding site consisting of a “CGCGC” DNA sequence (30), in which mutations 319 

may more commonly arise as repetitive DNA sequences tend to be more mutagenic. 320 

We next investigated recurrent indel mutations, selecting only indels which had been 321 

detected by at least two variant detectors for these analyses, as they are less likely to be false 322 

positives. We measured indel recurrence within windows spanning 20 base pairs (bp; ±10 bp) 323 

so that we could detect regions commonly targeted by indels which can span multiple 324 

nucleotides. Analysing only indels in our TCS cohort, we selected genomic windows which 325 

harboured ≥ 4 indels, or windows harbouring ≥ 3 indels if at least one of the samples 326 

harbouring the recurrent indels was MSS. (Recurrent indels arising in both MSS and MSI 327 

samples may be more likely to have arisen because they confer a selective advantage, rather 328 

than due to a common mutational process such as microsatellite instability). Excluding indels 329 

within coding regions of any of the driver genes that we sequenced, we identified 15 330 

windows ranging in size from 21 bp to 28 bp, which harboured a total of 62 indels (Table 331 
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S5). We sought to prioritise these indels for further investigation by considering their 332 

potential impact on transcription factor binding. We ranked indels which lay within 333 

transcription factor binding sites, using chromatin immunoprecipitation (ChIP-seq) data and 334 

Factorbook annotations (31) from the Encyclopedia of DNA Elements (ENCODE) database 335 

(32). The two windows which we found to be the most highly transcription factor-occupied 336 

regions were chr15:45,003,769-45,003,795 (indels overlapping a maximum of 71 337 

transcription factor ChIP-seq annotations; n = 4 indels) and chr12:107,380,956-107,380,983 338 

(indels overlapping a maximum of 46 transcription factor ChIP-seq annotations; n = 3 339 

indels). The former region on chromosome 15 lies within the first exon of B2M, and the 340 

variants found in our cohort disrupt a repetitive ‘ CTCTCTCTT’ motif within a protein-341 

coding region, and they occurred exclusively in MSI tumours. Indels within exons of B2M 342 

have already been reported in MSI colorectal cancers, and have been proposed to be involved 343 

in colorectal cancer progression (33). Indels in the latter region on chromosome 12 have not 344 

previously been described to our knowledge, and we validated all three indels via Sanger 345 

sequencing (Fig S5a). The region lies within a putative promoter for the mitochondrial 346 

transcription termination factor (mTERF) MTERFD3 (Fig 5c). The indels in our cohort 347 

overlap Factorbook (31) binding sites for transcription factors SP1/SP2, E2F4/E2F6 and 348 

MAZ (Fig S5b). Further analysis is limited by the fact that we do not have sample-specific 349 

transcriptomic or epigenomic datasets available for each sample in our cohort. However, 350 

using data from the colorectal cancer cell line HCT-116, we observed MTERFD3 expression 351 

via RNA sequencing, as well as SP1 ChIP-seq reads overlapping these indel loci (Fig S5b). 352 

We also observed E2F6 and MAZ ChIP-seq reads overlapping these indel loci in the HeLa 353 

cervical cancer cell line, for which ChIP-seq data in HCT-116 cells were not available (Fig 354 

S5b). Overexpression of MTERFD3 and other mTERF family proteins is associated with 355 

mitochondrial DNA (mtDNA) copy number depletion (34) and mtDNA copy number 356 
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variation has been observed in cancer tissues (35). However, experimental functional 357 

validation will be required to determine whether these indels might contribute toward 358 

oncogenesis through such a capacity. 359 

Discussion 360 

Over recent years, many recurrent mutations have been identified within cis-361 

regulatory regions of cancer genomes, but few drivers have yet been found. This sparsity of 362 

non-coding driver mutations may have arisen due to current studies being underpowered to 363 

pinpoint drivers present at low to moderate frequencies (5-7). We undertook this study in part 364 

to determine whether TCS may enable researchers to increase cohort sizes when seeking to 365 

identify driver mutations in defined regions of the genome. We performed WGS at ~60X 366 

coverage genome-wide, requiring approximately 900 million 100 bp paired-end reads. Our 367 

