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Abstract9

Birdsong is a complex vocalization that bears important similarities to10

human speech. Critical to recognizing speech or birdsong is the ability to11

discriminate between similar sequences of sound that may carry di↵erent12

meanings. The caudal mesopallium (CM) is a secondary area in the13

auditory system of songbirds that is a potential site for song identification,14

displaying both between-category selectivity and within-category tolerance15

to conspecific song. Electrophysiological studies of CM have identified a16

population of neurons with intrinsically phasic firing patterns in addition to17

the more typical tonic and fast-spiking neurons. The function of these18

phasic neurons in processing spectrotemporally complex conspecific19

vocalizations is not known. We investigated the auditory response20

properties of phasic and tonic neurons using computational modeling with21

particular focus on the selectivity and entropy of the simulated responses to22

birdsong. When biophysical models of phasic and tonic neurons were23

presented with identical inputs, the phasic models were more selective24

among syllables and more robust to noise-induced variability, potentially25

providing an advantage for song identification. Additionally, the overall26

responsiveness of a model to the stimulus set determined which decoding27

metric better captured the coding strategy of the model’s response. The28

relationships between measures of decodability found in the model29

simulations are consistent with extracellular data from zebra finch CM.30
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Introduction31

Auditory Processing32

The auditory processing of speech presents a challenging problem that the33

human auditory system solves with ease. Noisy acoustic environments and34

speaker-to-speaker variability are just a few of the complications involved in35

decoding a speech stream. Mammalian models of audition have uncovered36

key features of auditory cortex such as tonotopic organization [1],37

feedforward inhibition to sharpen the fine temporal structures of sound [2],38

and even evidence for harmonic connections across octaves [3]. The ability39

to extend rodent models to the processing of vocalizations with the40

temporal and spectral complexity of speech, however, is limited due to the41

relatively simple and innate vocalizations produced by rodents. In fact,42

with the exception of cetaceans and bats, mammalian vocalizations do not43

require auditory experience to produce. The songbird (Passeriformes),44

while a very distant relative of humans and possessing a di↵erent vocal45

apparatus called a syrinx, nevertheless displays many of the vocal traits46

characteristic of human speech, including complex, learned vocalizations.47

Songbird models48

Songbirds have generated substantial interest as a model for studying the49

vocal production and auditory processing of speech. Singing is used to50

attract mates, strengthen pair bonds, and defend territory [4]. Although51
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many songbirds inherit a template of their species-appropriate song, which52

may help juveniles identify suitable tutors, the songs themselves must be53

learned by memorizing the song of an adult tutor and subsequently54

practicing vocalizations in an attempt to match the memorized tutor55

song [5]. In zebra finches (Taeniopygia guttata), a popular model for56

studying language, juveniles deafened prior to song exposure or raised in57

isolation from a tutor fail to acquire an organized song [6], and juveniles58

raised with a heterospecific tutor will often attempt to incorporate the59

content of the tutor’s song into their inherent template [7].60

Like humans, zebra finches exhibit a critical period for acquiring song,61

from around 15 days post-hatch (dph) when brainstem auditory responses62

mature [8] to 60-90 dph [5]. A number of factors can extend the closure of63

the critical period, including isolation from a suitable tutor [9]. Zebra64

finches learn a single song, and after the closure of the critical period, this65

song is crystalized and will not change throughout their life [5]. Other66

songbirds, like European starlings (Sturnus vulgaris), are open-ended67

learners who can add to their repertoire of songs even in adulthood [10].68

The development of song production is the most studied aspect of the69

critical period, but there is also concomitant development of the auditory70

system as juveniles learn to hear and identify song. In humans, infants go71

through well-defined stages of auditory learning including statistical72

learning of sound patterns leading to categorical perception of73

language-specific sounds and reduced discrimination of sounds not in their74
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language [5]. Research in starlings has shown that they are capable of75

statistical learning of regularities in continuous sound streams [11].76

Evidence for categorical perception has been shown for conspecific song77

notes in zebra finches [12] and for learned vowel sounds in starlings [13].78

Auditory experience in development also influences the responses of79

auditory neurons to song in adulthood [14]. Further research will be80

necessary to fully explain the developmental stages of the auditory system81

in juvenile songbirds.82

Songbird auditory pathways83

The songbird auditory system from the cochlea to the auditory thalamus84

(nucleus ovoidalis; Ov) is highly consistent with the mammalian auditory85

pathway [15]. The avian brain lacks a six-layered cortex; the pallium is86

instead organized into clusters of neurons forming nuclei. The homology of87

the pallial auditory regions to mammalian auditory cortex has been a88

matter of debate, although recent studies have identified genetic and89

functional similarities. Dugas-Ford et al. (2012) [16] found conserved cell90

types among mammals, birds, and reptiles for the layer 4 input and layer 591

output cells of the cortex despite the di↵erent architecture of avian and92

reptilian brains. There is evidence of laminar and columnar organization93

within the avian auditory forebrain along the dorsorostral-ventrocaudal94

plane [17]. The avian auditory pallium also shows a marked preference for95

natural stimuli such as birdsong over artificial stimuli like white noise and96
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pure tones. The mesencephalicus lateralis dorsalis (MLd), a midbrain97

