1	Conserved collateral susceptibility networks in diverse
2	clinical strains of <i>Escherichia coli</i> .
3	
4	Nicole L. Podnecky ^{1*} , Elizabeth G. A. Fredheim ¹ , Julia Kloos ¹ , Vidar Sørum ¹ , Raul
5	Primicerio ¹ , Adam P. Roberts ^{2,3} , Daniel E. Rozen ⁴ , Ørjan Samuelsen ^{1,5} , and Pål J.
6	Johnsen ^{1*}
7	
8	¹ Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of
9	Norway, Tromsø, Norway; ² Department of Parasitology and ³ Research Centre for Drugs
10	and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK; ⁴ Institute of
11	Biology, Leiden University, Leiden, The Netherlands; ⁵ Norwegian National Advisory
12	Unit on Detection of Antimicrobial Resistance, Department of Microbiology and
13	Infection Control, University Hospital of North Norway, Tromsø, Norway.
14	
15	
16	* Corresponding author:
17	UiT - The Arctic University of Norway
18	Department of Pharmacy
19	Faculty of Health Sciences
20	9037 Tromsø
21	Norway
22	paal.johnsen@uit.no
23	nicole.podnecky@uit.no

24 Abstract

25 There is urgent need to develop novel treatment strategies to reduce antimicrobial 26 resistance. Collateral sensitivity (CS), where resistance to one antimicrobial increases 27 susceptibility to other drugs, is a uniquely promising strategy that enables selection 28 against resistance during treatment. However, using CS-informed therapy depends on 29 conserved CS networks across genetically diverse bacterial strains. We examined CS 30 conservation in 10 clinical strains of E. coli resistant to four clinically relevant 31 antibiotics. Collateral susceptibilities of these 40 resistant mutants were then determined 32 against a panel of 16 antibiotics. Multivariate statistical analyses demonstrate that 33 resistance mechanisms, in particular efflux-related mutations, as well as relative fitness 34 were principal contributors to collateral changes. Moreover, collateral responses shifted 35 the mutant selection window suggesting that CS-informed therapies could affect 36 evolutionary trajectories of antimicrobial resistance. Our data allow optimism for CS-37 informed therapy and further suggest that early detection of resistance mechanisms is 38 important to accurately predict collateral antimicrobial responses. 39

40 Keywords

41 Collateral sensitivity, cross-resistance, antimicrobial resistance, fitness cost of resistance,
42 selection inversion

43

45	The evolution and increasing frequency of antimicrobial resistance (AMR) in bacterial
46	populations is driven by the consumption and misuse of antimicrobials in human
47	medicine, agriculture, and the environment (1-3). Historically, the threat of AMR was
48	overcome by using novel antimicrobials with unique drug targets. However, the
49	discovery rate of new antimicrobial agents has dwindled (4-6) and severely lags behind
50	the rate of AMR evolution. While concerted scientific, corporate and political focus is
51	needed to recover antimicrobial pipelines (7-9), there is an urgent need for alternative
52	strategies that prolong the efficacy of existing antimicrobials and prevent or slow the
53	emergence, spread and persistence of AMR. Current global efforts to improve
54	antimicrobial stewardship largely focus on awareness and reducing overall consumption
55	(8, 10-12). While these efforts will affect the evolution and spread of AMR, mounting
56	evidence suggests that these changes alone will not lead to large-scale reductions in the
57	occurrence of AMR (13-17).
50	

59 Several recent studies have examined novel treatment strategies using multiple 60 antimicrobials that could reduce the rate of resistance emergence and even reverse pre-61 existing AMR. These approaches, collectively termed "selection inversion" strategies, 62 refer to cases where resistance becomes costly in the presence of other antimicrobial 63 agents (18). Among the most promising of these strategies are those based on a 64 phenomenon first reported in 1952 termed "collateral sensitivity" (CS), where resistance 65 to one antimicrobial simultaneously increases the susceptibility to another (19). CS and 66 its inverse, cross-resistance (CR), have been demonstrated for several bacterial species 67 and across different classes of antimicrobials (20-26). These results have formed the

68	basis of proposed CS-informed antimicrobial strategies that mix drug pairs (21, 27) or
69	alter temporal administration, e.g. drug cycling (20, 28). The notion behind these
70	strategies is that they would force bacteria to evolve AMR along a predictable trajectory
71	that results in CS; this predictability can then be exploited to ultimately reverse resistance
72	and prevent the fixation of AMR and multi-drug resistance development at the population
73	level of bacterial communities.

75 Initial *in vitro* experiments support using CS-based strategies to re-sensitize resistant 76 strains (20) and reduce rates of resistance development (28); however, the broader 77 application of this principle depends on predictable bacterial responses during 78 antimicrobial therapy. This predictability must be general for a given drug class and 79 should not vary across strains of the same species. To date, most studies of CS and CR 80 have focused on describing these responses as collateral networks using resistant mutants 81 derived from single laboratory adapted strains and few exemplary clinical isolates. Two 82 studies on *Pseudomonas aeruginosa* have further investigated CS in collections of 83 clinical isolates (29, 30). However, these studies lack either proper baseline controls (29) 84 or sufficient genetic diversity (30). As valuable as previous studies have been, the 85 responses of single strains (laboratory or clinical) may not be representative of CS and 86 CR evolution in other strains. To address this limitation, we focused on understanding 87 collateral networks in clinical urinary tract infection isolates of *Escherichia coli* with 88 selected resistance to drugs widely used for the treatment of urinary tract infections; 89 ciprofloxacin (CIP), trimethoprim (TMP), nitrofurantoin (NIT), or mecillinam (MEC). 90

91	We investigated the collateral networks to 16 antimicrobials from diverse drug classes in
92	10 genetically diverse clinical strains (corresponding to 40 laboratory-generated AMR
93	mutants) to assess the factors contributing to collateral responses (both CS and CR). This
94	approach allowed us to identify variation in the sign and magnitude of collateral
95	responses and identify mechanisms of CS and CR that are preserved in different genetic
96	backgrounds. By using multivariate statistical modeling of experimental data, we show
97	that resistance mutations, particularly those affecting efflux pumps, and the relative
98	fitness of resistant isolates are more important determinants of the structure of collateral
99	networks than genetic background. Our results support the idea that collateral responses
100	may be predictable.
101	
101 102	Results
	Results Collateral responses are frequent and vary both between and across AMR groups.
102	
102 103	Collateral responses are frequent and vary both between and across AMR groups.
102 103 104	Collateral responses are frequent and vary both between and across AMR groups. Starting from 10 pan-susceptible urinary tract clinical <i>E. coli</i> isolates (Fig. S1) (31), a
102 103 104 105	Collateral responses are frequent and vary both between and across AMR groups. Starting from 10 pan-susceptible urinary tract clinical <i>E. coli</i> isolates (Fig. S1) (31), a single AMR mutant was generated to each of four individual antimicrobials used for
102 103 104 105 106	Collateral responses are frequent and vary both between and across AMR groups. Starting from 10 pan-susceptible urinary tract clinical <i>E. coli</i> isolates (Fig. S1) (31), a single AMR mutant was generated to each of four individual antimicrobials used for urinary tract infections treatment, CIP, TMP, NIT, and MEC. Here we define 'AMR
102 103 104 105 106 107	Collateral responses are frequent and vary both between and across AMR groups. Starting from 10 pan-susceptible urinary tract clinical <i>E. coli</i> isolates (Fig. S1) (31), a single AMR mutant was generated to each of four individual antimicrobials used for urinary tract infections treatment, CIP, TMP, NIT, and MEC. Here we define 'AMR group' as the collection of mutants from the 10 different genetic backgrounds that were

- 110 antimicrobial susceptibility testing using both gradient strip diffusion (Table S1) and
- 111 inhibitory concentration 90% (IC₉₀; (20)) testing (**Table 1**). Changes in the IC₉₀ of AMR
- 112 mutants from each respective wild-type (WT) strain (Fig. S2) were compared for 16
- antimicrobials (Table 2). The two methods are correlated but IC₉₀ measurements allow

114	for more robust detections of small relative differences in susceptibility (32, 33). Overall,
115	collateral responses were observed in 40.5% (243/600) of possible instances (Table S2);
116	of these, roughly half, 47% (115/243), were associated with only a 1.5 and 2-fold change
117	in IC ₉₀ . Such small changes would not be observed by typical 2-fold antimicrobial
118	susceptibility testing methods frequently used in clinical laboratories.
119	
120	Overall CR was more frequent than CS, 151 versus 92 instances (Table S2), and
121	collateral networks varied considerably between AMR groups. We observed 20 cases of
122	conserved collateral responses (Fig. 1), where CR or CS to a specific antimicrobial was
123	found in $\geq 50\%$ of the mutants within an AMR group, defined as CR_{50} or CS_{50}
124	respectively. This indicates that some collateral responses are likely general, irrespective
125	of genetic background. For each CS_{50} and CR_{50} observation, IC_{90} results were further
126	assessed by generating dose response curves of representative strain:drug combinations
127	(Fig. S3). Inhibition of growth was shown to vary across antimicrobial concentrations
128	between AMR mutants and respective WT strains, confirming the changes in
129	antimicrobial susceptibility determined by the IC ₉₀ assays. While conserved collateral
130	responses were observed, there was variability across the remaining genetic backgrounds.
131	
132	During the selection of AMR mutants, we often observed conspicuous changes to colony

133 size for all AMR groups, suggesting that resistant mutants had reduced bacterial fitness.

