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Mutant allele frequency distributions in cancer samples have been used to estimate intratumoral
heterogeneity and its implications for patient survival. However, mutation calls are sensitive to
the calling algorithm. It remains unknown whether the relationship of heterogeneity and clinical
outcome is robust to these variations. To resolve this question, we studied the robustness of al-
lele frequency distributions to the mutation callers MuTect, SomaticSniper, and VarScan in 4722
cancer samples from The Cancer Genome Atlas. We observed discrepancies among the results,
particularly a pronounced difference between allele frequency distributions called by VarScan and
SomaticSniper. Survival analysis showed little robust predictive power for heterogeneity as mea-
sured by Mutant-Allele Tumor Heterogeneity (MATH) score, with the exception of uterine corpus
endometrial carcinoma. However, we found that variations in mutant allele frequencies were medi-
ated by variations in copy number. Our results indicate that the clinical predictions associated with
MATH score are primarily caused by copy number aberrations that alter mutant allele frequencies.
Finally, we present a mathematical model of linear tumor evolution demonstrating why MATH score
is insufficient for distinguishing different scenarios of tumor growth. Our findings elucidate the im-
portance of allele frequency distributions as a measure for tumor heterogeneity and their prognostic
role.

BACKGROUND

A major challenge for predicting clinical outcome to
cancer treatment is the heterogeneity of cell populations
within each tumor, as intratumoral heterogeneity is in-
creasingly being associated with metastasis and resis-
tance to therapies [1–4]. Intratumoral heterogeneity de-
velops from mutations in cells and the relative growth
advantages they confer to their descendant populations
[5, 6]. To better understand this phenomenon, multi-
ple research groups have developed methods for the chal-
lenging problem of estimating tumor cellular composition
from bulk tumor sequencing data [7–10]. These meth-
ods rely on the allele frequencies of mutations in each
cancer, with low allele frequency mutations providing in-
formation on rare subclones and high allele frequency
mutations providing information on common subclones.
Although factors such as ploidy, copy number, and tu-
mor purity can affect this inference, allele frequencies are
essential for evaluating subclonal heterogeneity and its
clinical implications.

Increased heterogeneity has been theorized to lead to
worse patient survival due to the increased potential for
resistant populations [11–13], but it remains unclear if
current measures of tumor heterogeneity are sufficient to
resolve such an effect. Prior studies have attempted to
determine this relationship. For example, Rocco et. al.
[10] used MATH score, a measure of the width of the al-
lele frequency distribution, as a proxy for tumor hetero-
geneity and observed poorer survival for head and neck
squamous cell carcinoma (HNSC) in patients with higher
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MATH score. More recently, Morris et. al. [14] found
associations between heterogeneity and survival in sev-
eral cancers using a multivariate regression of MATH and
other variables versus survival. However, a key caveat is
that all heterogeneity measures, including MATH, are af-
fected by the accuracy of mutation calls. Many studies
have shown that cancer mutation calls can differ substan-
tially depending on the algorithm used for their determi-
nation [15–18]. In order to verify if heterogeneity impacts
survival, it is necessary to quantify the robustness of al-
lele frequency distributions to mutation callers as well as
the robustness of their relationship to survival.

Allele frequency distributions also provide information
on the evolutionary processes in tumors, which remain
poorly understood. While a variety of intratumoral evo-
lutionary models have been proposed [19–22], the impact
of allele frequency accuracy on evolutionary inference has
not been substantially explored. Determining the robust-
ness of allele frequency distributions will elucidate this
problem.

In this paper we study the robustness of allele fre-
quency distributions and their relevance to patient sur-
vival. To the best of our knowledge this is the first study
which explores sensitivity of these distributions and their
clinical prognostic power to different mutation calling
methods. We call mutations from 11 cancer types in
The Cancer Genome Atlas (TCGA) using three common
mutation callers: MuTect [23], SomaticSniper [24], and
VarScan [25, 26]. To determine if the resulting allele fre-
quency distributions are clinically useful, we analyze the
correlation between these distributions and patient sur-
vival. Our study demonstrates whether allele frequency
variability is clinically predictive and what other genomic
features mediate these results. Finally, we discuss impli-
cations for evolutionary mechanisms of resistance.
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RESULTS

Different mutation callers lead to distinct allele
frequency distributions

We analyzed a total of 4722 samples from the TCGA
database on a cloud computing platform to explore the ef-
fects of mutation calling by MuTect, SomaticSniper, and
VarScan on allele frequency distributions and patient sur-
vival. Tumor/normal matched BAM files that had been
aligned to the hg19 reference were used to call the somatic
mutations (Figure 1A). The mutation calling pipelines
(Figure S1) were implemented by dockerizing [27] each
element of the pipeline and linking them through an in-
terface provided by the Cancer Genome Cloud (CGC)
[28]. Three different mutation calling pipelines were run
for each tumor/normal pair on Amazon Web Services
(AWS) [29] through the CGC interface, and the result-
ing allele frequencies were calculated for each sample.