auditory nucleus akin to the inferior colliculus in mammals, responds98

robustly to pure-tone stimulation [18], but at the level of the auditory99

forebrain the preference for natural sounds or synthetic sounds with100

statistics that mimic natural sounds emerges [19] [20]. The mammalian101

auditory system shows a similar emergence of a preference for natural102

stimuli from midbrain to cortex [21].103

Field L2a is the primary thalamorecipient area in the avian auditory104

forebrain, with downstream areas L1, L3, and L2b. These areas have105

reciprocal connections with each other and also with the higher-order areas106

caudomedial nidopallium (NCM) and caudal mesopallium (CM) [22].107

Although all of these areas communicate either directly or indirectly with108

each other, two primary streams emerge from Field L. L3 to NCM is one,109

and L1 and L2b to CM is the other. More research is needed to determine110

the functional di↵erences between these two streams of information. NCM111

and CM are the highest areas in the songbird auditory pathway and may be112

analogous to supragranular layers of A1 or secondary auditory areas in113

mammals [23]. Given their position in the auditory hierarchy, it is likely114

that these areas are responsible for song learning and recognition, and115

recent research has supported this idea.116

NCM is a potential location for the memory of the tutor song that117

juvenile birds base their own songs on. Immediate early gene expression in118

NCM when zebra finches are presented with their tutor song is correlated119
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with the degree of copying between the bird’s own song and the tutor120

song [24]. The strength of song learning is also correlated with the121

familiarity of the tutor song in NCM as measured by the rate of122

accommodation of a neural response to auditory stimulation [25]. CM is123

not involved in the tutor song memory but does play a role in the learning124

of other conspecific songs. Jeanne et al. (2011) [26] showed that learned125

songs are more e↵ectively encoded by CM neurons than novel songs and126

that rewarded songs were better encoded than unrewarded songs, indicating127

not just a bias toward learned songs but toward behaviorally-relevant128

songs. Meliza and Margoliash (2012) [27] found that the response to129

within-song variability is an important di↵erence between NCM and CM;130

NCM shows sensitivity to performance-to-performance di↵erences in a song,131

while CM is tolerant to these di↵erences.132

Current study and its motivation133

The tolerance of CM for within-song variability and its preferential134

response to behaviorally relevant stimuli make it a potential site for the135

decoding of song identity. In human language, there are meaningful136

di↵erences between words that can completely change the meaning of an137

utterance as well as non-meaningful di↵erences in the pronunciation of a138

single word. The same is true of birdsong: there are variations between139

performances of a song that a bird must recognize as coding for the same140

identity, and there are also birds with highly similar songs (e.g., siblings or141
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a tutor and pupil). Based on its position in the auditory system and its142

response properties, CM is well positioned to produce this kind of143

discrimination. The ultimate goal of a birdsong model of language is to144

explain not only what higher-order areas do but how they do it, and a145

mechanistic explanation must start at the cell level.146

Electrophysiological studies of the broad-spiking, putatively excitatory,147

cell class within CM by Chen and Meliza (2017) [28] has revealed three148

distinct cell types within this class based on response properties to current149

stimulation: tonic, intermediate, and phasic. Tonic neurons are similar to150

the regular-spiking neurons seen in auditory cortex but show less regularity151

and higher adaptation rates. Phasic neurons fire only once or a few times152

regardless of the level and extent of stimulation and are the result of a153

4AP-sensitive low-threshold potassium current. This type of firing pattern154

is not seen in adult mammalian auditory cortex, though it has been155

observed in juveniles [29] and lower levels of the mammalian auditory156

system [30]. Intermediate neurons respond tonicly at some levels of157

stimulation and phasicly at others.158

The presence of a phasicly responding neuron in an area of the avian159

auditory forebrain involved in decoding song identity has interesting160

implications about the role such neurons might play in addressing some of161

the complications of auditory processing like noisy acoustic environments162

and song-to-song variability. In this study, we explore the functional163

significance of phasic neurons in CM using a modeling approach and test164
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the hypothesis that phasic neurons may possess an encoding advantage over165

tonic neurons that make them more informative and less a↵ected by the166

presence of noise, thereby enhancing the ability of CM to determine the167

identity of a song stimulus. We then assess the validity of our model’s168

predictions by comparing the results of our model to extracellular data169

from zebra finch CM. Identifying the functional roles of the cell types of170

CM is the first step toward understanding the circuit and being able to171

model the computations required to go from sequences of frequencies to an172

identifiable, meaningful vocalization.173

Methods174

Animals175

All animal use was performed in accordance with the Institutional Animal176

Care and Use Committee of the University of Virginia. Adult zebra finches177

were obtained from the University of Virginia breeding colony. Thirty male178

zebra finches provided song recordings that were used as stimuli in the179

simulation experiments. During recording, zebra finches were housed in a180

soundproof auditory isolation box (Eckel Industries) with ad libitum food181

and water and were kept on a 16:8h light:dark schedule. A mirror was182

added to the box to stimulate singing. A typical recording session lasted183

2-3 days. Birds were returned to the main colony after song recording.184
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Simulation185