TCS analyses would have required only 30 million 100 bp paired-end reads per sample 368 

(sequencing 35 mb at ~170x), assuming that sequence coverage is only across targeted 369 

regions. Therefore, TCS could potentially boost sample sizes by almost 30 fold, whilst also 370 

increasing sequencing depth by three fold. By increasing sequencing depth, we identified 371 

51% (n = 2,457) and 144% (n = 39) more single nucleotide variants and indels, respectively. 372 

Therefore, we find TCS to be a sequencing-efficient method to answer specific research 373 

questions in large cohorts. 374 

Despite the benefits of TCS that we have demonstrated however, certain limitations 375 

upon downstream analyses should be noted from this approach. For example, while we were 376 

able to associate CRC_4 and CRC_3 with deleterious germline variants in MSH6 and 377 

MUTYH respectively, we were unable to fully investigate the underlying cause of the high 378 

mutation load in MSS sample CRC_16, nor the associations that we observed between the 379 

additional MSS samples in our cohort and signature 18. The causes of these distinct mutation 380 
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loads may be a large-scale structural rearrangements, or smaller variants in other regions of 381 

the genome, that we were unable to investigate without further sequencing. TCS is likely to 382 

be unsuitable for such investigations of a more exploratory nature where researchers may 383 

need to extend analyses into regions of the genome not initially included in a TCS assay. 384 

Further, some non-coding driver mutations create de novo promoter and enhancer regions 385 

affecting important cancer-associated genes (36-38). Therefore, another limitation of TCS for 386 

non-coding driver detection is that any somatically-acquired regulatory regions that harbour 387 

driver mutations could remain undetected, as these regions may not have been selected for 388 

inclusion into a TCS assay. This limitation applies to this current study, as the DHS regions 389 

sequenced were selected using only a single colorectal cancer cell line.  390 

A number of factors can impact the determination of the driver status of a non-coding 391 

mutation. For example, there are a plethora of ways in which a non-coding mutation may 392 

impact genome function. For example, a mutation may alter a transcription factor binding 393 

site, affect the partitioning of the genome into topologically-associating domains, or cause 394 

epigenetic changes by altering the binding of pioneer factors, nucleosome positioning, 395 

chromatin organisation or CpG methylation (1). In this study, we have proposed a list of 396 

single nucleotide variants and genomic windows containing recurrent indels, which may be 397 

functional mutations in the non-coding genome. We did so by using measures of recurrence, 398 

FunSeq2 score (29), and annotations of transcription factor binding. It is possible that others 399 

of the recurrent mutations that we identified are actually cancer drivers that impact the 400 

genome in a way that is not captured by these analytical methods. It is also possible that 401 

many of the mutations that we have selected as potentially functional are actually passenger 402 

mutations, and therefore do not act as drivers in colorectal cancer. In our study, we did not 403 

find any strong candidate regulatory driver mutations, and so we did not perform any further 404 

experimental validation. Ultimately, in order to identify which variants are true cancer driver 405 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/249300doi: bioRxiv preprint 

https://doi.org/10.1101/249300


18 

 

events, experimental validation of robust putative cancer drivers will be necessary. Currently, 406 

experimental validation of this kind is limited by the difficulties involved in designing a cost-407 

effective and high-throughput approach to assess the functional impact of large numbers of 408 

non-coding mutations, especially given the many ways in which a mutation may alter gene 409 

regulation.  410 

Notably, we did not find any non-coding regions which harboured an excess of 411 

functional variants via OncodriveFML (28). Our cohort may be underpowered to detect low 412 

frequency driver mutations, which may not significantly stand out from among the 413 

background of passenger mutations. Alternatively, poor sequence coverage at some 414 

regulatory elements may mean that certain mutations remain undetected. However, it is also 415 

possible that the regulatory regions that we sequenced are actually relatively devoid of driver 416 

mutations in colorectal cancer, making such events somewhat rare. Interestingly, colorectal 417 

cancers do exhibit relatively low numbers of mutations in many regulatory regions such as 418 

promoters (39, 40). Mutation loads in colorectal cancer closely follow levels of DNA 419 

methylation, and regulatory elements such as these are generally lowly methylated (40). 420 