134 To test this, we measured the growth rates of AMR mutants and compared these to the

135 respective WT strains (**Fig. S4**). In general, CIP^R and MEC^R mutants displayed severely

136 reduced growth rates suggesting high costs of resistance. The cost of CIP^{R} and MEC^{R}

137	mutants, measured as relative growth rate, was significantly different from 1 and varied
138	between 0.34 and 0.75 with a mean of 0.53 for all CIP^{R} mutants, whereas the cost of
139	MEC^{R} mutants varied between 0.49 and 0.79 with a mean of 0.64. NIT^{R} and TMP^{R}
140	mutants displayed lower levels of reduced fitness and several resistant mutants harbored
141	apparent cost-free resistance mutations (Fig. S4). Only two of ten NIT ^R mutants and four
142	of ten TMP ^R mutants displayed a significant cost of resistance. Relative growth rates
143	varied between 0.93 and 1.05 and 0.68 and 1.07 with averages of 0.99 and 0.94 for NIT^{R}
144	and TMP ^R mutants, respectively.
145	
146	Conserved collateral responses were primarily found in CIP^R mutants. Nearly half
147	(108/243, 44%) of the observed collateral responses were in CIP ^R mutants, while the
148	remaining 135 were distributed between the other three AMR groups (Table S2). Within
149	the CIP ^R group, the majority of collateral responses were CR (70/108, 64.8%).
150	Additionally, CS responses found for the CIP ^R mutants were the most conserved in our
151	dataset, with CS to GEN occurring in 8 of 10 strains and CS to FOS in 7 of 10 strains.
152	GEN and other aminoglycosides are important for the treatment of a wide range of
153	hospital infections (34), while FOS is primarily used for treatment of uncomplicated
154	urinary tract infections (35, 36). The CIP^R mutants were also unique in the magnitude of
155	observed changes, with cases of CR close to 30-fold and CS as high as 6-fold changes in
156	IC_{90} (Fig. S2). Only CIP^{R} isolates displayed potential clinically relevant CR, where six
157	strains had IC_{90} values above the clinical breakpoint for resistance to CHL and a single
158	strain (K56-68 CIP ^R) was above the AMX breakpoint.
159	

160 Characterization of AMR mutants. We hypothesized that CS and CR variation in and 161 between the AMR groups could be attributed to mutations causing resistance in each 162 strain. Using whole genome sequencing we identified a total of 150 mutations in the 163 AMR mutants (**Table S3**). Of these, 88 mutations affect previously described or putative 164 AMR associated genes, gene regions, or pathways (**Table S3**). The remaining mutations 165 were found in other cellular processes with no known association to antimicrobial 166 resistance (e.g. metabolic pathways and virulence factors), such as mutation to the FimE regulator of FimA that was frequently observed in MEC^R mutants (**Table S3**). Aside 167 168 from FimE, we did not observe similar mutations in non-AMR associated regions across 169 strains of the same AMR group (parallel evolution), suggesting that such mutations had 170 limited, if any effect on collateral responses in this study. For each of the 40 AMR 171 mutants at least one putative resistance mechanism was identified, including mutations to 172 previously described antimicrobial drug targets and promoters of drug targets, drug 173 modifying (activating) enzymes, regulators of efflux pumps, RNA polymerases and 174 mutations to other metabolic and biochemical processes that may contribute to resistance (**Table 3**). Briefly, all but one CIP^{R} mutant contained mutations in *gyrA* and efflux 175 176 regulatory genes and gene-regions likely affecting efflux expression (*acrAB* and/or 177 *mdtK*), while one strain had only drug target mutations and displayed the well-described 178 GyrA (S83L) and ParC (G78D) mutation combination. Both efflux and drug target mutations are frequently found in surveys of clinical isolates (37-40). NIT^R mutants had 179 180 mutations in one or both nitro-reductases (*nfsA*, *nfsB*) and the majority of strains had 181 additional mutations in *mprA* that encodes an efflux regulator of EmrAB-TolC pump expression. TMP^R mutants contained mutations either in *folA* and/or its promoter or 182

183	genetic amplification of a large genetic region containing <i>folA</i> . MEC ^R mutants are unique
184	in that they were evolved as single step mutants, where a single mutation could confer
185	clinically relevant resistance to MEC. Resistance development for the remaining three
186	drugs required several steps, as multiple mutations were required for resistance above
187	clinical breakpoints. In total 12 different mutations in genes and/or cellular processes
188	previously linked to MEC^{R} were identified in the MEC^{R} group (41).
189	
190	Our data suggest that the few collateral responses in TMP ^R mutants are attributable to a
191	specific mechanism of resistance affecting a single unique drug target (<i>i.e.</i>
192	overexpression/alteration of FolA). Similarly, the CIP ^R group displayed a clear trend
193	where conserved CR responses were strongly linked to mutations in efflux regulatory
194	regions. In the remaining AMR groups we observed heterogeneous collateral responses.
195	
196	The WT genomes were evaluated for the presence of genetic elements linked to
197	AMR. We detected only one acquired genetic element, sul2 (linked to sulfonamide
198	resistance) in K56-44, and two point mutations, PmrB V161G in K56-50 and K56-70
199	and ParE D475E in K56-78, that are linked to COL and quinolone (CIP) resistance,
200	respectively (Table S3E). It is unclear what, if any, effect these resistance determinants
201	have in these WT strains since all were phenotypically pan-susceptible (Fig. S1).
202	However, the ParE mutation could contribute to CIP ^R levels in K56-78, as the K56-78
203	WT was among the higher WT values for CIP (0.015 μ g/mL) (Fig. S1) and K56-78 CIP ^R
204	was among the highest IC_{90} values of the CIP^{R} mutants (Table 1).
205	

206	Multivariate statistical analyses suggest that efflux-related mutations and relative
207	fitness are significant contributors to collateral responses. Multivariate statistical
208	approaches were used to investigate the extent to which genetic (strain) background,
209	AMR group, the putative mechanism of resistance in particular efflux-related mutations
210	(Table S3), growth rate and the fitness cost of resistance explain the total variation in
211	collateral responses. All the above factors were investigated individually and the related
212	models are found in the supplementary material (Fig. S5A). Throughout the remaining
213	analyses we focus mainly on efflux-related mutations rather than AMR group to
214	explicitly address putative mechanisms of resistance and on relative fitness rather than
215	the growth rate. We estimated several models with individual, or a combination of,
216	factors to assess their effect size and significance given some level of co-linearity
217	between fitness and efflux type (Fig 2, Fig. S5C-F). A model including strain
218	background, relative fitness and efflux-related mutations as factors explained 62.53% of
219	the total variation in IC ₉₀ values (Fig. 2A, Table S4). In this three-factor model there
220	was clear separation of the mutants by AMR group. The CIP ^R mutants showed strong
221	CR towards TEM, CHL, CAZ and AMX separating this AMR group from the others
222	along the first ordination axis. Along the second ordination axis, MEC ^R isolates were
223	distinct, had CR to TEM, and were more likely to have CS towards drugs such as AZT
224	and CHL (Fig. 2A). Both efflux type and relative fitness were significant predictors
225	when tested alone and in combination (Table S4). The model (Fig. 2A) also revealed that
226	strain background had a limited, non-significant contribution. Even when modeled alone
227	(Fig. S5A), strain background only accounted for 6.53% of the variation and was non-
228	significant (Table S4).