Neuron model. The model used in this study is a conductance-based,186

single-compartment model of CM neurons. The model, based on the ventral187

cochlear nucleus model of Rothman and Manis (2003) [31], relates the188

voltage dynamics of a single neuron to currents associated with ion189

channels. The model used in this study includes 4 voltage-gated potassium190

and sodium currents, a leak current, and a hyperpolarization activated ion191

current [28]. The model neuron exhibits a depolarization block to strong192

currents and a sustained response to weak currents. The model parameter193

values follow Rothman and Manis (2003) [31] with a few adjustments for194

resting potential and spike threshold for CM neurons. The calculations195

presented here used the consensus model parameters from Chen and Meliza196

(2017) [28] for tonic and phasic cells.197

Auditory response simulation. To simulate an auditory response,198

I
stim

(t) becomes the convolution of a spectrotemporal receptive field (RF)199

with a spectrogram of an auditory stimulus. I
noise

(t) is randomly generated200

pink noise (1/f distribution) low-pass filtered at 100Hz and scaled relative201

to the signal to achieve a set signal-to-noise ratio (SNR).202

Auditory stimuli are 30 zebra finch songs recorded from our colony.203

All songs were cut to 2.025s long with 50ms of silence at the beginning to204

pad the convolution, high-pass filtered at 500Hz with a 4th order205

Butterworth filter, and scaled to a consistent RMS amplitude. Start and206

end times of syllables were identified by visual inspection. Repeated207

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/249011doi: bioRxiv preprint 

https://doi.org/10.1101/249011


syllables were grouped in the decoding analyses.208

RFs were constructed with a Gabor filter based on Woolley et al.

(2009) [32]:

RF(t, f) = H(t) ·G(f),

H(t) = e�0.5[(t�t0)/�t]2 · cos(2⇡ · ⌦
t

(t� t0) + P
t

),

G(f) = e�0.5[(f�f0)/�f ]2 · cos(2⇡ · ⌦
f

(f � f0)),

where H is the temporal dimension of the RF, G is the spectral dimension209

of the RF, t0 is the latency, f0 is the peak frequency, �
t

and �
f

are the210

temporal and spectral bandwidths, ⌦
t

and ⌦
f

are the temporal and spectral211

modulation frequencies, and P
t

is the temporal phase. Parameter values212

were randomly drawn from distributions set so as to match the modulation213

transfer function (MTF) of the RF ensemble to the MTF of zebra finch214

song [33] [32] (Figure 1). The integral of each RF was normalized to one.215

In the context of this simulation, a model neuron is a combination of216

one RF and one model dynamic (phasic or tonic). 60 RFs were generated217

to produce paired phasic and tonic simulations, and 15 of the RFs were218

excluded due to MTF values outside the reported distribution of RFs in219

zebra finch neurons [32] (N = 90 neurons or 45 pairs). The 30 zebra finch220

songs were presented 10 times each to each neuron with random pink noise221

producing trial-to-trial variability. Pink noise sets were identical between222

paired phasic and tonic neurons. The total amplitude of the convolution223
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Figure 1: Receptive field parameter distributions. A, Combinations of the temporal
modulations and spectral modulation parameters used to construct the RFs used in this
study. The parameter values were drawn randomly from parameter distributions inferred
from experimental data. Values outside the range of reported RFs (temporal modulation
> 100Hz or spectral modulation > 2 cycles/kHz) were excluded. The points colored in
green are the RFs shown in B. B, Examples of 4 of the 45 RFs used in this study.
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was normalized by the bandwidth of the RF on the frequency axis (�
f

) to224

account for the di↵erences in amplitudes between narrowband and225

broadband RFs. The output of the model was a simulated voltage trace226

from which spike times were extracted.227

Data analysis. Spike times were extracted from the simulated228

responses. The classification analysis was performed by computing the van229

Rossum distance [34] (as implemented in neo:230

http://neo.readthedocs.io/en/0.5.2/) between every pair of spike trains for231

a model neuron (n = 300). We considered multiple time-scales for the ⌧232

parameter of the van Rossum distance from 5 to 45ms. A k-means233

clustering algorithm assigned spike trains to clusters based on their234

proximity in high-dimensional space. Cluster identity was assigned by a235

voting scheme as described in Schneider and Woolley (2010) [35] with each236

spike train casting a vote for its corresponding song. The proportion of237

correctly clustered spikes for each neuron determined its percent correct238

value.239

We calculated spike rate, r
i,j

, as the number of spikes evoked by

syllable i in trial j, divided by the duration of the syllable. Selectivity was

quantified using activity fraction [36] [27], a nonparametric index defined as:

A =
1� (⌃r

i

/N)2/⌃r2
i

/N

1� 1/N

where r
i

is the rate for syllable i averaged across trials, and N is the total240
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number of syllables.241

Mutual information (MI), response entropy, and noise entropy were242

calculated following Jeanne et al. (2011) [26]. Response rates were243

discretized into 15 bins between 0 Hz and the maximum rate of the model.244

Response (total) entropy was calculated as H(R) = �⌃p(r) log2 p(r), noise245

entropy as H(R|S) = �⌃p(s)⌃p(r|s) log2 p(r|s), and mutual information as246

I(R;S) = H(R)�H(R|S), where r is the rate and s is the syllable.247

Because of the large number of stimuli and trials, and because we were248

interested in di↵erences between models presented with exactly the same249

stimuli, we did not correct entropy or MI for sample size bias.250

Extracellular data251

Analyses based on extracellular data were performed on the publicly252

available dataset from Theunissen et al. [37] on CRCNS.org. Neural253

recordings were collected from adult male zebra finches as described in Gill254

et al. [38]. Only cells from CM stimulated with conspecific song were used255

these analyses (n = 37). Selectivity and MI analyses were performed as256

described above with the exception that 10 response bins were used for MI257

instead of 15 due to a smaller stimulus set.258
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Results259

