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Abstract 

 
Differentiation of brain signal variability across different cognitive states has been 
hypothesized to facilitate adaptation to changing task demands, but why signal variability 
should be higher or lower on a given task remains unknown. We hypothesized that the level 
of brain signal variability should mirror the feature density of sensory input, especially in high 
performers. To test these hypotheses, we had 46 healthy older adults passively view face and 
house stimuli during fMRI. We first used a computational model of the ventral visual stream 
(HMAX) to decode the feature content of all face and house images seen by participants; 
model results revealed that house images were much more feature-rich than faces, particularly 
for V1- and V2-like model layers. Using fMRI, we then found that participants whose V1/V2 
brain signal variability increased the most in response to more feature-rich visual input 
(houses vs. faces) also exhibited faster and more stable behavioral performance on a 
comprehensive battery of offline visual tasks. We conclude that the ability to align 
visuocortical signal variability to the density of visual input may mark heightened trait-level 
behavioral performance in older adults. 
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Brain signal variability upregulates 
in response to more feature-rich sensory input in high performers 

 
Numerous studies have found that cognitive and brain functions become less “differentiated” 
as humans age. For example, neural responses to different stimulus input tend to become 
more similar with increasing age1,2. Neural differentiation is often measured by training a 
classifier to distinguish trial aggregated or response averaged neural activation patterns 
associated with different cognitive states (e.g., faces vs. houses in ventral visual cortex) and 
then measuring the classifier’s accuracy in decoding untrained activation patterns. However, 
an emerging approach has examined neural differentiation using moment-to-moment brain 
signal variability to characterize different cognitive states. Our past work shows that older, 
poorer performing adults express more similar within-person levels of neural variability 
across task types and brain regions than younger, higher performers3-6. Indeed, we 
hypothesize generally that the differentiation of brain signal variability levels across varying 
cognitive states may enable an organism to flexibly and optimally adapt to a host of 
environmental challenges3. 
 
However, why should signal variability be higher on one task and lower on another? We, and 
others, have postulated that brain signal variability may be tuned to reflect the dynamics or 
differentiation of stimulus input (and associated level of stimulus “uncertainty”)3,6-10. For 
example, some evidence suggests that early visual regions are actively suppressed in response 
to expected (or more common) stimuli, and exhibit a more dynamic response to unexpected 
(or more differentiated) stimuli11-13. Thus, more varied, differentiated visual input could 
presumably invoke brain responses with greater dynamic range. Notably, computational and 
animal work10 suggests that a wider range of image features (feature richness) could yield 
more varied neural responses in visual cortex. However, to our knowledge, evidence for this 
effect is lacking in humans. In particular, individual differences in the ability to tune signal 
variability to the level of stimulus feature density, and the possible behavioral consequences 
of this ability, have not been systematically investigated. A metabolically and 
computationally “optimal” brain should conceivably limit resource allocation when stimulus 
input is more reducible and/or predictable14, and it should upregulate dynamic range to the 
extent that more resource intensive processing is required (e.g., to encode more varied sources 
of sensory input). At its core, modulation of brain signal variability may reflect one’s ability 
to tune to the dynamics of the external world. We would therefore expect that people who 
exhibit greater modulation of variability should also exhibit better cognitive performance 
overall, as such individuals would be more adaptable to varied types of stimulus input in 
general.  
 
In the present study, we used a computational model of the ventral visual stream (HMAX) to 
quantify the feature density of face and house stimuli. These same stimuli were also passively 
viewed by older adults while brain signal variability was measured during fMRI. We 
hypothesized that (1) the modulation of brain signal variability in visual cortex would mirror 
the feature density of visual input, and that (2) greater upregulation in signal variability for 
stimuli with greater feature density would be associated with better cognitive performance 
across a battery of visuo-cognitive measures.  
   

RESULTS 
 
Quantifying the feature density of visual input using a feedforward computational model of 
the ventral visual stream 
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To gauge the feature density of visual input (for face and house stimuli), we used a 
biologically-inspired feedforward computational model (HMAX)15-18. Its output consists of a 
hierarchy of four layers intended to model the function of different brain regions within the 
ventral visual stream (see Figure 1). The S1 and C1 layers are thought to reflect processing 
from simple and complex cells in V1/V2, whereas S2 and C2 layers are intended to reflect 
simple and complex composite feature cells from V2/V4 16,17.   
 

HMAX allows for quantification of the feature density (richness) of within-image spatial 
features in several ways. We focused our analyses on C1 and C2 layers as aggregate 
representations of single and composite feature cells for V1/V2 and V2/V4 respectively16 (see 
Figure 1 and Methods). At layer C1, “features” are represented by a target set of four spatial 
orientations (-45°, 0°, 45°, 90°) within and across different filter and neighborhood 
(“receptive field”) sizes (see Methods). The median C1 fit value provides a measure of how 