230	We initially hypothesized that genetic background would significantly affect collateral
231	responses. Our data suggest that it does not. Arguably, the inclusion of IC_{90} data from the
232	drugs to which primary resistance was selected for could confound the analysis, despite
233	our efforts to minimize these effects using log transformed data. We used the same
234	approaches to assess a subset of collateral responses, excluding data for all of the 40
235	AMR mutants to five antimicrobials containing the drugs used for selection (CIP, MEC,
236	NIT, TMP) and SXT. Within the subset model, patterns consistent with the full model
237	were observed, but with a lower degree of clustering by AMR group (Fig. 2B). For
238	example, the K56-2 CIP ^R mutant is now co-localized with the MEC ^R isolates, indicating
239	that this isolate is distinct from other CIP ^R mutants, which still showed strong tendencies
240	of CR to TEM, CHL, CAZ and AMX. Despite these changes, efflux type and fitness
241	were still significant predictors of collateral networks, whereas strain background
242	remained non-significant in models, both in combination and alone (Fig. S5B, Table S4).
243	Mutations in efflux-related genes and gene regulators were the strongest predictor of
244	collateral responses tested, explaining over 33% of the variation in the subset. Fitness
245	alone also had significant predictive value, but to a lesser extent (17% variation
246	explained). It is important to note that we observed correlation between efflux mutations
247	and relative fitness that is likely explained by reduced fitness resulting from the cost of
248	overexpression of efflux pump(s) (38).
249	
250	To investigate the influence of resistance mechanism on IC_{90} variation at a higher

resolution, we modeled each AMR group separately relating the putative resistance

252	mechanism and fitness separately and in combination (Fig. S5). However potentially due
253	to a lower number of samples within AMR groups and more detailed classification of the
254	resistance mechanism, these factors had varying degrees of contribution. For TMP ^R and
255	CIP ^R AMR groups, resistance mechanism was non-significant, but it was a significant
256	factor for NIT ^R and MEC ^R mutants. Fitness was a significant factor of variation only for
257	the MEC ^R group and similarly, combination models using both resistance mechanism and
258	fitness were non-significant for all AMR groups, with the exception of the MEC ^R group.
259	
260	Collateral responses shift the mutation selection window. The mutant selection
261	window (MSW) can be defined as the concentration space between the lowest
262	antimicrobial concentration that selects for and enriches resistant mutants (42) and the
263	concentration that prevents the emergence of first step resistant mutants, the mutation
264	prevention concentration (MPC) (43, 44). In theory, if drug concentrations remain above
265	the MPC during treatment AMR is less likely to evolve (43, 44). It was recently
266	demonstrated in E. coli MG1655 that changes in MPC correlated with collateral
267	responses in AMR mutants (20). We determined the MPC for 17 strain:drug
268	combinations that exemplified the conserved collateral responses (Fig. 1). The MPC for
269	each AMR mutant and its respective WT were compared (Fig. 3). In 12/17 (70.6%) the
270	change in MPC was consistent with the sign of collateral responses in IC_{90} . This
271	demonstrates that even small CS/CR changes can affect the MSW, correspondingly
272	shifting it down or up. However, in $4/17$ (23.5%) the MPC displayed no change between
273	the WT and AMR mutant. This was observed when testing the MPC for MEC, TMP and
274	AZT, though we speculate that increasing the precision of the MPC assay (as was done

with IC₉₀ testing) might negate these discrepancies. Changes in MPC results with AZT

276 were inconsistent with the change in IC_{90} for a CIP^{R} mutant and the MEC^{R} and NIT^{R}

277 mutants, which displayed a decreased MPC instead of an expected increase or no change,

278 respectively.

279

280 Discussion

Here we present, to our knowledge, the first in depth study to identify conserved

collateral responses in antimicrobial susceptibility across genetically diverse clinical *E*.

283 *coli* strains following antimicrobial resistance development. Our findings are relevant

beyond urinary tract infections because uropathogenic *E. coli* are shown to also stably

colonize the bladder and gut (45), and to cause bloodstream infections (46). Our data

show that CS and CR are pervasive in clinical *E. coli* strains, consistent with earlier

results based on laboratory-adapted strains of various species (20-22, 24, 29, 47) and a

288 limited number of clinical isolates (20, 29). Resistance to CIP resulted in a greater

289 number of collateral responses than resistance to MEC, NIT, or TMP. CR was much

290 more prevalent than CS, and the magnitude of the collateral responses were most often

small, consistent with other reports (20-22). Overall we observed that collateral

responses varied substantially by AMR group, but variation was also observed withinAMR groups.

294

Using CS₅₀ and CR₅₀ thresholds to identify conserved responses, we found that conserved CR was more than twice as common as conserved CS. Whereas many of the conserved collateral responses identified in this study support the findings in previous work using

298	single laboratory-adapted strains, we observed several clinically relevant differences. For
299	example, our finding of conserved CS in CIP ^R mutants to GEN was previously reported
300	in <i>E. coli</i> K12 (21) but not in MG1655 (20). In the CIP ^R mutants we also observed
301	conserved CR towards CHL, as reported in (20), but not in (22). We identified conserved
302	CR of NIT ^R mutants to AMX, and this was not reported in MG1655 (20). These
303	observations underscore the importance of exploring collateral networks in multiple
304	mutants of different clinical strain backgrounds and with different resistance mechanisms
305	to assess their potential clinical application. Visual inspection of the data revealed a few
306	clinically relevant examples of CS phenotypes that appeared independent of putative
307	mechanism of resistance. We show that CIP ^R E. coli strains displayed CS towards GEN,
308	FOS, ETP and COL, and these phenotypes were conserved across multiple mechanisms
309	of resistance. These results parallel those of a recent study on <i>P. aeruginosa</i> clinical
310	isolates from cystic fibrosis patients, where CIP ^R was associated with CS to GEN, FOS
311	and COL. Taken together these data support the presence of general conserved collateral
312	networks that may both affect the population dynamics of AMR during treatment and
313	counter-select for resistance as recently indicated (30).
314	

We assumed *a priori* that genetic background, AMR group, resistance mechanism, and
the fitness cost of resistance could potentially affect the generality, sign and magnitude of
collateral networks in clinical *E. coli* strains. Despite the fact that some collateral
responses are conserved across different strains and mechanisms of resistance, our
multivariate statistical approaches show overall that mechanism of resistance is the key
predictor of CS and CR variability. This is primarily the case for efflux related mutations.

321 However, mechanism of resistance also significantly contributed to the observed CS and 322 CR variation in the MEC mutants where no efflux mutations were found. The presented 323 data are consistent with earlier reports based on multiple AMR mutants derived from 324 single strains with different resistance mechanisms towards specific antimicrobials (21, 325 22, 48). Our finding that genetic background did not significantly contribute to collateral 326 responses is an important addition to these earlier studies. Finally, we found that the 327 fitness cost of resistance also contributed significantly to the observed variation in CS 328 and CR, despite some overlap in explanatory power due to the observed correlation 329 between efflux-related mutations and reduced fitness. Taken together, our data and 330 previous reports indicate that applied use of collateral networks in future treatment 331 strategies may be dependent on rapid identification of specific resistance mechanisms. 332 Moreover, clinical application of CS as a selection inversion strategy warrants further 333 investigations to ideally explore CS in isogenic backgrounds, representing several diverse 334 strains, with permutations of all known AMR-associated resistance traits. Such extensive 335 studies would likely provide valuable information on the mechanisms of CS. Other 336 confounding factors such as mobile genetic elements with heterogeneous resistance 337 determinants should also be investigated as they would likely influence and reduce the 338 predictability of collateral networks.