To explore the consequences of the intrinsic membrane properties giving260

rise to phasic and tonic response dynamics in terms of the functional role of261

the neurons in the auditory processing of song, we use the neuron model262

described in Chen and Meliza (2017) [28], which replicates the observed263

phasic and tonic behaviors through the adjustment of the low-threshold264

potassium current parameter of the model. Auditory response is simulated265

by setting the current stimulation parameter (I
stim

) to the normalized266

convolution of the spectrogram of a zebra finch song and a receptive field267

constructed from Gabor filters (Figure 2A). Variability in the response is268

achieved by adding pink noise (1/f spectrum) to the convolution with a269

signal-to-noise ratio of 4.270

Input-matched phasic and tonic neurons produce distinct spiking271

responses. In general, phasic neurons show reduced variation in spike times272

and spike numbers to a given syllable of a song (Figure 2B-C). The273

increased consistency of the responses of phasic neurons indicates an274

advantage for the decodability of the neural signal. We quantified this275

e↵ect using several di↵erent measures of coding e�ciency.276

Temporal-based coding. A temporal code uses the pattern of spike277

times to encode the identity of a signal. An e�cient temporal code278

represents di↵erent stimuli with distinguishable patterns of spikes and has279

high temporal precision across multiple trials of the same stimulus. Because280
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Cm dV
dt = ḡlk · (V −Elk )

+ ḡNa · m 3h · (V −ENa )
+ ḡLT · w4z · (V −EK)
+ · · ·
+ Istim + Inoise

100ms
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Figure 2: Data simulation and analysis pipeline. A, Auditory responses can be sim-
ulated through the convolution of a spectrotemporal receptive field (upper left) with a
spectrogram (upper right) of an auditory stimulus, in this case a zebra finch song. The
resulting convolution (black line) provides the driving current (I

stim

) of the biophysical
model used in this study (right). Low-pass filtered pink noise (pink line) adds variabil-
ity to the driving current (I

noise

). The output of the model is a simulated voltage trace
(lower left) which can have either phasic (red line) or tonic (blue line) response properties
depending on the conductance of a low-threshold potassium channel parameter (g

KLT : 0
nS or 100 nS for tonic and phasic respectively). B, Raster plots of the full simulation for
the stimulus-RF pair in A across 10 trials for phasic (red) and tonic (blue) model. The
example demonstrates the increased variability in spike number and decreased temporal
precision for the tonic model as compared to the phasic model. C, Full response distribu-
tion for the example neuron. Response rates are calculated per syllable in each song and
divided into 15 bins. The black line indicates the average response rate across the syllables
and the spread of response rate bins around that line show the trial-to-trial variability of
the response rate.
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the timescale used in the decoding of a temporal code substantially a↵ects281

the results, we considered multiple timescales when analyzing the temporal282

decodability of the simulated neural responses. Figure 3 shows the results283

of a classification analysis using a k-means clustering approach on the van284

Rossum distance of each pair of spike trains, calculated at multiple time285

constants.286

Although both groups perform well above chance, the phasic neuron287

models show clear separation from tonic models in terms of discriminability288

of temporal codes at all time constants examined, indicating that the289

neural signal produced by phasic neurons is more temporally precise and290

distinct than that produced by tonic neurons. Phasic responses are also less291

sensitive to the time constant used, showing high discriminability at both292

short and long time constants, in contrast to tonic responses, which show293

much steeper drop-o↵s on either side of their ideal time constant.294

Rate-based coding. A rate-based code uses the average firing rate295

across a stimulus to encode identity. The precise timing of spikes matters296

less than the total excitation of the neuron across a given period of time.297

Two of the most widely applied rate-based decoding methods in sensory298

neuroscience are mutual information and selectivity, and these are the299

metrics we use in this study to assess the decodability of neural simulations.300

Selectivity measures the tendency of a neuron to respond robustly only to a301

small subset of all stimuli. Mutual information measures the ability of a302

neuron to convey information about the identity of multiple stimuli by303
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Figure 3: Classification analysis of temporal coding. The classification accuracy of the
phasic models (red line) is significantly higher than the tonic models (blue line) at all time
constants considered (5-45ms). Classification accuracy is based on a k-means clustering
analysis of the van Rossum distances between each simulated spike train of a given neuron
model. Gray ribbons show the standard error.
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using di↵erent firing rates to encode di↵erent stimuli. There are two304