Since regulatory elements in colorectal cancer accumulate somewhat fewer mutations, it is 421 

possible that such regions are subsequently less likely to develop cancer drivers. It may be the 422 

case that non-coding driver mutations affecting gene regulation in colorectal cancer are rare 423 

in cohorts of this size.  424 

Conclusions 425 

 Taken together, our study has demonstrated TCS to be a sequencing-efficient 426 

alternative to traditional WGS analyses when seeking to identify variants at specific loci 427 

among larger cohorts. We found that the increased sequencing depth afforded by TCS allows 428 

for improved detection of single nucleotide and indel variants, and we demonstrated the 429 
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utility of TCS for mutational signature analyses. By assessing variant recurrence and 430 

function, we proposed some regulatory mutations that may be functional, potentially 431 

warranting investigation into whether they play a role in oncogenesis. However, we did not 432 

find any strong candidate regulatory driver mutations in the regions that we sequenced, 433 

suggesting that with our current sample size, such mutations may be rare.  434 

Materials and Methods 435 

Target capture sequencing assay design and analysis of sequencing data 436 

A unique TCS assay was designed to provide sequencing data covering regulatory 437 

regions and some coding exons, encompassing almost 36 million nucleotides of the genome 438 

(regions listed in Table S1a). Promoter elements were selected to primarily include the 439 

region ±450 bp of FANTOM5 p1 promoters of canonical genes (9). DHS sites were selected 440 

using HCT-116 DHS sequencing (DNase-seq) hotspot data (Gene Expression Omnibus 441 

[GEO] accession: GSM736493). lncRNA, miRNA and DHS sites were prioritised for 442 

inclusion into the TCS assay if they were previously recorded to be mutated in other 443 

colorectal cancers samples available from TCGA, with further priority given to lncRNAs that 444 

were expressed in colon tissue (41). Coding genes included in the TCS assay (Table S1b) are 445 

from known colorectal cancer driver genes based in part on gene lists from the COSMIC 446 

Cancer Census (20, 21). 447 

95 colorectal cancer and matched normal samples were selected from a pre-existing 448 

biobank, and were unbiased for gender, cancer stage or tumour location (Table 1, Table S2). 449 

Fresh tumour tissue had been obtained from surgical resection specimens at St. Vincent’s 450 

Hospital, Sydney (ethics numbers H00/022 and 00113). Samples were sequenced using our 451 

TCS assay by the Next Generation Sequencing Facility at Western Sydney University, and 452 

WGS was additionally performed on a single sample (CRC_1). The TCS was performed 453 
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using the the Roche NimbleGen SeqCap EZ Exome Library SR platform, version 4.2. The 454 

WGS library was prepared with the TruSeq DNA PCR-Free Sample Prep Kit with a 350bp 455 

insert size. Both TCS and WGS libraries were sequenced using a 2x101 paired-end read 456 

length on the HiSeq 2500. Raw sequencing data has been deposited in European Genome-457 

phenome Archive (EGA) under accession number [data deposition in progress]. 458 

Raw 101 bp paired-end sequencing reads as fastq files were trimmed using Trim 459 

Galore! (https://github.com/FelixKrueger/TrimGalore) to remove 10 bp at the 3' end of reads 460 

for the TCS data, and with default parameters for the WGS data. Reads were aligned against 461 

assembled chromosomes of hg19 using Burrows-Wheeler Alignment (BWA) mem (42) with 462 

default parameters. Files were sorted and indexed with samtools (43) and read groups were 463 

added using Picard (https://github.com/broadinstitute/picard). When analysing the WGS data, 464 

an additional duplicate removal step was included via the samtools (43) ‘rmdup’ tool with 465 

default parameters. Coverage statistics were calculated using samtools (43) ‘depth’ tool 466 

across sequenced regions.  467 

Somatic single nucleotide variant calls for TCGA colon cancer samples with WGS 468 

were processed as previously described (39) (see Table S3 for sample names). MSI was 469 

designated if the sample was listed as being MSI high (MSI-H) via annotations from TCGA. 470 