339

Selection inversion, as described by (20), depends on the cycling of drug pairs that
display reciprocal CS. We did not observe reciprocal CS between any of the four drugs
studied here that are widely used for treatment of urinary tract infections. However, we
asked if modest reductions and increases in antimicrobial susceptibilities would affect the

344	MSW (43) for the most prevalent CS and CR phenotypes. We subjected conserved CS
345	and CR phenotypes to MPC assays and revealed that even a small 1.5-fold change in IC_{90}
346	could equally alter the MPC, resulting in a shift of the MSW. These results suggest that
347	antimicrobial treatment strategies informed by collateral networks could affect AMR
348	evolutionary trajectories. Sequential treatment using drug pairs that display CR would,
349	following resistance development, shift the MSW towards higher antimicrobial
350	concentrations and increase the likelihood for resistance development to subsequent
351	treatment options. Conversely, sequential treatment based on drug pairs that display CS
352	can shift the MSW down and reduce the window of opportunity for high-level resistance
353	development. This result suggests that the initial choice of antimicrobial may set the
354	stage for later resistance development (Fig. 4). Based on our <i>in vitro</i> findings, TMP and
355	NIT are attractive from a clinical perspective, as resistance to these resulted in few
356	collateral responses, preserving the innate sensitivity to available secondary
357	antimicrobials. However, MEC could be even more attractive, as CS largely dominates
358	the observed collateral responses in MEC ^R mutations. Additionally MEC ^R isolates,
359	especially those evolved in vivo, are associated with high cost of resistance (41). In
360	contrast, CIP exposure was more likely to cause dramatic collateral responses that
361	depended on the mechanism of resistance and could potentially negatively impact future
362	therapeutic options. These observations align with antimicrobial treatment
363	recommendations in Norway, where MEC, NIT and TMP are recommended for first line
364	therapy of uncomplicated UTI, and CIP is reserved for otherwise complicated infections
365	(49). Similarly, in the United States NIT, SXT (TMP-SMX) and MEC are recommended
366	before fluoroquinolones such as CIP, ofloxacin, and levofloxacin (50).

367

368	Our conclusions are not without limitations. First, we acknowledge that including more
369	clinical isolates from different infection foci, more diverse genetic backgrounds, as well
370	as other selective agents, could change the outcome of our statistical analyses. This
371	would allow increased sensitivity for the assessment of the different factors controlling
372	collateral responses. A more targeted approach to assess the impact of specific resistance
373	mechanisms on CS and CR across genetically diverse clinical strains is lacking in the
374	field. Our analyses suggest that the fitness cost of resistance explains some variability in
375	the collateral networks reported here. While it is known that growth rates affect antibiotic
376	action (51), the underlying mechanism is currently unknown. It is also unclear if
377	collateral networks will be perturbed by compensatory evolution, which eliminates the
378	fitness costs of primary resistance (52-54). Finally, this and previous studies focus on
379	AMR development to a single drug and there is a complete lack of data on how multidrug
380	resistance, including resistance genes on mobile genetic elements, will affect collateral
381	networks. We are currently investigating these and other questions that will aid in our
382	understanding of collateral networks and their potential therapeutic application.
383	

384 Methods

Bacterial strains. We used ten clinical urinary tract infection isolates of *E. coli* from the
ECO-SENS collections (55, 56) originating from countries across Europe between 2000
and 2008 (Table 1). The isolates were chosen to represent pan-susceptible strains with
diverse genetic backgrounds and were reported plasmid-free (31). Subsequent analysis
based on whole-genome sequencing discovered two changes to previously reported

390	ST's and the	presence of p	olasmid re	plicons in	three strains	Table S5E). <i>E. coli</i>

- 391 ATCC 25922 was used for reference and quality control purposes. For general growth,
- 392 bacterial strains were grown in either Miller Difco Luria-Bertani (LB) broth (Becton,
- 393 Dickinson and Co., Sparks MD, USA) or on LB agar; LB broth supplemented with select
- agar (Sigma-Aldrich) at 15 g/L. All strains were incubated at 37°C.
- 395

```
396 Selection of AMR mutants. Single AMR mutants were selected at MICs above the
```

- 397 European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical
- 398 breakpoints (57) for CIP, NIT, TMP and MEC (Table 1). Resistant mutants were
- 399 selected on Mueller Hinton II agar (MHA-SA; Sigma-Aldrich) for CIP, NIT and TMP
- 400 using a step-wise static selection. MEC^{R} mutants were selected as single-step mutants on
- 401 LB agar. For more details, see **Text S1**. AMR mutants were confirmed as *E. coli* using
- 402 matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis with
- 403 MALDI BioTyper software (Bruker, MA, USA).
- 404

405 Antimicrobial susceptibility testing. AMR mutants were screened for resistance above

406 EUCAST breakpoints (**Table S1**, (57)) with gradient diffusion strips following

- 407 manufacturers guidelines (Liofilchem, Italy), on Mueller Hinton II agar (MHA-BD;
- 408 Becton, Dickinson and Company) after 18 hours incubation. Plates with insufficient
- 409 growth were incubated an additional 24 hours.

410

411 Collateral changes to 16 antimicrobials (**Table 2**) were determined by IC₉₀ testing (20),

412 with some modifications. Standard 2-fold concentrations and median values between

413	them were used as a "1.5-fold" testing scale. IC_{90} values were read as the first
414	concentration tested that resulted in \ge 90% inhibition of growth (optical density at
415	600nm, OD ₆₀₀) following 18 hours incubation at 700 rpm (3 mm stroke) in Mueller
416	Hinton Broth (MHB, Becton, Dickinson and Company). Percent inhibition was
417	calculated as previously described (20). IC ₉₀ results were determined in at least three
418	biological replicates on separate days always including the control strain ATCC 25922.
419	The final result reflects the average of a minimum of three replicates that met quality
420	control standards (Text S1). Fold change in IC_{90} was calculated as the ratio between the
421	AMR mutant and its respective WT.
422	
423	Dose response curves were generated with averages of OD_{600} values (background
424	subtracted) for each concentration tested during the IC ₉₀ experiments. Averages were
424 425	subtracted) for each concentration tested during the IC_{90} experiments. Averages were plotted for AMR mutants and respective WT strains.
425	
425 426	plotted for AMR mutants and respective WT strains.
425 426 427	plotted for AMR mutants and respective WT strains. Mutation prevention concentration testing. CS and CR trends to single drugs present
425 426 427 428	plotted for AMR mutants and respective WT strains. Mutation prevention concentration testing. CS and CR trends to single drugs present in \geq 50% of the isolates (CS ₅₀ or CR ₅₀), were confirmed by determining the mutation
425 426 427 428 429	plotted for AMR mutants and respective WT strains. Mutation prevention concentration testing. CS and CR trends to single drugs present in \geq 50% of the isolates (CS ₅₀ or CR ₅₀), were confirmed by determining the mutation prevention concentrations (MPCs), essentially as described previously (58). Briefly, 10
425 426 427 428 429 430	plotted for AMR mutants and respective WT strains. Mutation prevention concentration testing. CS and CR trends to single drugs present in \geq 50% of the isolates (CS ₅₀ or CR ₅₀), were confirmed by determining the mutation prevention concentrations (MPCs), essentially as described previously (58). Briefly, 10 mL aliquots of an overnight culture were pelleted and re-suspended in 1 mL MHB,
425 426 427 428 429 430 431	plotted for AMR mutants and respective WT strains. Mutation prevention concentration testing. CS and CR trends to single drugs present in \geq 50% of the isolates (CS ₅₀ or CR ₅₀), were confirmed by determining the mutation prevention concentrations (MPCs), essentially as described previously (58). Briefly, 10 mL aliquots of an overnight culture were pelleted and re-suspended in 1 mL MHB, estimated to contain \geq 10 ¹⁰ CFU (actual values were 1.4 x 10 ¹⁰ - 7 x 10 ¹⁰ CFU). The

AMR mutants and WTs were tested in parallel and the results represent the average of aminimum of two biological replicates.

437

438 Growth rate measurements. Growth curves of WT and AMR mutants were generated

439 in a Versamax plate reader (Molecular Devices Corporation, California, USA) with

440 constant shaking overnight. The OD₆₀₀ was measured every 10 minutes and growth rates

441 were estimated using GrowthRates v.2.1 software (59) (Text S1).

442

443 Identification of genetic AMR determinants. Genomic DNA was isolated using the

444 GenElute Bacterial Genomic DNA kit (Sigma-Aldrich) following guidelines for Gram-

445 positive DNA extraction. Purity and quantification of genomic DNA was determined

446 with Nanodrop (Thermo Scientific) and Qubit High Sensitivity DNA assay (Life

447 Technologies), respectively and used to prepare libraries using the DNA Ultra II Library

448 Preparation Kit (New England Biolabs, E7645) according to manufacturers description

449 (Text S1). Libraries were then quantified by Qubit High Sensitivity DNA assay and

450 distributions assessed by Bioanalyser DNA 1000 Chip (Agilent, 5067-1504) before

451 normalizing and pooling. The final library pool was sequenced on the MiSeq (Illumina,

452 San Diego) using 250 bp paired end reads and V2 chemistry.

453

454 WT genomes were assembled as described in **Text S1**. WT genomes were annotated

455 with Rapid Annotation using Subsystem Technology server (RAST, version 2.0) for *E*.