components of mutual information: the response (total) entropy, which305

represents how much information the neuron can carry based on its range306

of firing rates, and noise entropy, which represents how much information is307

lost due to the variability of a neurons firing-rate response within a308

stimulus. A neuron with high mutual information will have high response309

entropy and low noise entropy.310

In our mutual information (MI) analysis, phasic neuron models311

showed a higher decodability than their tonic counterparts (paired t-test;312

p < 1e� 6). Phasic neurons had a mean MI of 1.636 bits of information,313

and tonic neurons had a mean MI of 1.414 bits. The di↵erence in MI is due314

to a reduction in noise entropy in the phasic models relative to the tonic315

models (phasic: 1.083 bits; tonic: 1.517 bits; paired t-test, p < 1e� 15).316

The response entropy is, in fact, slightly higher in the tonic models (tonic:317

2.932 bits; phasic: 2.720 bits; paired t-test, p = 0.0003), but the large318

amount of noise entropy in the tonic signal more than cancels out that319

advantage (Figure 4).320

The selectivity analysis shows a similar advantage for phasic model321

neurons (Figure 5). Phasic models are able to encode song with a higher322

degree of selectivity than tonic models (tonic: 0.170; phasic: 0.258; paired323

t-test: p < 1e� 5) with some phasic models showing very high levels of324

selectivity (0.60 and 0.78).325
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Figure 4: Mutual information analysis. A, Phasic models (red) have higher mutual
information between firing rate and syllable identity than tonic models (blue) based on a
paired t-test (p < 1e�6). B, One component of mutual information is response (total) en-
tropy which represents the maximum information capacity of the model. Phasic and tonic
models have comparable response entropy, though tonic models have a slight advantage
(p = 0.0003). C, The second component of mutual information is noise entropy, which
represents variability between repeated trials and decreases the amount of information
conveyed from the theoretical maximum. Phasic models have much lower noise entropy
than tonic models (p < 1e� 15) which accounts for their higher mutual information.
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Figure 5: Selectivity analysis. A, Selectivity measures the tendency of a neuron to
respond robustly only to a small subset of all stimuli. Phasic models (red) have the
potential for higher levels of selectivity than tonic models (blue), with some phasic models
showing very high levels of selectivity (p < 1e� 5).
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Relationship between decoding measures326

Measures of mutual information (MI) and classification accuracy based on327

the van Rossum distance are positively correlated. This is because these328

two measures address similar decoding strategies on di↵erent timescales; as329

the time constant of the van Rossum distance increases, the analysis330

approaches a rate-based analysis.331

The relationship between the two rate-based measures used in this332

study, MI and selectivity, is more complex. There is a general negative333

correlation (Figure 6A) between the two measures, but there are also334

models that score low on both measures. The models with low decodability335

on both measures are overwhelmingly tonic, but there are no models with336

high decodability on both measures, indicating that these measures are337

di↵erent yet mutually exclusive. This is consistent with extracellular data338

from zebra finch CM [37] when the same analyses were applied (Figure 6B).339

This relationship between MI and selectivity has also been previously been340

shown in starling CM [26].341

Overall responsiveness mediates decoding strategy342

When considering only the phasic models, the negative correlation between343

MI and selectivity becomes more pronounced. The overall responsiveness of344

the model, which we define as the average spiking rate (in Hz) of the model345

over the entire stimulus set, is a strong predictor of whether a model is346
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Figure 6: Relationship between MI and selectivity is mediated by responsiveness. A,
MI and selectivity are inversely related, especially among phasic models (red). Tonic
models (blue) tend to rate poorly on both decoding measures. B, CM neurons of zebra
finches recorded extracellularly show a similar pattern of inverse correlation between MI
and selectivity. C, Responsiveness is defined as the average response rate of the model
to the entire stimulus set in spikes/sec. MI is positively correlated with responsiveness,
and the groups of phasic and tonic models are clearly separable along these dimensions.
D, CM neurons show a similar positive relationship between MI and responsiveness. E,
Selectivity and responsiveness are negatively correlated in a non-linear fashion. F, CM
neurons show the same non-linear correlation between selectivity and responsiveness.
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likely to have high MI or high selectivity. MI is positively correlated with347

responsiveness, i.e. models with higher responsiveness also tend to have348

higher MI (Figure 6C). Similarly, selectivity is negatively correlated with349

responsiveness with the most selective models showing very low average350

firing rates (Figure 6E). The relationships between these measures in the351

extracellular neural data are very consistent with the predictions of the352

simulations, indicating that the model is capturing population-level353

behavior of zebra finch CM (Figure 6D,F).354

Figure 7 shows the pairs of phasic and tonic simulations with arrows355

indicating the phasic part of each pair. Consistent with previous results356

that show that MI and selectivity are negatively correlated, phasic models357

tend to increase in decodability relative to the tonic pairs in only one of the358

two dimensions of MI and selectivity. The direction of increase is359

determined by the responsiveness of the phasic model. Phasic models with360

high responsiveness show an increase in MI but not selectivity as compared361

with the tonic pair; phasic models with low responsiveness show an increase362

in selectivity but not MI. This relationship is independent of the MI,363

selectivity, or responsiveness of the tonic model.364

Phasicness as slope detection365

Because the tonic models are not predictive of whether the phasic models366

will show increased MI or increased selectivity, we examined the details of367

the simulations that gave rise to di↵erent outcomes. Figure 8 shows two368
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Figure 7: Phasic models increase in either MI or selectivity relative to tonic models.
Connecting phasic and tonic pairs (arrows pointing toward the phasic model) shows that
the phasic models tend to increase in decodability along only one of the two decoding
measures examined here. The location of the tonic model on the measures of MI and
selectivity does not seem to determine whether the phasic model will increase in MI or
selectivity, but the responsiveness of the phasic model (arrow color) is strongly related.
Phasic models with low responsiveness tend to increase in selectivity but not MI relative
to tonic models. Phasic models with high responsiveness tend to increase in MI but not
selectivity.
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pairs of examples that led to di↵erent outcomes. In Figure 8A, the tonic369

model has MI of 1.60 bits and selectivity of 0.20; the phasic model has370

similar MI (1.42 bits) but selectivity increases to 0.45. In Figure 8B, the371

tonic model has MI of 1.39 bits and selectivity of 0.07; the phasic model’s372

selectivity remains similar (0.13) but the MI increases (2.02). The example373

convolutions in Figure 8 show why this happens.374

In Figure 8A, the phasic model responds only to parts of the375

convolution where the slope increases sharply. This is true not only of the376

upslope of a peak but also the return to baseline of a negative deflection377

(black arrow). Because these slope increases are relatively infrequent in this378

convolution, the phasic model spikes sparsely and therefore shows increased379

selectivity. The tonic model, on the other hand, responds to the absolute380

excitation of the signal, treating the sharp peaks and the slower increases of381