HMAX Model
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Figure	1:	Visualization	of	the	HMAX	model	of	ventral	visual	cortex	(see	Riesenhuber	et	al.	(1999)	and	Serre	et	al.	(2007)).	
Left	 panel	 (“Feature	 decoding	 and	 cell	 pooling”):	 the	 model	 is	 sketched.	 Two	 example	 house	 image	 locations	 and	
neighborhood	sizes	are	shown	(green/blue	boxes),	from	which	all	orientations	are	decoded.	At	the	S1	(simple	cell)	layer,	
these	 locations	are	convolved	with	different	Gabor	 filter	 sizes	within	each	orientation	 (here,	 two	filter	 (neighborhood)	
sizes	of	11x11	(in	green)	and	13x13	pixels	(in	blue),	and	4	orientations,	are	shown).	At	the	C1	layer,	the	model	takes	the	
max	 (dotted	 paths)	 simultaneously	 over	 both	 filter	 sizes	 and	 over	 a	 pool	 of	 S1	 cells	 (here,	 10x10	 cells)	 for	 each	
orientation	 separately.	 The	 S2	 layer	 represents	 hybrid	 features	 estimated	 via	 weighted	 sum	 (solid	 grey	 paths)	 after	
comparison	of	image	features	to	400	prototypical	features	from	an	external	image	set,	separately	for	a	series	of	C1	cell	
neighborhood	sizes	within	each	scale	band	(example	scale	band	2	is	shown).	Finally,	layer	C2	represents	 the	max	taken	
over	 all	 S2	 cells	 to	 generate	 an	 aggregated	 “fit”	 (inverse	 Euclidean	 distance)	 of	 image	 features	 to	 the	 400	 feature	
prototypes.	Right	panel	(“Model	output”):	The	output	of	these	example	steps	for	the	entire	image	is	shown,	with	warmer	
colors	representing	better	fits	to	each	orientation	(layers	S1	and	C1)	and	prototype	(layer	S2). 
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often a given orientation occurred within an image. Model results indicated that each spatial 
orientation occurred significantly more often for house than for face stimuli across all filter 
bands (i.e. receptive field sizes; Figure 2, left panel). Interestingly, condition separation at C1 
appeared to increase with increasing scale band (receptive field) size (Figure 3, left panel), 
suggesting that face features are more “reducible” relative to houses as receptive field size 
grows in V1/V2 cells.  
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Figure	2:	C1	and	C2	distributions	for	face	and	house	stimuli.	All	60	unique	images	per	condition	from	the	fMRI	stimulus	set	
were	submitted	to	the	model.	At	the	C1	layer	(left),	the	median	of	each	C1	map	is	shown,	averaging	over	all	locations	within-
image,	for	the	smallest	and	largest	scale	bands	(1	and	8)	and	each	orientation	separately.	At	the	C2	layer	(right),	the	median	
within-image	fit	to	a	library	of	400	feature	prototypes	is	displayed	for	each	of	eight	neighborhood	(“patch”)	sizes.	Higher	
neighborhood	sizes	inidcates	larger	receptive	field	sizes.	Higher	values	for	C1	and	C2	indicate	feature	richness.	All	C1	and	C2	
value	ranges	(x-axes)	are	z-normalized. 
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At layer C2, a template matching approach is used: The spatial orientations within each 
face/house image are fit to a set of prototypical composite features present within an 
independent set of natural images (see Methods). The median fit again quantifies the relative 
occurrence of these prototypical composite features within each face/house image and 
neighborhood (i.e., “patch” or receptive field) size. As at layer C1, we similarly found at C2 
that house stimuli showed significantly higher median fits (i.e., lower Euclidian distance) to 
prototypical spatial features across different neighborhood sizes (Figure 3, right panel; see 
Methods for model details). Overall, these findings indicate that our house stimuli are much 
more feature rich than our face stimuli. Interestingly, although all t-tests exhibited strong 
effects, the degree of statistical differentiation between face and house conditions was greater 
for C1 than for C2. This highlights that primary/secondary visual cortex (V1/V2) may be 
particularly sensitive to such condition differences in visual feature density. 

Multivariate model linking condition differences in fMRI-based temporal variability to offline 
behavior	
 
Next, we examined whether greater within-person upregulation of brain signal variability was 
a marker of faster and more stable cognitive performance outside the scanner. In this way, we 
attempted to establish trait-based, latent-level relations between behavioral performance and 
one’s ability to upregulate brain signal variability in line with environmental demands. To test 
this idea, we first ran a multivariate partial least squares (PLS) model linking upregulation of 
SDBOLD from face to house (i.e., within-voxel data = house SDBOLD minus face SDBOLD) to 
speeded cognitive performance outside the scanner. A robust latent variable (permuted p = 
0.048, accounting for 59.93% of the crossblock covariance) resulted, indicating that greater 
face to house upregulation of SDBOLD predicted faster (on 8/9 measures) and more stable (7/9 
measures) reaction time performance outside the scanner (see Figure 4, Figure S1 for full 
axial view, and Methods for full list of offline tasks, which were all visual in nature). All bar 
plots are also included as scatters in Figure S2. Spatially, this effect was most prominent in 
visual cortex (largely V1 and V2), and then in precuneus/posterior cingulate regions (see 
Table 1); fusiform face and parahippocampal place regions were not sensitive in our model. 
There were also no brain regions that showed the opposite effect (i.e., higher SDBOLD on face  
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Figure	3:	Independent	sample	t-test	values	for	C1	and	C2	layers.	All	t-values	represent	house	minus	face	conditions.	For	
C1,	t-values	are	plotted	 for	each	orientation	and	 scale	band;	associated	p-value	range	=	~1.00*	10-22	 to	10-32.	For	C2,	
values	are	plotted	for	each	patch	size;	associated	p-value	range	=	~1.00*	10-12	to	10-21.	Equal	variances	not	assumed	for	
any	test.	 
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Figure	 4:	 Multivariate	 model	 showing	 that	 greater	 SDBOLD	 upregulation	 during	 house	
compared	 to	 face	 conditions	 (house_SDBOLD	 minus	 face_SDBOLD)	 correlates	 with	 faster	 and	
more	stable	offline	performance.	BSR	=	bootstrap	ratio.	Error	bars	represent	95%	bootstrap	
confidence	intervals	of	relations	across	1000	resamples	(with	replacement)	of	the	data. 