456 *coli* (60). SeqMan NGen (DNASTAR, Madison, WI) was used for comparative analysis

457 of raw AMR mutant Illumina reads, using standard settings. AMR mutant reads were

458	aligned to the corresponding annotated WT genome assembly. Reported SNPs had $\ge 10x$
459	coverage depth and \geq 90% variant base calls. SNPs present in the WT assembly or in at
460	least two AMR mutants of the same strain background were excluded. Genetic deletions
461	and rearrangements were identified in the structural variation report generated in SeqMan
462	Pro (DNASTAR) and were manually inspected and annotated using Gene Construction
463	Kit (Textco Biosoftware Inc., Raleigh, NC) and NCBI BLAST searches, respectively.
464	
465	Multivariate Statistical Analyses. The fold changes of mean IC ₉₀ values (collateral
466	responses) were determined relative to the parental WT strain and log transformed.
467	Statistical analyses were performed on the complete data set, as well as a subset of the
468	data excluding five antimicrobials, those to which primary AMR was evolved (CIP,
469	MEC, NIT, and TMP) and SXT. To estimate and test the effects of strain background,
470	AMR group, AMR mechanism, growth rate and relative fitness we relied on multivariate
471	modeling, via redundancy analysis, to address the co-variation in IC_{90} across
472	antimicrobials. The linear constraint scores were plotted for each AMR mutant. The
473	response variables were overlaid with independent scaling to illustrate the direction of
474	"steepest ascent" (increasing CR) from the origin for each antimicrobial. The
475	significance of multivariate models and of their factors was assessed by permutation tests
476	(1000 permutations) where $p < 0.05$ was considered significant. These analyses were
477	done in R (61) using the Vegan work package (62).
478	

479	Data availability.	Whole-genome	sequencing data are	e available with	in the NCBI

- 480 BioProject PRJNA419689. All other relevant data are available within this article, its
- 481 Supplementary Information, or from the corresponding author upon request.
- 482

483 Acknowledgments

- 484 We thank Tony Brooks at UCL Genomics for expertise in genome sequencing, Ane L.G.
- 485 Utnes for generation of NIT^R mutants, Maria Chiara Di Luca for analysis of the genomes
- 486 for MLST and identification of plasmid replicons, and Søren Overballe-Petersen for
- 487 preliminary processing of WT genomes. Funding for this project was provided through
- 488 the Northern Norway Regional Health Authority and UiT The Arctic University of
- 489 Norway (Project SFP1292-16), and JPI-EC-AMR (Project 271176/H10).

490

491 Author Contributions

- 492 P.J.J. and Ø.S. conceived the project; N.L.P., E.G.A.F., J.K., and V.S. designed and
- 493 performed experiments; R.P. designed and R.P and N.L.P. performed the multivariate
- 494 statistical modeling; all authors analyzed, interpreted and discussed the data; and N.L.P.,
- 495 E.G.A.F., A.P.R., D.E.R., and P.J.J. wrote the manuscript with contributions from the
- 496 other authors.
- 497

498 **References**

- 499
- 500 1. Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A,
- 501 Guerin PJ, Piddock LJV. 2016. Understanding the mechanisms and drivers of
- antimicrobial resistance. The Lancet 387:176-187.

503	2.	Cantas L, Shah SQ, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garelick H,
504		Burgmann H, Sorum H. 2013. A brief multi-disciplinary review on antimicrobial
505		resistance in medicine and its linkage to the global environmental microbiota.
506		Front Microbiol 4:96.
507	3.	Andersson DI, Hughes D. 2014. Microbiological effects of sublethal levels of
508		antibiotics. Nat Rev Microbiol 12:465-78.
509	4.	Silver LL. 2011. Challenges of antibacterial discovery. Clin Microbiol Rev 24:71-
510		109.
511	5.	Walsh C. 2003. Where will new antibiotics come from? Nat Rev Microbiol 1:65-
512		70.
513	6.	Fischbach MA, Walsh CT. 2009. Antibiotics for emerging pathogens. Science
514		325:1089-93.
515	7.	Infectious Diseases Society of America. 2010. The 10 x '20 Initiative: pursuing a
516		global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect
517		Dis 50:1081-3.
518	8.	World Health Organization. 2001. WHO global strategy of containment of
519		antimicrobial resistance. World Health Organization, Geneva, Switzerland.
520	9.	O'Neil J. 2016. Tackling Drug-Resistant Infections Globally: Final Report and
521		Recommendations. Wellcome Trust & HM Government,
522	10.	Centers for Disease Control and Prevention (U.S.). 2014. The Core Elements of
523		Hospital Antibiotic Stewardship Programs. Atlanta, GA.

- 524 11. Harbarth S, Balkhy HH, Goossens H, Jarlier V, Kluytmans J, Laxminarayan R,
- 525 Saam M, Van Belkum A, Pittet D. 2015. Antimicrobial resistance: one world, one
- 526 fight! Antimicrobial Resistance and Infection Control 4.
- 527 12. OPGA/WHO/FAO/OIE. 21 Sept 2016. PRESS RELEASE: High-Level Meeting
- 528 on Antimicrobial Resistance. Available at
- 529 https://www.un.org/pga/71/2016/09/21/press-release-hl-meeting-on-
- 530 <u>antimicrobial-resistance</u>. PGA Press Releases, New York, NY USA.
- 531 13. Johnsen PJ, Townsend JP, Bohn T, Simonsen GS, Sundsfjord A, Nielsen KM.
- 532 2009. Factors affecting the reversal of antimicrobial-drug resistance. Lancet Infect533 Dis 9:357-64.
- 534 14. Johnsen PJ, Townsend JP, Bohn T, Simonsen GS, Sundsfjord A, Nielsen KM.
- 535 2011. Retrospective evidence for a biological cost of vancomycin resistance
- determinants in the absence of glycopeptide selective pressures. J AntimicrobChemother 66:608-10.
- 538 15. Enne VI, Livermore DM, Stephens P, Hall LMC. 2001. Persistence of
- sulphonamide resistance in *Escherichia coli* in the UK despite national
- 540 prescribing restriction. The Lancet 357:1325-1328.
- 541 16. Sundqvist M, Geli P, Andersson DI, Sjolund-Karlsson M, Runehagen A, Cars H,
- 542 Abelson-Storby K, Cars O, Kahlmeter G. 2010. Little evidence for reversibility of
- 543 trimethoprim resistance after a drastic reduction in trimethoprim use. J
- 544 Antimicrob Chemother 65:350-60.
- 545 17. Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to
 546 reverse resistance? Nat Rev Microbiol 8:260-71.

547	18.	Baym M, Stone LK, Kishony R. 2016. Multidrug evolutionary strategies to
548		reverse antibiotic resistance. Science 351:aad3292.
549	19.	Szybalski W, Bryson V. 1952. Genetic studies on microbial cross resistance to
550		toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J
551		Bacteriol 64:489-99.
552	20.	Imamovic L, Sommer MO. 2013. Use of collateral sensitivity networks to design
553		drug cycling protocols that avoid resistance development. Sci Transl Med
554		5:204ra132.
555	21.	Lazar V, Pal Singh G, Spohn R, Nagy I, Horvath B, Hrtyan M, Busa-Fekete R,
556		Bogos B, Mehi O, Csorgo B, Posfai G, Fekete G, Szappanos B, Kegl B, Papp B,
557		Pal C. 2013. Bacterial evolution of antibiotic hypersensitivity. Mol Syst Biol
558		9:700.
559	22.	Lazar V, Nagy I, Spohn R, Csorgo B, Gyorkei A, Nyerges A, Horvath B, Voros
560		A, Busa-Fekete R, Hrtyan M, Bogos B, Mehi O, Fekete G, Szappanos B, Kegl B,
561		Papp B, Pal C. 2014. Genome-wide analysis captures the determinants of the
562		antibiotic cross-resistance interaction network. Nat Commun 5:4352.
563	23.	Sanders CC, Sanders Jr. WE, Goering RV, Werner V. 1984. Selection of Multiple
564		Antibiotic Resistance by Quinolones, β -Lactans and Aminoglycosides with
565		Special Reference to Cross-Resistance Between Unrelated Drug Classes.
566		Antimicrob Agents Chemother 26:797-801.
567	24.	Gonzales PR, Pesesky MW, Bouley R, Ballard A, Biddy BA, Suckow MA,
568		Wolter WR, Schroeder VA, Burnham CA, Mobashery S, Chang M, Dantas G.