excitation similarly, and this results in broad firing across many of the382

syllables of the song, reducing the model’s selectivity.383

In Figure 8B, the convolution contains primarily peaks and not the384

slow increases in excitation present in Figure 8A. This results in the two385

models responding similarly to the convolution with the exception of the386

increased variability of the tonic model as expected from the much higher387

noise entropy present in the tonic models. In this case, the phasic model388

acts solely as a noise reducer, thus increasing the MI of its response with389

only a slight increase in selectivity.390

Ultimately, these simulations point to phasic and tonic neurons391
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Figure 8: Examples of phasic responses with high selectivity or MI.A, A simulated neural
response in which the phasic response had higher selectivity (0.45) than the tonic response
(0.20). Upper panels show the RF, stimulus spectrogram, and convolution. Middle panels
show simulated voltage traces (red: phasic; blue: tonic) and the bottom panels show the
spike times across 10 trials of the stimulus. The phasic model responded only to sharp
upward deflections of the convolution, including a rebound to baseline from a negative
deflection (red arrow). The tonic model responded to all increases in excitation including
the slow increases that the phasic model did not respond to (blue arrow). The sparseness
of the phasic response boosts selectivity. B, A simulated neural response in which the
phasic response had higher MI (2.02 bits) than the tonic response (1.39 bits). The phasic
and tonic models responded at similar times but the increased temporal precision and
decreased variance in spike number increased the MI of the phasic response relative to the
tonic.
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responding to fundamentally di↵erent features of the signal they receive392

from upstream neurons. Tonic neurons respond primarily to the level of393

excitation present in the signal whereas phasic neurons respond to the rate394

of increase of the excitation. The role of phasic neurons as a slope detector395

has been shown before, both in vivo and in silico [39], but these simulations396

suggest a potential function of that slope-detection property. By397

responding to the slope rather than the absolute level of excitation, phasic398

neurons can create selectivity from a signal that is otherwise non-selective,399

as Figure 8A demonstrates.400

Discussion401

Chen and Meliza (2017) [28] found that tonic and phasic neurons di↵er in402

their response to high-frequency stimulation as measured by the coherence403

of their firing to a complex current injection. Phasic neurons were able to404

follow frequencies up to 30Hz, while tonic neurons had di�culty above405

10Hz. They also found that the neuron model used in this simulation406

produces similar di↵erences in coherence between phasic and tonic models.407

The ability of phasic neurons to follow higher frequencies may be important408

to their role in slope detection. Smoothing one of the convolutions used in409

this simulation with a 10Hz running average filter eliminates the sharpest410

peaks in the signal, but a 30Hz running average preserves them411

(Figure 9A). Di↵erencing the 30Hz running average shows that smoothing412
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Figure 9: Simple transformations of the convolution predict phasic and tonic responses.
A, Convolution smoothed with a 10Hz running average (blue) and 30Hz running average
(red) based on the frequencies that tonic and phasic neurons are able to follow. 10Hz
smooths out the majority of the peaks, but 30Hz preserves the largest ones. B, Di↵erenced
30Hz smoothed convolution with a threshold of 1.5 standard deviations highlights the
largest upward deflections in the signal. C, 10Hz smoothed convolution matches closely
the spike-time histogram of the tonic model’s response to this convolution (gray bars). D,
Di↵erenced 30Hz smoothed convolution predicts very accurately the spike-time histogram
of the phasic model’s response to this convolution (gray bars).

29

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/249011doi: bioRxiv preprint 

https://doi.org/10.1101/249011


at that frequency preserves the most important signal deflections413

(Figure 9B), while the 10Hz running average removes them. In fact, the414

convolution smoothed with the 10Hz running average fits very well to the415

spike-time histogram of the tonic model’s response to that convolution416

(Figure 9C), and the di↵erenced 30Hz running average is highly predictive417

of the spike times of the phasic model (Figure 9D). The higher peak418

coherence of the phasic neurons may be an important part of their419

enhanced ability to produce a selective response to song.420

Limitations of this model421

There are a number of limitations of this model to keep in mind when422

interpreting these results. The first is that the neuron model used is not423

specifically a model of a CM neuron but rather a model that reproduces424

many of the behaviors seen in CM neurons (e.g., response to current steps425

and coherence to chaotic currents). This model also does not consider a426

third type of putatively excitatory neuron found in CM, called an427

intermediate-spiking neuron which shows firing patterns between those of428

phasic and tonic neurons [28], because we could not arrive at a stable429

model of this type of neuron using the Rothman-Manis base model.430

As described in the methods, the receptive fields used in this analysis431

were based on a thorough characterization of Field L receptive fields by432

Woolley et al. (2009) [32]. We felt that this was a reasonable approach433

given that CM is immediately downstream of Field L and that no such434
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comprehensive characterization has been done for CM receptive fields. This435

is in part due to the fact that receptive fields for CM are di�cult to436

estimate due to the sparseness of the neurons’ firing. We also do not know437

whether phasic and tonic neurons have a similar distribution of receptive438

fields. Given the di↵erences in dendritic morphology reported by Chen and439

Meliza (2017) [28], it is possible that phasic and tonic neurons have440

systematic di↵erences in their receptive fields. This simulation examined441

the e↵ect of changing the neural dynamics of a model while keeping the442

receptive field constant, but that comparison might not completely capture443

the di↵erences.444

This is also a very simple, single-neuron model that lacks lateral445

connections or feed-forward inhibitory inputs. The auditory system, of446

course, is much more complex, and there are certainly many additional447

influences on the behavior of a neuron. It was not our intent to capture all448

of these complexities in our model, and in fact, the ability of our model to449

produce selective responses to song syllables despite its simplicity is a450

strength. There may be other ways to arrive at selectivity, but the fact that451

selectivity can be created merely by the introduction of phasic neurons into452

the population may explain, at least in part, the increase in selectivity from453