Cluster size
Region Hem X Y Z BSR (voxels)
V1/V2 R 9 -69 15 6.35 687
Middle frontal gyrus R 36 42 21 4.89 36
Insula R 36 6 12 4.82 86
Superior occipital gyrus L -21 -75 39 4.46 92
Superior parietal lobule (area 5ci) R 12 -42 48 4.45 193
Thalamus R 9 -15 15 4.36 32

MNI coordinates

Table	1:	Multivariate	PLS	model	peak	activations,	bootstrap	ratios,	and	cluster	sizes:	Regions	
expressing	 heightened	SDBOLD	on	house	vs	 face	 in	 relation	 to	 faster	and	more	 stable	 offline	
speeded	performance.	SD	=	standard	deviation;	BOLD	=	blood	oxygen	level-dependent;	Hem	
=	 hemisphere;	 MNI	 =	 Montreal	 Neurological	 Institute;	 BSR	 =	 bootstrap	 ratio	 (model	
salience/bootstrapped	standard	error). 
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vs. house was never functionally relevant at the current bootstrap threshold level). Notably, 
greater upregulation of SDBOLD from face to house not only correlated with better 
performance, but was also in line with significantly greater feature density in house compared 
to face conditions, as determined via the HMAX model (Figure 3). 
 
Given that adult age has been found to be a major correlate of individual differences in 
SDBOLD in previous studies3,4, we therefore tested the above links between face-house 
upregulation of SDBOLD and reaction time performance while controlling for chronological 
age. All effects in Figure 3 remained virtually identical (see Table S1 for age-partialled 
effects). 
 
We also investigated the relation between SDBOLD upregulation and behavioral accuracy; 
although greater SDBOLD upregulation tended to be associated with higher accuracy, this effect 
was not significant at the latent level (first and strongest latent variable; permuted p = .30).  
 
Typical meanBOLD-based face-house condition differences are insensitive to offline 
performance 
 
To compare our variability-upregulation findings to a more standard approach, we used an 
identical PLS modeling approach, but using voxel-wise meanBOLD instead of SDBOLD as the 
neural measure of interest. This permitted comparison of relative sensitivity of both signal 
types in relation to offline performance. A behavioural PLS model linking condition 
differences in meanBOLD to offline speeded performance (N = 44; two extreme meanBOLD 
outliers were detected and removed that did not appear in the SDBOLD models above) revealed 
no significant latent effect (permuted p = .15). Null findings also emerged when relating 
meanBOLD to offline accuracy (permuted p = .22). These results are in accord with previous 
work showing that SDBOLD is more sensitive to individual differences in behavior than is 
meanBOLD

5,19-21.  
 

DISCUSSION 
 
In the current study of healthy older adults, we found that temporal variability in BOLD was 
an excellent marker of task conditions (faces and houses) differing in level of visual input 
differentiation (determined via a feedforward computational model of the ventral visual 
stream (HMAX)). Critically, the more a subject upregulated SDBOLD in line with stimulus 
feature richness (houses more than faces), the faster and more stable were their reaction times 
across a series of different offline speeded measures. Notably, this effect was most prominent 
in V1 and V2, the same regions thought to be functionally represented in the HMAX layers 
(particularly C1) within which houses were maximally more feature dense relative to faces. 
We also found that a typical meanBOLD-based model did not relate to offline performance, 
lending further support to the principled examination of temporal fluctuations in brain signals 
in humans. 
 
Various bases for elevated brain signal variability in response to more feature rich visual 
input 
 
At least since the 1950s, various researchers have suggested that early visual regions actively 
work to reduce redundancy in stimulus content (e.g., via “redundancy filtering”22,23). In 
accord with such theories, the visual cortex often exhibits rapid ensemble-level suppression to 
more common (or expected) stimuli or stimulus trains, and greater ensemble-level response to 
more unexpected (or complex) stimuli11-13. This has important implications for BOLD 
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variability. Because we examined within-voxel temporal variability across trials and blocks 
for each stimulus category, and each voxel is a moment-to-moment ensemble-level 
approximation of synaptic/input activity over several million neurons, lower dynamic range of 
BOLD in response to more predictable/homogeneous stimulus categories such as faces may 
indeed reflect category-level ensemble synaptic/input suppression (or in general, “coding 
efficiency”). Conversely, more feature rich visual input (as for houses) should ensure that 
dynamic range of brain responses remains broader across the stimulus period. Indeed, 
Hermundstad et al.24 argue that within-stimulus variance itself can drive salience, and that the 
visual system should thus upregulate allocated resources (perhaps expressed as dynamic 
range) to effectively encode more feature rich types of stimuli. The authors also showed that 
this effect occurs even via natural scene viewing in the absence of a specific task, similar to 
the use of passive viewing in the current fMRI study. 
 