Variant detection and analyses 471 

Germline variants were detected using the GATK pipeline (44), and were visualised 472 

in figures using the Integrative Genomics Viewer (IGV) (45, 46) with the BAM files 473 

described above. For the identification of somatic single nucleotide and indel mutations, 474 

BAM files were additionally filtered to exclude reads which mapped to multiple loci by 475 

removing reads marked with the “XA:Z:” and “SA:Z:” flags. Somatic single nucleotide 476 

variants were detected with Strelka (10), using the bwa configuration file and default 477 
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parameters, with the exception of  the ‘no depth filters’ option which was selected for 478 

analysis of TCS data. VAFs were calculated using bam-readcount 479 

(https://github.com/genome/bam-readcount), with default parameters. The violin plot 480 

incorporating the VAFs of somatic mutations was created in R using ggplot2 (47). Somatic 481 

indels were detected using Strelka (10) with parameters as described above, as well as 482 

SvABA (17)  and Lancet (18) with default parameters. Segments of assembled chromosomes 483 

which had high sequence homology with unplaced scaffolds of hg19 were identified using 484 

GMAP (48), and somatic single nucleotide and indel mutations that were within such loci 485 

were excluded. Somatic and germline variants were annotated with Annovar (49), to detect 486 

any protein-coding alterations. 487 

Mutational signatures (19) were identified through Pearson’s correlation of 488 

trinucleotide frequencies in a given sample with those from the COSMIC ‘Signatures of 489 

Mutational Processes in Human Cancer’ database (20, 21). Mutational signatures from TCS 490 

were normalised against those from the COSMIC database using genome trinucleotide 491 

frequencies (“tri.counts.genome”) obtained from the deconstructSigs R package (50). All 492 

Pearson’s correlations reported had P < 0.0001, indicating a correlation coefficient that is 493 

significantly different from zero.  494 

MSI status was determined by analysing mononucleotide repeats, as these sites are 495 

error-prone and are typically repaired by the mismatch repair process that becomes deficient 496 

in MSI tumours. The mononucleotide markers used were Bat25, Bat26, Bat40 and Cat25, as 497 

described previously (11). POLE exonuclease domain mutant cancers were identified through 498 

manual examination of sequencing data using IGV (45, 46) across the exonuclease domain of 499 

POLE (amino acids 268-471). This was done for all samples with a somatic exonuclease 500 

domain mutation detected by Strelka (10) and/or r ≥ 0.75 by Pearson’s correlation with 501 

signature 10. (All samples with r ≥ 0.75 by Pearson’s correlation with signature 10 did 502 
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harbour a POLE exonuclease domain mutation, and all mutations detected by Strelka (10) 503 

were confirmed as somatic via IGV). 504 

Analysis of regulatory variants for functional or putative driver role 505 

Analyses involving OncodriveFML (version 2.1.0) (28) incorporated both somatic 506 

single nucleotide and indel mutations, with ‘targeted’ set as the type of sequencing. The tool 507 

was run for coding variants with ‘coding’ set as the type of genomic element (strand provided 508 

for coding genes), and was run for all variants with ‘noncoding’ set as the type of genomic 509 

element (no strand provided for non-coding regions). All parameters were set to the default, 510 

with the exception of the following signatures parameters: method set to ‘bysample’, 511 

only_mapped_mutations set to ‘TRUE’ and normalize_by_sites set to “whole_genome”.  512 

FunSeq2 (version 2.1.6) (29) was used to annotate somatic single nucleotide 513 

mutations (with no evaluation of recurrence), with the minor allele frequency threshold set to 514 

‘1’ and the maximum length cut-off for indel analyses set to ‘inf’. For variants with different 515 

alternate nucleotides between TCS and TCGA cohorts, the alternate nucleotide from the TCS 516 

cohort was selected for analysis via FunSeq2. UCSC Genome Browser (51) screenshots show 517 

gene predictions via the “UCSC Genes” track. Sequencing data tracks shown in figures have 518 