569		2015. Synergistic, collaterally sensitive beta-lactam combinations suppress
570		resistance in MRSA. Nat Chem Biol 11:855-61.
571	25.	Macvanin M, Hughes D. 2005. Hyper-susceptibility of a fusidic acid-resistant
572		mutant of Salmonella to different classes of antibiotics. FEMS Microbiol Lett
573		247:215-20.
574	26.	Barbosa C, Trebosc V, Kemmer C, Rosenstiel P, Beardmore R, Schulenburg H,
575		Jansen G. 2017. Alternative Evolutionary Paths to Bacterial Antibiotic Resistance
576		Cause Distinct Collateral Effects. Mol Biol Evol 34:2229-2244.
577	27.	Kim S, Lieberman TD, Kishony R. 2014. Alternating antibiotic treatments
578		constrain evolutionary paths to multidrug resistance. Proc Natl Acad Sci U S A
579		111:14494-9.
580	28.	Fuentes-Hernandez A, Plucain J, Gori F, Pena-Miller R, Reding C, Jansen G,
581		Schulenburg H, Gudelj I, Beardmore R. 2015. Using a sequential regimen to
582		eliminate bacteria at sublethal antibiotic dosages. PLoS Biol 13:e1002104.
583	29.	Jansen G, Mahrt N, Tueffers L, Barbosa C, Harjes M, Adolph G, Friedrichs A,
584		Krenz-Weinreich A, Rosenstiel P, Schulenburg H. 2016. Association between
585		clinical antibiotic resistance and susceptibility of Pseudomonas in the cystic
586		fibrosis lung. Evol Med Public Health 2016:182-94.
587	30.	Imamovic L, Ellabaan MMH, Dantas Machado AM, Citterio L, Wulff T, Molin S,
588		Krogh Johansen H, Sommer MOA. 2018. Drug-Driven Phenotypic Convergence
589		Supports Rational Treatment Strategies of Chronic Infections. Cell
590		doi:10.1016/j.cell.2017.12.012.

591	31.	Bengtsson S, Naseer U, Sundsfjord A, Kahlmeter G, Sundqvist M. 2012.
592		Sequence types and plasmid carriage of uropathogenic Escherichia coli devoid of
593		phenotypically detectable resistance. J Antimicrob Chemother 67:69-73.
594	32.	Munck C, Gumpert HK, Wallin AI, Wang HH, Sommer MO. 2014. Prediction of
595		resistance development against drug combinations by collateral responses to
596		component drugs. Sci Transl Med 6:262ra156.
597	33.	Munck CS, M. 2014. Antibiotic Resistance: Adaptive Evolution & Dissemination
598		of Resistance Genes. PhD. DTU.
599	34.	Kushner B, Allen PD, Crane BT. 2016. Frequency and Demographics of
600		Gentamicin Use. Otol Neurotol 37:190-5.
601	35.	Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. 2012. Fosfomycin:
602		evaluation of the published evidence on the emergence of antimicrobial resistance
603		in Gram-negative pathogens. J Antimicrob Chemother 67:255-68.
604	36.	Dijkmans AC, Zacarias NVO, Burggraaf J, Mouton JW, Wilms EB, van
605		Nieuwkoop C, Touw DJ, Stevens J, Kamerling IMC. 2017. Fosfomycin:
606		Pharmacological, Clinical and Future Perspectives. Antibiotics (Basel) 6.
607	37.	Wang H, Dzink-Fox JL, Chen M, Levy SB. 2001. Genetic characterization of
608		highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role
609		of acrR mutations. Antimicrob Agents Chemother 45:1515-21.
610	38.	Pietsch F, Bergman JM, Brandis G, Marcusson LL, Zorzet A, Huseby DL,
611		Hughes D. 2016. Ciprofloxacin selects for RNA polymerase mutations with
612		pleiotropic antibiotic resistance effects. J Antimicrob Chemother
613		doi:10.1093/jac/dkw364.

614	39.	Kern WV, Oethinger M, Jellen-Ritter AS, Levy SB. 2000. Non-Target Gene

- 615 Mutations in the Development of Fluoroquinolone Resistance in *Escherichia coli*.
- 616 Antimicrob Agents Chemother 44:814-820.
- 40. Huseby DL, Pietsch F, Brandis G, Garoff L, Tegehall A, Hughes D. 2017.
- 618 Mutation supply and relative fitness shape the genotypes of ciprofloxacin-
- 619 resistant *Escherichia coli*. Mol Biol Evol 34:1029-1039.
- 620 41. Thulin E, Sundqvist M, Andersson DI. 2015. Amdinocillin (Mecillinam)
- resistance mutations in clinical isolates and laboratory-selected mutants of *Escherichia coli*. Antimicrob Agents Chemother 59:1718-27.
- C C
- 623 42. Gullberg E, Cao S, Berg OG, Ilback C, Sandegren L, Hughes D, Andersson DI.
- 624 2011. Selection of resistant bacteria at very low antibiotic concentrations. PLoS625 Pathog 7:e1002158.
- 626 43. Drlica K, Zhao X. 2007. Mutant selection window hypothesis updated. Clin Infect
 627 Dis 44:681-8.
- 628 44. Liang B, Bai N, Cai Y, Wang R, Drlica K, Zhao X. 2011. Mutant prevention
- 629 concentration-based pharmacokinetic/pharmacodynamic indices as dosing targets
- 630 for suppressing the enrichment of levofloxacin-resistant subpopulations of

631 *Staphylococcus aureus*. Antimicrob Agents Chemother 55:2409-12.

- 632 45. Nielsen KL, Stegger M, Godfrey PA, Feldgarden M, Andersen PS, Frimodt-
- 633 Moller N. 2016. Adaptation of *Escherichia coli* traversing from the faecal
- environment to the urinary tract. Int J Med Microbiol 306:595-603.
- 635 46. Subashchandrabose S, Mobley HL. 2015. Virulence and Fitness Determinants of
 636 Uropathogenic *Escherichia coli*. Microbiol Spectr 3.

637	47.	Pal C, Papp B, Lazar V. 2015. Collateral sensitivity of antibiotic-resistant	

638 microbes. Trends Microbiol doi:10.1016/j.tim.2015.02.009.

- 48. Jiao YJ, Baym M, Veres A, Kishony R. 2016. Population diversity jeopardizes the
 efficacy of antibiotic cycling. BioRxiv 082107.
- 641 49. Norwegian Directorate of Health. 2012. Antibiotic use in Norwegian primary642 healthcare. National guidelines version 1.3.
- 643 50. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ,
- 644 Nicolle LE, Raz R, Schaeffer AJ, Soper DE, Infectious Diseases Society of A,
- European Society for M, Infectious D. 2011. International clinical practice
- 646 guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in
- 647 women: A 2010 update by the Infectious Diseases Society of America and the
- European Society for Microbiology and Infectious Diseases. Clin Infect Dis

649 52:e103-20.

- 650 51. Greulich P, Scott M, Evans MR, Allen RJ. 2015. Growth-dependent bacterial
 651 susceptibility to ribosome-targeting antibiotics. Molecular Systems Biology
 652 11:796-796.
- Schrag SJ, V. P, Levin BR. 1997. Adaptation to the fitness costs of antibiotic
 resistance in *Escherichia coli*. Proc R Soc Lon B 264:1287-1291.
- 655 53. Björkman J, Nagaev I, Berg OG, D. Hughes D, Andersson DI. 2000. Effects of
 656 Environment on Compensatory Mutations to Ameliorate Costs of Antibiotic
 657 Resistance. Science 287:1479-1482.
- 658 54. Starikova I, Harms K, Haugen P, Lunde TTM, Primicerio R, Samuelsen Ø,
- Nielsen KM, Johnsen PJ. 2012. A Trade-off between the Fitness Cost of

660		Functional Integrases and Long-term Stability of Integrons. PLoS Pathog
661		8:e1003043.
662	55.	Kahlmeter G. 2000. The ECO.SENS Project: a prospective, multinational,
663		multicentre epidemiological survey of the prevalence and antimicrobial
664		susceptibility of urinary tract pathogensinterim report. J Antimicrob Chemother
665		46 Suppl 1:15-22; discussion 63-5.
666	56.	Kahlmeter G, Poulsen HO. 2012. Antimicrobial susceptibility of Escherichia coli
667		from community-acquired urinary tract infections in Europe: the ECO.SENS
668		study revisited. Int J Antimicrob Agents 39:45-51.
669	57.	The European Committee on Antimicrobial Susceptibility Testing. 2017.
670		Breakpoint tables for interpretation of MICs and zone diameters. Version 7.1,
671		Available at <u>http://www.eucast.org</u> .
672	58.	Marcusson LL, Olofsson SK, Komp Lindgren P, Cars O, Hughes D. 2005. Mutant
673		prevention concentrations of ciprofloxacin for urinary tract infection isolates of
674		Escherichia coli. J Antimicrob Chemother 55:938-43.
675	59.	Hall BG, Acar H, Nandipati A, Barlow M. 2014. Growth rates made easy. Mol
676		Biol Evol 31:232-8.
677	60.	Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K,
678		Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL,
679		Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich
680		C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST
681		Server: rapid annotations using subsystems technology. BMC Genomics 9:75.