Notably, our findings also converge with computational and animal work (membrane 
potentials, spiking) suggesting that “perceptual uncertainty” can be probabilistically encoded 
by the variability of neural responses in visual cortex10. In particular, Orbán et al. predict that 
wider ranges of image features should indeed yield wider distributions of neural responses. 
They show, for example, that the variability of V1 responses over different types of stimuli 
(so-called “signal variability”) increases with increasing sensory evidence (captured by 
contrast in the author’s study). In the present study, stimuli that were more feature rich 
(houses) also yielded increased brain dynamics. Critically however, we show that individual 
differences in response to such stimulus input differentiation matter for trait-level behavior; 
older adults who expressed greater upregulation of BOLD signal variability in relation to 
stimulus variability were also faster and more stable in offline speeded behavior across a 
battery of tasks.   
 
The Orbán et al. findings provide a potential bottom-up conceptualization of this general 
phenomenon (i.e., signal variability as a function of perceptual input). However, top-down 
effects may also be important in relation to the current phenomena. In particular, predictive 
coding models also offer a number of potential points of insight into the current results. 
Conceptualizations of predictive coding14 generally presume that when neural priors for 
stimulus input are more “certain” (distributionally narrow), incoming stimuli within that 
category will also naturally be less “surprising” for the system, thus maintaining an already 
stable prior and making processing and prediction of future stimuli relatively easy. However, 
Mlynarski et al. make a critical distinction regarding uncertainty: “The degree to which 
incoming stimuli are surprising to the observer depends on two factors: the average surprise 
of the stimuli themselves, which is a property intrinsic to the stimulus distribution, and the 
alignment of the observer’s belief with this stimulus distribution” (p. 4). Regarding the 
former, the authors then go on to state that: “High-variance stimuli will therefore be more 
surprising to an observer, on average, than low-variance stimuli” (p. 4-5).  
 
It is this former type of uncertainty that seems most relevant to the current study. Faces are an 
excellent candidate for consideration as a relatively certain distribution/prior25,26. Humans are 
considered face experts in general relative to other stimulus categories27,28, and faces can be 
reduced to a limited number of statistical dimensions, yet still be processed, discriminated, 
and recognized29-31. Accordingly, feature density in face stimuli also appeared particularly 
minimized at layer C1 in the present HMAX model results; this suggests that the relative lack 
of “simple” features in face stimuli may heighten the chance that faces remain more 
distributionally “certain” overall (or relatively non-updatable) for the brain, particularly in 
V1/V2. Indeed, Mlynarski et al. anticipate that the brain should be able to minimize metabolic 
costs and lessen neural dynamic range when processing such “reducible” types of stimuli. In 
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our data, this idea may be reflected in a relative dampening of the dynamic range of BOLD 
signal in the face condition.  
 
However, house stimuli appear to be a much more feature rich stimulus category, and 
accordingly, one’s prior for houses could conceivably also be relatively broad. Humans may 
know generally what constitutes a “house,” but the compositional variations among house 
types is intuitively larger than for faces. Although predictive coding would assume that a 
relatively broad prior distribution for houses should adjust more rapidly to exposure to a 
surprising house, we would argue that it is unlikely that any natural prior distribution for 
houses will achieve the “certainty” humans express for faces. The brain may simply maintain 
broader priors for stimulus categories that are naturally more feature rich, and as predicted by 
Mlynarski et al.14, the brain may require a greater dynamic range to process such stimuli. 
Because greater upregulation of SDBOLD for houses was indicative of faster and more stable 
offline speeded performance on the vast majority of tasks examined, this suggests that 
maintaining similar neural dynamic ranges across stimulus categories despite naturally 
different levels feature density is an ineffective operational mode for the human brain. An 
effective brain may in fact need to continue to sample a dynamic and differentiated world 
(when required) to remain “optimal.” Friston et al.32 make a key related argument, that the 
brain should not fix its solutions too rigidly, instead allowing for maintenance of neural 
itinerancy (or instability) to approximate or maintain Bayes-optimal perception. Although 
fitting narrow solutions for relatively undifferentiated stimulus categories may be functional 
or even “optimal,” the most adaptable brain should also be “meta-variable,” and invoke 
differentiated levels of dynamic range to prepare and/or respond to more differentiated levels 
of dynamic input as required.  
 
Relatedly, Marzen and DeDeo33 argue in their computational work that well-adapted 
organisms should be able to use both (1) a low-fidelity encoding regime wherever perceptual 
costs can be minimized, and (2) a high-fidelity mode during which perceptual costs increase 
with environmental complexity. In our study, such fidelity modes appear to be reflected in the 
variability of brain activity (thus fitting our notion of “meta-variability” to differential visual 
feature densities in high performers). This suggests that in more feature rich environments, 
high performers may do well because they can upregulate “fidelity” to allow them to encode 
key distinctions in their environment.  
  