Field L to CM [23].454
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Conclusions455

A biophysical neuron model can reproduce the relationship between mutual456

information and selectivity seen in zebra finch CM. The model predicts that457

a decrease in the overall responsiveness of the neuron shifts decoding458

performance toward selectivity and away from mutual information, and459

that prediction is supported by evidence from extracellular measurements460

of CM neurons. The results suggest that phasic neurons represent an461

advantage for the decoding of stimulus identity and that advantage is due462

to the precision and selectivity generated by their sensitivity to the rate of463

increase of excitation. The addition of phasic neurons to the CM464

population should improve the ability of CM to identify stimuli beyond465

what tonic neurons could do alone owing to their heightened selectivity and466

their tolerance to noise.467

References468

[1] B M Clopton, J A Winfield, and F J Flammino. Tonotopic469

organization: review and analysis. Brain research, 76(1):1–20, August470

1974.471

[2] Ling-yun Li, Xu-ying Ji, Feixue Liang, Ya-tang Li, Zhongju Xiao,472

Huizhong W Tao, and Li I Zhang. A feedforward inhibitory circuit473

mediates lateral refinement of sensory representation in upper layer474

32

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/249011doi: bioRxiv preprint 

https://doi.org/10.1101/249011


2/3 of mouse primary auditory cortex. The Journal of Neuroscience,475

34(41):13670–13683, October 2014.476

[3] Paul V Watkins, Joseph P Y Kao, and Patrick O Kanold. Spatial477

pattern of intra-laminar connectivity in supragranular mouse auditory478

cortex. Frontiers in neural circuits, 8(e1002161):15, 2014.479

[4] Frédéric E Theunissen and Sarita S Shaevitz. Auditory processing of480

vocal sounds in birds. Current opinion in neurobiology, 16(4):400–407,481

August 2006.482

[5] A J Doupe and P K Kuhl. Birdsong and human speech: common483

themes and mechanisms. Annual review of neuroscience, 22:567–631,484

1999.485

[6] Olga Fehér, Haibin Wang, Sigal Saar, Partha P Mitra, and Ofer486

Tchernichovski. De novo establishment of wild-type song culture in the487

zebra finch. Nature, 459(7246):564–568, May 2009.488

[7] N S Clayton. The E↵ects of Cross-Fostering On Selective Song489

Learning in Estrildid Finches. Behaviour, 109(3):163–174, January490

1989.491

[8] Dan H Sanes and Sarah M N Woolley. A behavioral framework to492

guide research on central auditory development and plasticity. Neuron,493

72(6):912–929, December 2011.494

33

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/249011doi: bioRxiv preprint 

https://doi.org/10.1101/249011


[9] A E Jones, C ten Cate, and P J B Slater. Early experience and495

plasticity of song in adult male zebra finches (Taeniopygia guttata).496

Journal of Comparative Psychology, 1996.497

[10] Mountjoy James D and Robert E Lemon. Extended song learning in498

wild European starlings. Animal behaviour, 49(2):357–366, February499

1995.500

[11] Kai Lu and David S Vicario. Statistical learning of recurring sound501

patterns encodes auditory objects in songbird forebrain. Proceedings of502

the National Academy of Sciences of the United States of America,503

111(40):14553–14558, October 2014.504

[12] C B Sturdy, L S Phillmore, J L Price, and R G Weisman. Song-note505

discriminations in zebra finches (Taeniopygia guttata): Categories and506

pseudocategories. Journal of Comparative Psychology, 1999.507

[13] Keith R Kluender, Andrew J Lotto, Lori L Holt, and Suzi L Bloedel.508

Role of experience for language-specific functional mappings of vowel509

sounds. The Journal of the Acoustical Society of America,510

104(6):3568–3582, November 1998.511

[14] Sarah M N Woolley, Mark E Hauber, and Frédéric E Theunissen.512

Developmental experience alters information coding in auditory513

midbrain and forebrain neurons. Developmental Neurobiology,514

70(4):235–252, March 2010.515

34

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/249011doi: bioRxiv preprint 

https://doi.org/10.1101/249011


[15] Sarah M N Woolley and Christine V Portfors. Conserved mechanisms516

of vocalization coding in mammalian and songbird auditory midbrain.517

Hearing research, 305:45–56, November 2013.518

[16] Jennifer Dugas-Ford, Joanna J Rowell, and Clifton W Ragsdale.519

Cell-type homologies and the origins of the neocortex. Proceedings of520

the National Academy of Sciences of the United States of America,521

109(42):16974–16979, October 2012.522

[17] Yuan Wang, Agnieszka Brzozowska-Prechtl, and Harvey J Karten.523

Laminar and columnar auditory cortex in avian brain. Proceedings of524

the National Academy of Sciences of the United States of America,525

107(28):12676–12681, July 2010.526

[18] Sarah M N Woolley and John H Casseday. Response properties of527

single neurons in the zebra finch auditory midbrain: response patterns,528

frequency coding, intensity coding, and spike latencies. Journal of529

Neurophysiology, 91(1):136–151, January 2004.530

[19] Julie A Grace, Noopur Amin, Nandini C Singh, and Frédéric E531

Theunissen. Selectivity for conspecific song in the zebra finch auditory532

forebrain. Journal of Neurophysiology, 89(1):472–487, January 2003.533

[20] Anne Hsu, Sarah M N Woolley, Thane E Fremouw, and Frédéric E534

Theunissen. Modulation power and phase spectrum of natural sounds535

35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/249011doi: bioRxiv preprint 