- 682 61. Team RC. 2013. R: A Language and Environment for Statistical Computing, R
- 683 Foundation for Statistical Computing, Vienna, Austria. <u>http://www.R-</u>
- 684 project.org/.
- 685 62. Dixon P. 2003. VEGAN, a package of R functions for community ecology.
- 586 Journal of Vegetation Science 14:927-930.

688 Supplementary Information List

689

690 Text S1

- 691
- 692 Figure S1: The distribution of average IC₉₀ values for wild-type *Escherichia coli* clinical
- 693 isolates.
- **Figure S2:** Collateral changes in susceptibility of 40 AMR mutants to 16 antimicrobials.
- 695 Figure S3: Dose response curves of representative strain:drug combinations that
- 696 demonstrate frequently observed collateral responses (CS_{50} and CR_{50}).
- 697 Figure S4: Relative growth rate of AMR mutants compared to their respective WT
- ancestors.
- 699 Figure S5: Multivariate models displaying the contribution of individual and
- 700 combinations of factors to collateral networks.
- 701
- 702 **Table S1:** Gradient strip diffusion MIC values of AMR mutants.
- **Table S2:** Tabulation of collateral responses detected in 40 AMR mutants.
- 704 Table S3: Genomic analyses of whole genome sequencing data in WT strains and AMR
- 705 mutants.
- 706 **Table S4**: Summary of the output from multivariate models.

bioRxiv preprint doi: https://doi.org/10.1101/248872; this version posted January 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. **Table 1**: Description of *Escherichia coli* strains used in the study and susceptibility

changes following antimicrobial selection in vitro.

			Ciprofloxacin		Mecillinam		Nitrofurantoin		Trimethoprim	
Strain	ST ²	Origin	WT	CIP ^R	WT	MEC ^R	WT	NIT ^R	WT	TMP ^R
K56-2	73	Greece	0.014	16	0.146	> 30	8	> 64	0.225	> 28
K56-12	104	Portugal	0.016	1.67	0.273	28	7.33	> 64	0.563	> 32
K56-16 ³	127	Portugal	0.009	3	0.167	18.7	4	> 64	0.25	> 30
K56-41	73	Greece	0.016	2.33	0.104	13.3	6	> 64	0.25	6.67
K56-44 ³	12	Greece	0.013	1.67	0.141	16	6.67	> 64	0.375	6
K56-50	100	Greece	0.012	3	0.141	10.7	12	> 64	0.172	18
K56-68	95	Sweden	0.014	4	0.141	30	6.67	> 64	0.208	18.7
K56-70	537	Sweden	0.007	2.67	0.083	> 32	4.67	> 64	0.25	14.7
K56-75 ⁴	69	UK	0.008	1.17	0.063	13	6	> 64	0.167	5.33
K56-78	1235	UK	0.015	6	0.141	16	8	> 64	0.5	7.33
Resistar	ice Bre	akpoint ⁵	> ().5	>	8	>	64	>	4

Average Inhibition Concentration 90% $(IC_{90}, \mu g/mL)^{1}$

¹ The average IC_{90} values of three or more biological replicates. Individual results above detection limits (MEC = $32 \mu g/mL$, NIT = $64 \mu g/mL$, TMP = $32 \mu g/mL$) were analyzed as those values, yielding final results with uncertainty (> average).

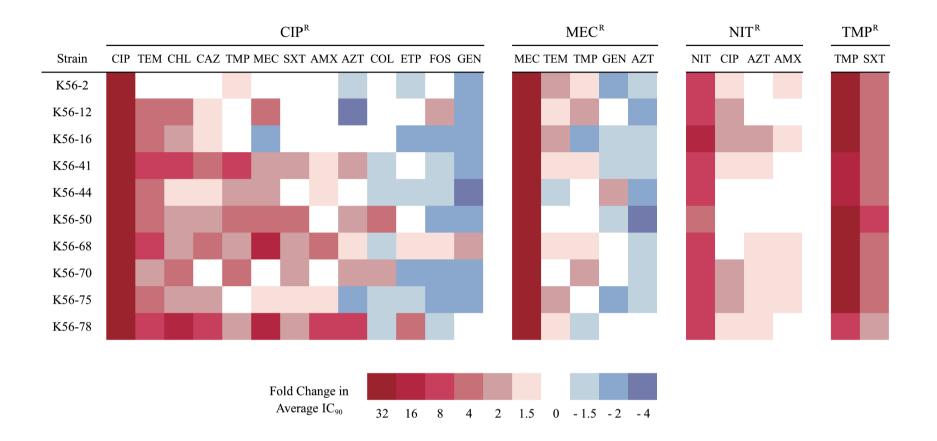
² Multi-locus sequence type

^{3, 4} strains containing the Col156 or Col(MP18) replicon, respectively.

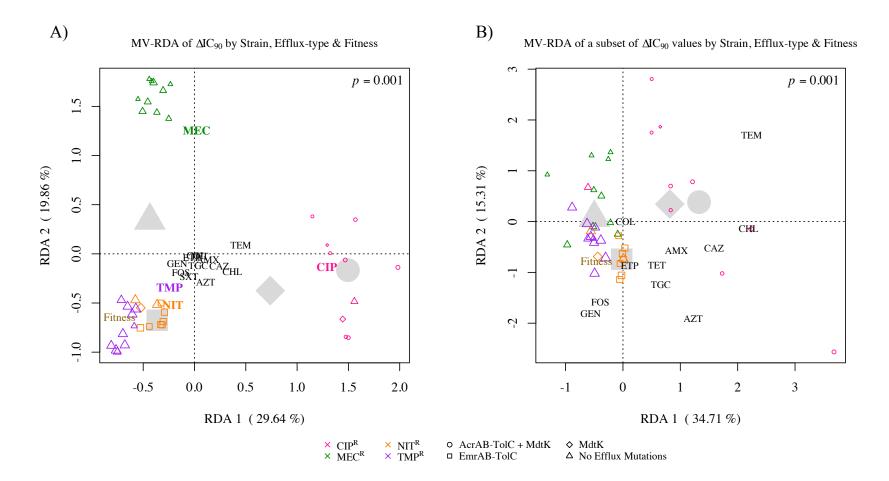
⁵ EUCAST Clinical Breakpoints v 7.1 for Enterobacteriaceae (56).

Table 2: List of antimicrobials used in this study.

Antimicrobial ¹	Abbreviation	Drug Class	Drug Target(s)	Solvent
Amoxicillin	AMX	β-lactam (Penicillin)	Cell wall synthesis	Phosphate buffer ³
Azithromycin	AZT	Macrolide	Protein synthesis (50S)	\geq 95% Ethanol
Ceftazidime	CAZ	β -lactam (Cephalosporin)	Cell wall synthesis	Water + 10% (w/w) Na ₂ CO ₃
Chloramphenicol	CHL	Amphenicol	Protein synthesis (50S)	\geq 95% Ethanol
Ciprofloxacin	CIP	Fluoroquinolone	DNA replication, cell division	0.1N HCl
Colistin	COL	Polymyxin	Cell wall & cell membrane	Water
Ertapenem	ETP	β-lactam (Carbapenem)	Cell wall synthesis	Water
Fosfomycin	FOS	Phosphonic	Cell wall synthesis (MurA)	Water
Gentamicin	GEN	Aminoglycoside	Protein synthesis (30S)	Water
Mecillinam	MEC	β-lactam (Penicillin)	Cell wall synthesis (PBP2)	Water
Nitrofurantoin	NIT	Nitrofuran	Multiple ⁴	Dimethyl sulfoxide
Trimethoprim	TMP	Antifolate	Folate synthesis (FolA)	Dimethyl sulfoxide
Sulfamethoxazole	SMX	Antifolate	Folate synthesis (FolP)	Dimethyl sulfoxide
TMP+SMX (1:19)	SXT	Antifolate	Folate synthesis (FolA+FolP)	Dimethyl sulfoxide
Temocillin	TEM	β-lactam (Penicillin)	Cell wall synthesis	Water
Tetracycline	TET	Tetracycline	Protein synthesis (30S)	Water
Tigecycline	TGC	Tetracycline	Protein synthesis (30S)	Water


¹ When available final antimicrobial concentration was determined using manufacturer-provided or calculated drug potencies, otherwise potency was assumed to be 100%. Aliquots were stored at -20°C or -80°C in single use vials. All antimicrobials and chemical solvents were obtained from Sigma-Aldrich (St. Louis, MO, USA) with the exception of CIP (Biochemika, now Sigma-Aldrich) and TEM (Negaban®). ³ 0.1 mol/L, pH 6.0 phosphate buffer supplemented with 6.5% (v/v) 1M NaOH (sodium hydroxide).