Limitations and next steps 
 
In an effort to describe the relative feature richness within face and house stimuli, we 
quantified median within-image C1 and C2 layer features (see Figure 1 and 2).  However, 
visual inspection of stimulus categories in Figure 2 highlights the presence of greater item-
wise differentiation in houses compared to faces (at least clearly at layer C1). Because 
SDBOLD is computed across TRs and stimuli within-condition, our findings could represent a 
hybrid of variable responses at within- and between-item levels within each condition. 
However, notably large t-values (Figure 3) suggest that condition differences in median 
feature richness remain key. Faster imaging methods (EEG/MEG) are needed in future work 
to disentangle the relative influence of within- and between-item differences on brain signal 
variability levels, despite the loss of spatial information such techniques would impose.  
 
Another limitation of the current study was that the sample was relatively healthy and age 
homogeneous (59-73 years). Although this narrow age range helps assuage concerns 
regarding vascular differences that may play a role in extreme age group comparisons of 
BOLD variability34,35, future work could expand to examine whether (a) the highest 
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performing older adults in the current sample approach young adult levels in SDBOLD face-
house upregulation in the same behaviourally-relevant brain regions (i.e., “maintenance”36), 
or whether (b) spatial expressions of these effects qualitatively differ. Finally, although trait-
level individual difference arguments are possible from the current results given the link 
between within-scanner brain signal variability and offline speeded performance, related 
follow-up work would benefit from quantifying behaviour while simultaneously undergoing 
neuroimaging (e.g., to achieve more stringent tests of candidate predictive coding models). 
Evidence for individual differences in the coupling between signal variability and density of 
sensory input would only be strengthened if ongoing and instantaneous responses to differing 
stimulus input could be behaviorally quantified within- and across trials (e.g., via methods 
that allow faster temporal sampling, such as EEG or MEG). 
 
Conclusion 
 
We found that greater within-person upregulation of brain signal variability in response to 
more feature-rich visual input was a robust marker of faster and more stable behavioural 
performance in healthy older adults. Such “meta-variability” to differential stimulus inputs 
may thus reflect trait-level performance optimality.  
 

METHODS 
 
Computational model 
 

Estimation of stimulus feature differentiation via a feedforward model of the ventral 
visual system (HMAX) 

 
In the current fMRI task design, participants passively viewed 60 face and 60 house stimuli in 
blocks of 15 trials. To model visual feature density in these images, we submitted each image 
to the HMAX feedforward model of the ventral visual system15,17 (code is freely available at: 
http://maxlab.neuro.georgetown.edu/hmax.html). All four model layers are depicted in Figure 
1. Layers S1 and C1 correspond to V1/V2 function, and layers S2 and C2 to V2/V4 
function16. Within the first layer (S1), a range of Gabor filters (intended to provide a 
principled model of cortical simple cell receptive fields, with 16 different filters 
corresponding to n x n pixel neighborhoods (sizes: [7:2:37])) and four orientations (HMAX 
defaults: -45°, 0°, 45°, 90°) are fitted to each image in overlapping windows (50% overlap). 
The resulting S1 map corresponds to simple cell responses for all positions within the input 
image, and the fitting procedure is completed for each orientation and filter size separately 
(see example filter sizes of 11x11 and 13x13 in Figure 1).  
 
At the next layer (complex cells in C1), two consecutive maximization steps over S1 simple 
cells are computed: (1) over two neighboring filter sizes for each S1 cell, and then (2) over a 
pool of S1 cells. Because 16 filter sizes are used in HMAX [7:2:37 pixels], taking the max 
over neighboring pairs of filters results in eight “scale bands”. The scale band index then 
determines the spatial neighborhood of S1 cells over which is pooled in the second step 
[8:2:22 S1 cells], independently for each orientation17. We took the median C1 value within 
each image, for each scale band and orientation separately. We then compared these within-
image median values, within each scale band and orientation, between face and house stimuli. 
This resulted in 8x4 independent sample t-tests (equal variances not assumed; see Figure 3, 
left panel).  
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At the third layer (S2, composite feature cells), a template-based approach is used to estimate 
the fit to simple and complex (hybrid) C1-level prototypical feature sets included in the 
HMAX code, and derived from a library of naturalistic stimuli17. Eight different C1 
neighborhood sizes [2:2:16] for each of 400 different features were fitted. S2 cells pool over 
C1 cells within each neighborhood and scale band (but across all orientations), quantifying 
the fit between the spatial features of the input image and those of the stored prototypes17.  
 
The final layer (C2, complex composite feature cells) then takes the max over all scale bands, 
quantifying the global fit (inverse Euclidean distance) between the features of each image and 
each prototype, separately for each prototype C1 neighborhood size. When comparing face 
and house stimuli, we took the median fit per image for each C1 neighborhood size 
separately, resulting in eight independent samples t-tests (equal variances not assumed, see 
Figure 3, right panel).   

fMRI experiment 

Participants 

The initial sample utilized in the current study consisted of 48 community-dwelling older 
adults aged 59-73 (mean 66.05 ± 4.40, 30 female), and represent the pre-training sample from 
a sample described previously37,38. All participants had MMSE score ≥ 26, were free of 
neurological, psychiatric, and cardiovascular diseases, were right-handed, and were suitable 
for MR assessment (e.g. no magnetic implants, no claustrophobia). This study was carried out 
in accordance with the recommendations of the ethics committee of the German 
Psychological Society. All participants gave written informed consent in accordance with the 
Declaration of Helsinki and participated voluntarily. They were paid for study completion. 
Two subjects were discarded from the current sample, one with improper slice positioning 
during scanning, and another was an extreme outlier on the Stroop task (an offline speeded 
measure; see below). Thus, analyses were based primarily on data from 46 participants 
(unless otherwise specified in text). 