GEO accession numbers as follows: RNA-sequencing (RNA-seq) in HCT-116 cells 519 

(GSM958749); H3K4me3 ChIP-seq in HCT-116 cells (GSM945304); DNase-seq in HCT-520 

116 (GSM736600, GSM736493); SP1 ChIP-seq in HCT116 cells (GSM1010902); and ChIP-521 

seq in HeLa-S3 cells for E2F4 (GSM935365), E2F6 (GSM935476) and MAZ (GSM935272), 522 

for which ChIP-seq data in HCT-116 cells were not available. 523 

  524 
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Experimental validation of variants detected 525 

Some somatic mutations were randomly selected for experimental validation via 526 

Sanger sequencing of polymerase chain reaction (PCR) product amplified from cancer and 527 

matched normal patient DNA. Sanger sequencing was performed by the Ramaciotti Centre 528 

for Genomics at the University of New South Wales (UNSW Sydney).Validation was 529 

possible for single nucleotide somatic mutations present at > 20% VAF. Mutations at lower 530 

VAFs were likely unable to be validated due to the technical limitations of this sequencing 531 

method from bulk PCR product. Indels in the putative promoter of MTERFD3 were also 532 

validated as described here.  533 
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Tables 715 

Table 1 – Clinicopathological features of the colorectal cancer cohort analysed.  716 

Characteristic Cohort (n = 95) 

Age at diagnosis (years; mean ± S.D.) 68.8 ± 13.8 

Sex [n (%)] 

Male 54 (57%) 

Female 41 (43%) 

Location [n (%)] 

Colon 53 (56%) 

Rectum 42 (44%) 

Tumour stage [n (%)]  

Stage I 31 (33%) 

Stage II 32 (34%) 

Stage III 32 (34%) 

MSI status [n (%)] 

MSI 15 (16%) 

MSS 80 (84%) 

CIMP status [n (%)] 

Positive 12 (13%) 

Negative 83 (87%) 

S.D. = standard deviation; MSI = microsatellite instability; MSS = microsatellite stable; CIMP = CpG Island 
Methylator Phenotype. 
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Table 2 – Non-coding somatic single nucleotide mutations selected as putative cancer drivers, by base pair recurrence and FunSeq2 annotation. 

Mutation 
Recurrence in 

cohort* % MSI 
samples 

 
GERP  

ENCODE 
annotation 

Motif Analysis 
Target gene  FunSeq2 

Score^  

TCS TCGA Break Gain 

chr7:112,089,887  
G>T 

3 1 25% - TFP - 

CCNT2_disc2, 
ZNF740_2, 
ZNF740_3, 
ZNF740_4 

IFRD1 (Intron & Promoter)  4.54 

chr1:59,250,792  
G>A 

3 1 100% -0.47 
DHS, TFP, 
TFM 

BCL11A, CCNT2, 
CTCF, DHS, E2F1, 
EGR1, ELF1, 
GABPA, IRF4, 
MAX, MYC, 
NFKB1, PAX5, 
SMARCB1, 
STAT1, TAF1, 
TCF12 

- 

JUN (Promoter) [cancer 
related: DNA repair, TF 
regulating known cancer genes, 
actionable, cancer]  

3.77 

chr17:29,648,734  
A>G 

5 1 100% 1.16 
DHS, TFP, 
TFM, 
Enhancer 

DHS, FOS, MAX, 
MYC, TBP 

HDAC2_disc6 EVI2A (Promoter & UTR)  3.75 

chr19:41,221,777  
C>T 

3 2 100% -5.51 
DHS, TFP, 
TFM, 
Enhancer 

DHS, E2F1, ELF1, 
FOS, FOSL2, 
GATA2, GTF2F1, 
JUN, JUND, 
MAFF, MAFK, 
NR3C1, RAD21, 
RFX5, SMARCB1, 
SMC3, STAT1, 
STAT3, TCF7L2, 
USF1, YY1 

- ADCK4 (Intron & Promoter)  3.53 

chr12:12,957,550  
T>C 

3 1 100% 0.78 TFP, TFM, 
Enhancer 

EBF1, FOS, JUN, 
JUND, RFX5, 
SMARCB1, 
SMARCC1, TBP 

- 
APOLD1 (Intron) CDKN1B 
(Distal) [cancer related: DNA 
repair] DDX47 (Distal)  