⁴ Nitrofurantoin is thought to target macromolecules including DNA and ribosomal proteins, affecting multiple cellular processes including protein, DNA, RNA and cell wall synthesis.


bioRxiv preprint doi: https://doi.org/10.1101/248872; this version posted January 17, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. **Table 3:** The number of AMR mutants with resistance-associated mutations.

AMR Mechanism		CIP ^R	MEC ^R	NIT ^R	TMP ^R
Drug Target	Modification	10^{1}			6
Diug Taiget	Overproduction				6
Drug Activation	Nitroreductase disruption	n 10			
Drug Uptake	Porin mutation	1			
	AcrAB-TolC	7		1	
	MdtK	9		1	
Efflux	MdfA			1	
	EmrAB-TolC			7	
	ABC transport		1		
an Can somthadia	Stringent Response		4		
ppGpp synthesis	tRNA synthesis		4		
(stringent response activation)	tRNA processing		1		
	Cellular metabolism		3		

¹ All CIP^R mutants contained one mutation in the *gyrA* gene, except K56-2 CIP^R mutant that contained two mutations in *gyrA* and a mutation in *parC*.

Figure 1. Conserved collateral effects observed in AMR mutants of different AMR groups. Relative change in antimicrobial susceptibility was determined by comparing average IC_{90} values of AMR mutants to their respective WT strain. Collateral changes that were found in $\geq 50\%$ of the strains are displayed. Antimicrobials are ordered by most frequent CR (left) to most frequent CS (right) for each AMR group. The only instances where CR was present in 100% of the strains of an AMR group were linked to the drug used for selection, including TMP^R strains with CR to SXT (a combination of TMP and SMX).

Figure 2. **Results of multivariate statistical modeling**. Graphical representations of redundancy analysis (RDA, triplot) results relating strain background, presence of efflux-related mutations and relative fitness to the observed changes in IC₉₀ between AMR mutants and the respective WT strain for 16 antimicrobials tested (A) and a subset of the antimicrobials excluding CIP, MEC, NIT, TMP and SXT (B). The first and second RDA axes shown display most of the explained variation in IC₉₀ changes. The weighted average of each AMR mutant is plotted as a single colored symbol, where color indicates the AMR group (CIP^R – pink, MEC^R –

green, NIT^{R} – gold, TMP^{R} – purple), shape the assigned efflux type (circle – AcrAB-TolC + MdtK, square – EmrAB-TolC, diamond – MdtK, triangle – no efflux-related mutations), and symbol size is proportional to relative fitness, where smaller size indicates a greater reduction in growth rate compared to the WT. Antimicrobial drug names indicate the tip of vectors that pass through the origin in the direction of increasing IC₉₀ fold change or CR (direction of steepest ascent). These vectors can be used to interpret the change in IC₉₀ for the antimicrobials shown, e.g. there was little change in the IC₉₀ of drugs centered near the origin, such as COL in **B**. The vector tip of relative fitness (brown) is also shown. Large grey symbols show the centroids (average effect) for all AMR mutants within a given efflux group (shape). The majority of explained variation is driven by primary resistances (**A**), where CIP^R mutants (pink) cluster away from the other three AMR groups along the CIP vector, indicating higher resistance to CIP. CIP^R mutants are likely to show CR to CHL, CAZ, TEM and AZT, but sensitivity to GEN, FOS and TMP. MEC^R isolates primarily display low-level CS to most antimicrobials tested. TMP^R and NIT^R groups cluster together with relatively few collateral effects. The analysis of the subset (**B**) shows patterns consistent with the full model, but with less clustering by AMR group. However, in the redundancy analysis on a subset of the IC₉₀ fold changes (**B**) there is far less clustering of the AMR mutants by AMR group (color).

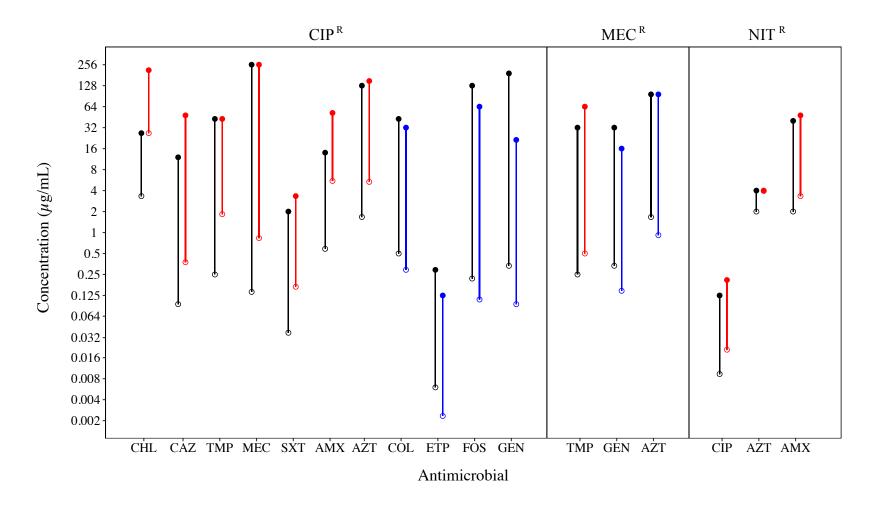
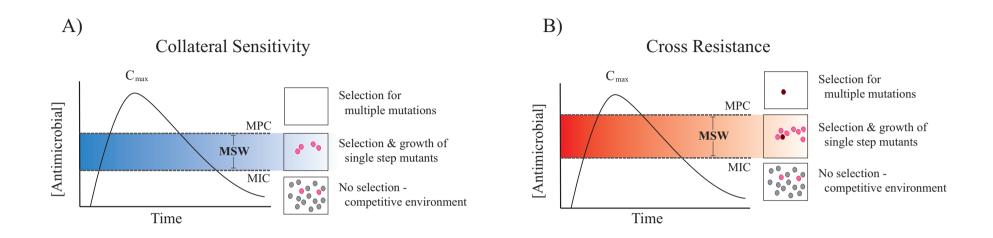



Figure 3. Summary of changes in IC_{90} and MPC results for representative strain:drug combinations. The average IC_{90} (open circles) and average mutation prevention concentration (MPC; filled circles) were determined and compared between AMR mutants (colored) with collateral responses, either CS (blue) or CR (red), and their respective wild-type strain (WT; black) in strain:drug

combinations representing conserved collateral responses. The range between the IC_{90} and MPC was considered the mutation selection window (MSW; lines). K56-16 NIT^R had equivalent IC_{90} and MPC values for AZT, thus no MSW was reported. Generally, changes in MPC values reflected observed IC_{90} changes, shifting the MSW upwards or downwards accordingly. In 8/10 tested combinations an increase in IC_{90} value (CR) from WT to AMR mutant correlated with at least a small increased MPC, with the remaining combinations showing no change in MPC value between the WT and AMR mutant. Similarly, decreased IC_{90} values (CS) correlated with decreased MPCs (5/7).

Figure 4: Graphical presentation of the potential effects of CS and CR on the MSW. Sequential drug administration informed by CS could potentially narrow or shift the MSW downwards in concentration space (left panel) whereas CR results in a widened or shifted upwards MSW (right panel). This would affect the probability of acquiring second step mutations leading to high-level resistance. Consequently, CS informed secondary therapies could reduce selection and thus propagation of first step mutants resulting in a reduced window of opportunity for second step mutations to occur. Dots represent bacteria resistant to a primary antibiotic (grey), spontaneous mutants with reduced susceptibility to a secondary drug (pink), or those with high-level resistance to the secondary drug (dark red).