MRI Data Acquisition, Task, Preprocessing, and Analyses 

Brain images were acquired on a Siemens TIM Trio 3T MRI scanner (Siemens, Erlangen, 
Germany) at the Max Planck Institute for Human Development in Berlin. A high-resolution 
T1-weighted MPRAGE (TR = 2500 ms, TE = 4.76 ms, TI = 1100 ms, flip angle = 7°, 
acquisition matrix = 256 × 256 × 176, 1 mm isotropic voxels) was first acquired. A 
conventional echo-planar MR sequence was then used for functional acquisitions (TR = 2000 
ms, TE = 30 ms, flip angle = 80°, FOV = 216mm) encompassing 192 volumes per run and 36 
slices per volume (slice thickness 3 mm). Slices were 72×72 matrices acquired parallel to the 
Corpus Callosum.  
 
During functional imaging, participants passively viewed greyscale face, house, or phase-
scrambled face/house images (following the procedures of 1) across two runs, each of which 
consisted of four blocks per stimulus category. Each block contained 15 images shown for 2 
seconds each, resulting in 30 second block lengths (total of 6 minutes per run). Stimuli were 
presented via E-prime (Psychology Software Tools, Pittsburgh, PA) and displayed by a 
projection system. 
 
fMRI data were preprocessed with FSL 539,40. Pre-processing included motion-correction with 
spatial smoothing (7 mm full-width at half maximum Gaussian kernel) and bandpass filtering 
(.01-.10 Hz). We registered functional images to participant-specific T1 images, and from T1 
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to 2mm standard space (MNI 152_T1) using FLIRT. We then masked the functional data with 
the GM tissue prior provided in FSL (thresholded at probability > 0.37). We detrended the 
data (up to a cubic trend) using the SPM_detrend function in SPM8. We also utilized 
extended preprocessing steps to further reduce data artifacts5,19,20. Specifically, we 
subsequently examined all functional volumes for artifacts via independent component 
analysis (ICA) within-run, within-person, as implemented in FSL/MELODIC41. Noise 
components were identified according to several key criteria: a) Spiking (components 
dominated by abrupt time series spikes); b) Motion (prominent edge or “ringing” effects, 
sometimes [but not always] accompanied by large time series spikes); c) Susceptibility and 
flow artifacts (prominent air-tissue boundary or sinus activation; typically represents 
cardio/respiratory effects); d) White matter (WM) and ventricle activation42; e) Low-
frequency signal drift43; f) High power in high-frequency ranges unlikely to represent neural 
activity (≥ 75% of total spectral power present above .10 Hz;); and g) Spatial distribution 
(“spotty” or “speckled” spatial pattern that appears scattered randomly across ≥ 25% of the 
brain, with few if any clusters with ≥ 80 contiguous voxels [at 2x2x2 mm voxel size]). 
Examples of these various components we typically deem to be noise can be found in 
supplementary materials in Garrett et al.21 By default, we utilized a conservative set of 
rejection criteria; if manual classification decisions were challenging due to mixing of 
“signal” and “noise” in a single component, we generally elected to keep such components. 
Three independent raters of noise components were utilized; > 90% inter-rater reliability was 
required on separate data before denoising decisions were made on the current data. To enable 
semi-automated data denoising using FSL FIX, we manually classified 30% of participant 
data to provide a noise component training set. Features from the noise component training 
set were then extracted, and used to detect noise components from the remaining 70% of 
participant data via FIX. Upon evaluating the automated labelling for several subjects against 
our manual decisions, we used a FIX threshold of 60, which permitted a best match to manual 
decisions of two independent raters. Components identified as artifacts were then regressed 
from corresponding fMRI runs using the regfilt command in FSL. We found previously that 
these additional preprocessing steps had dramatic effects on the predictive power of SDBOLD 
in past research, effectively removing 50% of the variance still present after traditional 
preprocessing steps, while simultaneously doubling the predictive power of SDBOLD

20.  
Critically, our recent work also suggests that when such denoising approaches are applied, 
age differences in SDBOLD remain robust to multiple vascular controls measured via dual-echo 
ASL-BOLD using carbogen-based hypercapnia34. The present sample only contains a narrow 
age range of older adults (59-73 years), further minimizing the potential impact of aging-
based differences in vasculature. For all robust models presented in the current paper, we also 
partial chronological age from all effects to further confirm that any residual (post-denoising) 
age-related artifacts are controlled (see Results and Table S1).  
 

Voxel-wise estimates of SDBOLD and comparison to meanBOLD 
To calculate SDBOLD, we first performed a block normalization procedure to account for 
residual low frequency artifacts. We normalized all blocks for each condition such that the 
overall 4D mean across brain and block was 100. For each voxel, we then subtracted the 
block mean and concatenated across all blocks. Finally, we calculated voxel standard 
deviations across this concatenated time series20. All models described below were run on 
grey matter (GM) only, after a standard GM mask derived from the MNI152 average brain 
was applied to each 4D image set. 
 