3.50 
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chr4:47,487,706  
A>T 

3 3 100% -5.57 TFP, TFM 
EGR1, MAFK, 
SPI1 

CPEB1_1 ATP10D (Intron & Promoter)  3.25 

chr10:104,404,968  
G>A 

3 2 60% -5.86 TFP, TFM CTCF, E2F1, TAF1 - TRIM8 (Intron & Promoter)  3.01 

chr4:91,049,669  
C>T 

2 2 25% -5.49 
DHS, TFP, 
TFM, 
Enhancer 

DHS, E2F1, MYC, 
TCF7L2 

- CCSER1 (Intron & Promoter)  2.79 

chr11:94,883,648  
C>T 

2 3 60% 0.53 
DHS, TFP, 
TFM, 
Enhancer 

DHS, E2F1, EP300, 
FOXA1, GATA1, 
GATA2, GATA3, 
MYC 

- -  2.79 

chr11:128,042,476  
A>G 

3 1 100% -7.78 TFP, TFM, 
Enhancer 

CTCF, FOXA1, 
RAD21, SMC3, 
ZNF143 

- - 2.79 

chr12:4,253,257  
C>A 

3 1 50% -1.65 
DHS, TFP, 
TFM, 
Enhancer 

CTCF, DHS, 
RAD21, SETDB1 

- - 2.79 

chr6:119,215,019  
A>C 

5 1 50% -0.13 DHS, TFP - FOXP1_1 
ASF1A (Promoter) [cancer 
related: DNA repair] MCM9 
(Intron)  

2.78 

chr1:154,917,003  
A>G 

3 5 88% - 
DHS, TFP, 
Enhancer 

- - 

ADAR (Distal) CKS1B (Distal) 
EFNA1 (Distal) PBXIP1 (Distal 
& UTR) PMVK (Distal) 
PYGO2 (Distal) SHC1 (Distal) 
ZBTB7B (Distal)  

2.76 

chr2:171,787,498  
A>C 

2 2 100% 0.37 
DHS, TFP, 
TFM 

DHS - GORASP2 (Intron)  2.76 

chr6:132,272,732  
A>G 

5 1 100% -0.80 
TFP, 
Enhancer 

- - CTGF (Promoter)  2.70 

*TCS cohort is the target capture sequencing cohort described in this publication, containing 95 colorectal cancer samples. TCGA cohort is The Cancer Genome Atlas 
cohort containing 46 whole-genome sequenced colon cancer samples (Table S3). 
^ This is the “Non-Coding Score” provided by FunSeq2 (29) via a weighted scoring scheme, where higher values indicate variants that may be more likely to be non-
coding drivers. 
MSI = microsatellite instability. GERP = Genomic Evolutionary Rate Profiling (GERP), a measure of conservation where higher numbers indicate more conserved sites. 
ENCODE = Encyclopedia of DNA Elements. TFP = transcription factor binding peak; TFM = transcription factor bound motifs in peak region; DHS = DNase I 
hypersensitive site. 

certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as not
this version posted January 16, 2018. 

; 
https://doi.org/10.1101/249300

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/249300


32 

 

Figure Legends 

 

Figure 1 – Sequencing coverage by target capture sequencing (TCS), and cohort 
mutation characteristics. (a) Region types sequenced by TCS. Note that 1,107,019 
nucleotides of the total region size falls into more than one region type. (b) Average per 
sample reads coverage across sequenced bases in cancer and matched normal TCS samples. 
Read coverage is plotted for each region type, where box plots show mean and standard 
deviation across samples in the TCS cohort (n = 95). Dotted lines mark average read 
coverage in tumour and matched normal samples across the cohort. (c) Mutations per 
megabase (mb) in sequenced regions, separated by region type. Dots represent individual 
samples in the TCS cohort (n = 95), and the box plot shows the mean and standard deviation 
of mutation rates. (d) Mutation rate for each individual sample in the TCS cohort (n = 95), 
plotted on a log scale (y-axis). Colours represent individual colorectal cancer subtypes as 
indicated, and single nucleotide somatic mutations in certain colorectal cancer driver genes 
are marked by bars. Exonuc = exonuclease domain mutation; trunc = truncating mutation; 
non-syn = non-synonymous (includes stop gain and stop loss variants).  