https://doi.org/10.1101/249011


enhance neural encoding performed by single auditory neurons. The536

Journal of Neuroscience, 24(41):9201–9211, October 2004.537

[21] Jose A Garcia-Lazaro, Bashir Ahmed, and Jan W H Schnupp.538

Emergence of tuning to natural stimulus statistics along the central539

auditory pathway. PloS one, 6(8):e22584, 2011.540

[22] G E Vates, B M Broome, C V Mello, and F Nottebohm. Auditory541

pathways of caudal telencephalon and their relation to the song system542

of adult male zebra finches. The Journal of comparative neurology,543

366(4):613–642, March 1996.544

[23] Ana Calabrese and Sarah M N Woolley. Coding principles of the545

canonical cortical microcircuit in the avian brain. Proceedings of the546

National Academy of Sciences, 112(11):3517–3522, March 2015.547

[24] Nienke J Terpstra, Johan J Bolhuis, and Ardie M den Boer-Visser. An548

analysis of the neural representation of birdsong memory. The Journal549

of Neuroscience, 24(21):4971–4977, May 2004.550

[25] Mimi L Phan, Carolyn L Pytte, and David S Vicario. Early auditory551

experience generates long-lasting memories that may subserve vocal552

learning in songbirds. Proceedings of the National Academy of553

Sciences, 103(4):1088–1093, January 2006.554

[26] James M Jeanne, Jason V Thompson, Tatyana O Sharpee, and555

Timothy Q Gentner. Emergence of learned categorical representations556

36

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/249011doi: bioRxiv preprint 

https://doi.org/10.1101/249011


within an auditory forebrain circuit. The Journal of Neuroscience,557

31(7):2595–2606, February 2011.558

[27] C Daniel Meliza and Daniel Margoliash. Emergence of selectivity and559

tolerance in the avian auditory cortex. The Journal of Neuroscience,560

32(43):15158–15168, October 2012.561

[28] Andrew N Chen and C Daniel Meliza. Phasic and Tonic Cell Types in562

the Zebra Finch Auditory Caudal Mesopallium. Journal of563

Neurophysiology, page jn.00694.2017, December 2017.564

[29] Stefan Huggenberger, Marianne Vater, and Rudolf A Deisz.565

Interlaminar di↵erences of intrinsic properties of pyramidal neurons in566

the auditory cortex of mice. Cerebral cortex (New York, N.Y. : 1991),567

19(5):1008–1018, May 2009.568

[30] C E Carr and D Soares. Evolutionary convergence and shared569

computational principles in the auditory system. Brain, behavior and570

evolution, 59(5-6):294–311, 2002.571

[31] Jason S Rothman and Paul B Manis. The roles potassium currents572

play in regulating the electrical activity of ventral cochlear nucleus573

neurons. Journal of Neurophysiology, 89(6):3097–3113, June 2003.574

[32] Sarah M N Woolley, Patrick R Gill, Thane Fremouw, and Frédéric E575

Theunissen. Functional Groups in the Avian Auditory System. The576

Journal of Neuroscience, 29(9):2780–2793, March 2009.577

37

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/249011doi: bioRxiv preprint 

https://doi.org/10.1101/249011


[33] Nandini C Singh and Frédéric E Theunissen. Modulation spectra of578

natural sounds and ethological theories of auditory processing. The579

Journal of the Acoustical Society of America, 114(6 Pt 1):3394–3411,580

December 2003.581

[34] M C van Rossum. A novel spike distance. Neural computation,582

13(4):751–763, April 2001.583

[35] David M Schneider and Sarah M N Woolley. Discrimination of584

communication vocalizations by single neurons and groups of neurons585

in the auditory midbrain. Journal of Neurophysiology,586

103(6):3248–3265, June 2010.587

[36] E T Rolls and M J Tovee. Sparseness of the neuronal representation of588

stimuli in the primate temporal visual cortex. Journal of589

Neurophysiology, 73(2):713–726, February 1995.590

[37] Frederic E Theunissen, Patrick Gill, Amin Noopur, Junli Zhang, Sarah591

M N Woolley, and Thane Fremouw. Single-unit recordings from592

multiple auditory areas in male zebra finches. CRCNS.org, 2011.593

[38] Patrick Gill, Junli Zhang, Sarah M N Woolley, Thane Fremouw, and594

Frédéric E Theunissen. Sound representation methods for595

spectro-temporal receptive field estimation. Journal of computational596

neuroscience, 21(1):5–20, August 2006.597

38

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/249011doi: bioRxiv preprint 

https://doi.org/10.1101/249011


[39] Yan Gai, Brent Doiron, Vibhakar Kotak, and John Rinzel. Noise-gated598

encoding of slow inputs by auditory brain stem neurons with a599

low-threshold K+ current. Journal of Neurophysiology,600

102(6):3447–3460, December 2009.601

39

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2018. ; https://doi.org/10.1101/249011doi: bioRxiv preprint 

https://doi.org/10.1101/249011