We sought also to compare SDBOLD results to a typical mean-based measure of BOLD activity 
(meanBOLD). We calculated mean signal (meanBOLD) for each experimental condition as 
follows; we first expressed each signal value as a percent change from the average of the last 
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four scans from the previous block, and then calculated a mean percent change within each 
block and averaged across all blocks for a given condition (a typical method in the PLS data-
analysis framework). This effectively acts as an explicit high-pass filter over the data. We 
then re-ran relevant PLS models described below, while using meanBOLD measures. 
 
 
  Statistical modeling: Partial Least Squares 
To examine multivariate relations between SDBOLD face-house upregulation and offline 
speeded performance, we utilized behavioural PLS analysis44,45. This modelling form begins 
by calculating a between-subject correlation matrix (CORR) between (1) each voxel’s SDBOLD 
upregulation value (i.e., house SDBOLD minus face SDBOLD) and (2) a series of offline 
cognitive measures (either RT or accuracy based, depending on model (see Results and 
Supplemental Materials). CORR is then decomposed using singular value decomposition 
(SVD).  
 

SVDCORR  = USV´ 
 
This decomposition produces a left singular vector of offline task weights (U), a right singular 
vector of brain voxel weights (V), and a diagonal matrix of singular values (S). A single 
estimable latent variable (LV) results that represents the relations between performance and 
SDBOLD upregulation values. This LV contains a spatial activity pattern depicting the brain 
regions that show the strongest relation to offline performance identified by the LV. Each 
voxel weight (in V) is proportional to the voxel-wise correlation between voxel offline 
behaviour and SDBOLD.  
 
Significance of detected relations was assessed using 1000 permutation tests of the singular 
value corresponding to the LV. A subsequent bootstrapping procedure revealed the robustness 
of within-LV voxel saliences across 1000 bootstrapped resamples of the data46. By dividing 
each voxel’s weight (from V) by its bootstrapped standard error, we obtained “bootstrap 
ratios” (BSRs) as normalized estimates of robustness. For the whole brain analysis, we 
thresholded BSRs at values of ±3.00 (which exceeds a 99% confidence interval; see Figure 2).  
 
We also obtained a summary measure of each participant’s robust expression of a particular 
LV’s spatial pattern (a within-person “brain score”) by multiplying the model-based vector of 
voxel weights (V) by each subject’s vector of voxel SDBOLD upregulation values (Q), 
producing a single within-subject value,  
 

Brain score = VQ´ 

Offline visuocognitive assessment 

Participants completed a 90-minute cognitive testing session outside the scanner. For the 
current study, the cognitive battery spanned the following six cognitive abilities: perceptual 
speed, inhibition, switching, updating, episodic memory, and reasoning. Responses for 
computerized tasks were provided via response boxes or the computer keyboard. A total of 16 
tasks were administered, but for the current study, only nine were considered. First, we 
examined all tasks for (1) RT and (2) accuracy models as a function of: (a) initial inspection 
of normality of between subject distributions for each task variable; (b) if necessary, 
successful transformation of non-normal distributions to Gaussian (either via log or square 
root transformation, and examined via a combination of Kolmogorov-Smirnov test for 
normality and Q-Q plot for each variable), and; (c) consideration for whether speed or 
accuracy was emphasized to participants. The following choices of variables resulted.    
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  RT-based measures 
 
For each variable, all trials in which RT was < 200 ms or greater than ±3 SDs from within-
person means were dropped prior to computing reaction time means (RTmean) and SDs (RTsd) 
for each subject. RT measures were only computed for correct trials for all tasks.  
	
Inhibition was assessed via the Stroop task (Stroop, 1935); color-words were shown in either 
the same (congruent) or different (incongruent) colored font in the center of the screen for 
1000 ms. Participants were asked to indicate as quickly as possible the font color; the next 
stimulus only appeared 1000 ms after an answer was given. Participants completed 24 
practice trials and four blocks of 36 test trials each; 50 % of trials were incongruent (color-
word and font color did not match). 
 
Task switching was assessed using three tasks: the number-letter task (Rogers and Monsell, 
1995), the global-local task (Kinchla et al., 1983) and the face-word task (Yeung et al., 2006). 
During the number-letter task, participants saw a number-letter pair appearing in one of four 
quadrants of the screen (top left, top right, bottom left, bottom right). In cases where the 
stimulus pair appeared at the top, participants had to attend to the number, and indicate 
whether it was odd or even.  If the stimulus pair appeared at the bottom, participants were 
instructed to attend to the letter, and indicate whether it was a vowel or a consonant. Stimuli 
included 2, 3, 4, 5, 6, 7, 8, 9, A, E, I, U, G, K, M, R. For the global-local task, participants 
were presented with Navon figures, i.e. large objects composed of small objects. Objects were 
always circles, triangles, squares, or crosses, e.g. a large circle composed of small triangles. If 
the objects appeared in blue, participants had to indicate the shape of the larger (global) 
object. If the objects appeared in black, participants had to indicate the shape of the smaller 
(local) objects. During the face-word task, participants saw 1-or 2-syllable words overlaid on 
male or female faces. A key appeared below the stimulus pair, indicating whether the face or 
the word should be attended. For words, participants were required to indicate whether the 
word had one or two syllables, whereas for faces they had to decide whether it was female or 
male. For all task-switching tasks, stimuli were presented for 2500 ms and the next stimulus 
only appeared 500 ms after an answer was given via response boxes. Trials were randomly 
presented, with 50 % of the trials requiring a task-switch. For every task, participants 
completed 24 practice trials followed by 128 test trials, divided into four separate blocks of 32 
trials each.  
 