 

Figure 2 – Read coverage statistics for whole-genome sequencing (WGS) and target 
capture sequencing (TCS) datasets. (a) Read coverage per sequenced base in cancer (left) 
and matched normal (right) samples. Box plot shows mean and standard deviation for all 
sequenced bases within each region type, where TCS data is pooled across all samples. (b) 
Percentage of bases with given read coverage in cancer (left) and matched normal (right) 
samples. Data is separated into bins spanning five reads, where the number on the x-axis 
indicates the lower edge of the bin (inclusive). Box plot shows actual value in WGS data 
(blue; n = 1, CRC_1), and mean and standard deviation across samples in the TCS cohort 
(red; n = 95 samples).  

 

Figure 3 – Comparison of variant detection in CRC_1 from whole-genome sequencing 
(WGS) and target capture sequencing (TCS). (a) Venn diagram showing shared and 
unique single nucleotide somatic mutations identified from WGS and TCS data. (b) 
Mutational signature constructed from single nucleotide somatic mutations identified from 
TCS (top) and WGS (bottom) data. (c) Venn diagram showing numbers of somatic insertions 
and deletions (indels) identified from WGS and TCS data (solid lines). Venn diagrams 
indicating numbers of indels identified by different variant detectors are also shown (dotted 
lines). (d) Venn diagrams showing numbers of indels identified by different variant detectors 
using either WGS or TCS data. All data shown is for colorectal cancer sample CRC_1.  
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Figure 4 – Subtype and mutational signature detection among target capture 
sequencing (TCS) cohort. (a) Total numbers of insertions and deletions (indels) identified 
by different variant detectors, pooled for the entire TCS cohort (n = 95). (b) Numbers of 
indels identified in microsatellite unstable (MSI) and microsatellite stable (MSS) colorectal 
cancer samples sequenced by TCS. Individual samples are indicated by dots, where counts 
include indels only identified by at least two different variant detectors. Error bars show 
mean and standard deviation of indel counts, and **** denotes P < 0.0001. (c) Normalised 
mutational signature from colorectal cancer sample CRC_4 (top), against signature 14 from 
the COSMIC database (20, 21) (bottom). (d) Normalised mutational signature from 
colorectal cancer sample CRC_3 (top), against signature 18 from the COSMIC database (20, 
21) (bottom). (e) Normalised mutational signature from colorectal cancer sample CRC_16 
(top), against signature 16 from the COSMIC database (20, 21) (bottom). 

 

Figure 5 – Search for putative driver variants in target capture sequencing (TCS) data. 
Quantile-quantile plots produced by OncodriveFML (28), showing the expected and observed 
distribution of functional somatic variant bias P-values (a) coding exons of the colorectal 
cancer-associated genes sequenced and (b) all sequenced regions, excluding coding exons 
from sequenced colorectal cancer-associated genes. Dots represent different sequenced 
regions, where dots with a lighter colour are regions for which the number of mutated 
samples did not reach the minimum required to perform the multiple testing correction. 
Sequenced regions identified as significant are indicated (labels in red: q-value < 0.1 and 
labels in green: q-value < 0.25). (c) Snapshot from UCSC Genome Browser (51), indicating 
the location of indels within the putative promoter of MTERFD3. Transcription factor 
binding data is shown via the “Transcription Factor ChIP-seq (161 factors)” track from 
ENCODE (32). A grey box indicates peak clusters of transcription factor occupancy, where 
the darkness of each box signifies the maximum signal strength observed in any cell line 
contributing to that cluster. A green highlight within the box designates the site of the highest 
scoring canonical motif for the transcription factor indicated, via Factorbook (31) 
annotations. HCT-116 (human colon cancer cell-line) H3K4me3 chromatin 
immunoprecipitation sequencing (ChIP-seq) and DNase I hypersensitivity sequencing 
(DNase-seq) data are also shown.  
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Supporting Information Figure Legends 

 

Figure S1 – Variant allele frequency (VAF) and mutation validation by Sanger 
sequencing. (a) Violin plot depicting the VAFs of all single nucleotide somatic variants 
identified from TCS data (pre-filter) and only variants with VAF ≥8.5% (VAF-filter). The 
plot was produced using the ggplot2 R package (47), where the shape indicates the 
probability density of the data, with mean (dot) and standard deviation (line) indicated. (b-c) 
Sequencing traces from Sanger sequencing of genomic DNA from the samples named, 
showing validation of (b) a somatic deletion and (c) four somatic single nucleotide variants. 
Sequencing traces are visualised using Geneious version 10.2.2 (http://www.geneious.com; 
(52)). 

 

Figure S2 – Coverage statistics for whole-genome sequencing (WGS) and target capture 
sequencing (TCS). (a) Average per sample TCS read coverage at sequenced bases in cancer 
(top) and matched normal (bottom) samples. Red bars indicate individual samples sequenced 
by TCS (n = 95). Average coverage across TCS samples is shown by a black dotted line, and 
average coverage in the WGS sample is shown by a blue dotted line. (b-f) Percentage of 
bases with given read coverage in cancer (top) and matched normal (bottom) samples in (b) 
promoters, (c) DNase I hypersensitive (DHS) sites, (d) long non-coding RNAs (lncRNAs), 
(e) coding exons and (f) microRNAs (miRNAs). Data is plotted in bins spanning 50 reads, 
where the number on the x-axis indicates the lower edge of the bin (inclusive). The box plot 
shows the actual value for WGS data (blue; n = 1, CRC_1), and the mean and standard 
deviation across samples in the TCS cohort (red; n = 95 samples).  

 

Figure S3 – Comparison of somatic variants detected from whole-genome sequencing 
(WGS) and target capture sequencing (TCS) data. (a) Normalised mutational signatures 
derived from CRC_1 (top), compared against signature 10 from the COSMIC database (20, 
21) (bottom). Signatures are shown for mutations from TCS (left) and WGS (right) data. (b-
c) Read coverage in cancer and matched normal sequencing data for bases containing somatic 
variants detected in colorectal cancer sample CRC_1. Graphs show (b) data from TCS for 
WGS-unique and shared mutations, and (c) data from WGS for TCS-unique and shared 
mutations. Box plots indicate mean and standard deviation of read coverage, where **** 
denotes P < 0.0001. 

 

Figure S4 – Germline variants and mutational signatures from samples in the target 
capture sequencing (TCS) cohort. Snapshot of sequencing reads by TCS from matched 
normal samples of (a) CRC_4 and (b) CRC_3. Reads are viewed using the Integrative 
Genomics Viewer (IGV) (45, 46), with gene transcripts indicated. (c) Normalised mutational 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/249300doi: bioRxiv preprint 

https://doi.org/10.1101/249300


35 

 

signatures by TCS (top), against signature 18 from the COSMIC database (20, 21) (bottom) 
for samples CRC_19 (left), CRC_20 (middle) and CRC_26 (right). 

 

Figure S5 – Genomic locus harbouring deletions in the MTERFD3 putative promoter, 
and validation by Sanger sequencing. (a) Sequencing traces from Sanger sequencing of 
genomic DNA of the samples named, depicting validation of the three indels within the 
MTERFD3 putative promoter. Sequencing traces are visualised using Geneious version 
10.2.2 (http://www.geneious.com; (52)). (b) Snapshot from UCSC Genome Browser (51), 
indicating deletions (indels)within the putative promoter of MTERFD3, alongside chromatin 
immunoprecipitation sequencing (ChIP-seq) data for the transcription factors with motifs 
disrupted. Boxes contain the reference DNA sequence, with the deleted nucleotides marked 
by an orange box. Transcription factor binding motifs are shown from Factorbook (31), 
where a green bar depicts the span of the motif across the DNA sequence.  

 

Please refer to excel document for Supporting Information tables and table legends. 
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