Perceptual speed was assessed using the figural comparison test (Schmiedek et al., 2010). On 
each trial, participants saw two colored, three-dimensional objects side-by-side on a computer 
screen for a maximum of 5000 ms, and were instructed to decide as quickly as possible 
whether the objects were identical. Responses were provided via response boxes and the 
stimuli disappeared as soon as an answer was given or after 5000 ms. Five-hundred ms 
thereafter the next object pair appeared. Following 20 practice trials, participants completed 
40 test trials.  
 
Because our goal was to examine latent level relations between SDBOLD and offline speeded 
performance, we examined multiple estimates from the tasks above. In particular, for Stroop 
and all task switching tasks, two estimates each were taken: Stroop (congruent and 
incongruent), and separate estimates from switch and non-switch trials for number-letter, 
global-local, and face-word. In favour of examining latent level speeded performance across 
domains, we do not consider congruency (Stroop) or switch costs directly here, which 
explicitly capture the difference (rather than similarity) between trial types.    
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  Accuracy-based measures 
 
We assessed updating using three different tasks: letter updating, spatial updating and 2-back 
(all taken from Schmiedek et al., 2009). During letter updating, single letters (A, B, C, or D) 
appeared randomly on the screen one after the other for 2500 ms with a 500 ms ISI. The 
presentation sequence stopped after 7, 9, 11, or 13 letters and the task instructed participants 
to enter the last three letters displayed, via the computer keyboard. After four practice trials, 
participants completed two sequences composed of 7, 9, 11, or 13 letters each, resulting in a 
total of eight trials presented in randomized order. During spatial updating, participants were 
shown two 3 × 3 grids, presented side-by-side on the computer screen. At the beginning of 
every trial, a dot appeared simultaneously in each grid for 4000 ms and participants were 
instructed to remember the position of the dot. Next, arrows appeared synchronously above 
each grid for 2500 ms, indicating that the dot in the respective grid had to be moved one field 
in the direction of the arrow. After 500 ms another pair of arrows required another moving of 
the dots. At the end, the final position of the dots had to be marked in the grids via mouse 
click. After a practice trial, participants completed two easy trials including two updating 
operations per grid, as well as two difficult trials including three updating operations per grid. 
During the 2-back, single digits (1-9) appeared randomly on the screen for 500 ms one after 
the other with a ISI of 3000 ms. Participants were asked to indicate, whether the currently 
presented digit was identical to the digit presented two displays earlier in the sequence or not. 
After one practice sequence (26 numbers), participants completed three test sequences (39 
numbers).  
 
Finally, reasoning was assessed using a version of Raven’s progressive matrices (Raven et al., 
1998). Participants saw a 3 × 3 matrix with patterns following certain regularities. The pattern 
on the lower right was missing, and participants were instructed to identify the correct pattern 
out of eight given alternatives. A total of 15 trials could be completed within a maximum of 
15 minutes. For all four tasks, accuracy served as outcome measure. 
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 Stroop 
congruent 

Stroop 
incongruent 

Number 
Letter 
switch 

Number 
Letter 

non-switch 

Global 
Local 
switch 

Global 
Local 

non-switch 
Face Word 

switch 
Face Word 
non-switch Comparison 

RTmean -.43/-.44 -.50/-.55 -.34/-.34 -.37/-.38 -.34/-.35 -.42/-.43 -.41/-.41 -.41/-.41 -.05/-.04 
RTSD -.17/-.16 -.18/-.18 -.27/-.26 -.25/-.25 -.08/-.06 -.27/-.26 -.28/-.28 -.28/-.28 .14/.14 

 
Table S1: Control for chronological age (via partial correlation) has no impact on relations between SDBOLD upregulation and offline speeded 
performance on a series of visual tasks. Values represent original (left side of slash) and partial correlations (controlling for age; right side of slash) 
between latent-level upregulation (from face to house) in SDBOLD and nine offline speeded task measures. MeanRT and SDRT based relations are 
depicted. “Original” values are equivalent to those depicted in Fig 2 and Fig S2. Due to the numerical similarity between original and age-partialled 
results here, statistical tests of the difference were uninformative. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 17, 2018. ; https://doi.org/10.1101/249029doi: bioRxiv preprint 

https://doi.org/10.1101/249029
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 22	

 
 

	
	

Figure S1: Axial slice representation of SDBOLD upregulation – speeded performance multivariate effect depicted in Figure 3. Slices are shown from 
Z = -4 to Z = 62. BSR = bootstrap ratio. Left is left. 
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Figure S2: Dominant negative relations between face-house upregulation of SDBOLD and offline speeded performance (RTmean and RTSD) on a series 
of visual tasks. All RT variables (x-axes) are log transformed, and all variables (x- and y-axes) are Z-transformed. 
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