To analyze the range of possible allele frequency be-
haviors, we chose 11 cancer types from the TCGA
database (Figure 1B), namely breast invasive carcinoma
(BRCA), colon adenocarcinoma (COAD), glioblastoma
multiforme (GBM), head and neck squamous cell carci-
noma (HNSC), kidney renal clear cell carcinoma (KIRC),
lung adenocarcinoma (LUAD), ovarian serous cystade-
nocarcinoma (OV), prostate adenocarcinoma (PRAD),
skin cutaneous melanoma (SKCM), stomach adenocar-
cinoma (STAD), and uterine corpus endometrial carci-
noma (UCEC).

We then compared allele frequency distributions as-
sessed by pairs of mutation callers using the Kolmogorov-
Smirnov test (Figure 2A,B). Distributions were not very
robust across different cancer types (Figure 2B). Somat-
icSniper and VarScan produced the most dissimilar al-
lele frequency distributions with 42 ± 14% (mean±std)
of samples being significantly different across cancers.
MuTect and VarScan produced the least dissimilar re-
sults with 11 ± 8% of samples significantly different.
This percentage was 22 ± 14% when MuTect was com-
pared against SomaticSniper. Prostate adenocarcinoma
(PRAD), showed unusually robust results, with only
1%, 1%, and 3% of samples being significantly dissim-
ilar when MuTect-SomaticSniper, MuTect-VarScan, and
SomaticSniper-VarScan were compared pairwise, respec-
tively.

Due to sensitivity of the Kolmogorov-Smirnov test to
the number of mutations in the tumor (Figure S2), we
also used the earth movers distance (EMD) to assess
differences between allele frequency distributions. EMD
produced qualitatively similar results (Figure 2C) to the
Kolmogorov-Smirnov test, with SomaticSniper-VarScan
showing the most difference among all pairwise compar-
isons and MuTect-VarScan showing the least difference.
A third method based on cumulative absolute differences
between pairs of distributions also yielded similar results
(Figure S3, and Methods).

Copy number variations (CNV) can influence allele

frequencies and may indirectly shape their distribution.
To assess this effect, we repeated the analysis after re-
moving somatic mutations with copy number aberrations
(|CNV | > 0.2). Comparison of allele frequency distribu-
tions using Kolmogorov-Smirnov statistics (Figure S4)
did not produce qualitatively different results from those
shown in Figure 2B, and again showed the most pan-
cancer differences between SomaticSniper and VarScan.
These results suggest that copy number impacts all mu-
tation callers similarly.

MATH score is a poor predictor of patient survival
across cancer types

To investigate the relationship of tumor heterogeneity
and survival, Mroz et al. [10] introduced a measure of
heterogeneity they term MATH. It is the ratio of scaled
median absolute deviation (MAD) to median stated in
percentage:

MATH = 100× MAD

Median
(1)

We calculated this measure for all samples and mutation
callers. Overall VarScan yielded higher median MATH
score (35.4±5.7) compared to SomaticSniper (24.4±4.8)
and MuTect (30.3± 5.9) (Figure S5A). Similar to Fig-
ure 2, the MATH scores were also more similar between
MuTect and SomaticSniper calls (pan-cancer Spearman
correlation coefficient ρ = 0.7 ± 0.1) and more dissimi-
lar between SomaticSniper and VarScan (ρ = 0.5 ± 0.2)
(Figure S5B).

We then analyzed the relationship between MATH
score and patient survival by grouping samples into high
or low MATH groups as compared to the median of the
cohort. These two groups were then compared using a
log-rank test to determine the significance of MATH val-
ues on Kaplain-Meier patient survival curves (Figure 3
and Figure S6).

Among the cancers studied, COAD, OV, HNSC, and
UCEC showed a significant (p < 0.05) relationship be-
tween MATH and survival for at least one caller (e.g.
COAD p=.007, OV p=0.02 with SomaticSniper calls).
However, only UCEC showed a significant relationship
for all three mutation callers (p=.00083, 0.0023, .011
for MuTect, SomaticSniper, and VarScan calls, respec-
tively). Although these results suggest some clinical pre-
dictive power of MATH score, a more conservative ap-
proach would be to correct for multiple hypothesis test-
ing. Using the Benjamini-Hochberg correction for all can-
cers and mutation callers led to significant results only
for UCEC, and only when the calls were made by Mu-
Tect or SomaticSniper. Therefore the predictive power
of MATH score is not robust in a pan-cancer analysis
except for possibly UCEC.

Previous studies [10, 14] have shown a significant re-
lationship between MATH score and patient survival in
HNSC. We obtained similar results when the calls were
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made using MuTect; however the effect was not signif-
icant when other callers were used (Figure S6). Re-
stricting the analysis to the same samples as in [14] did
not affect the significance of this result (Figure S7).
Thus the clinical predictive power of MATH in HNSC
appears to be substantially impacted by the mutation
calling method.

To determine the direction of effect of MATH score on
survival, we calculated the average survival difference be-
tween high and low MATH score groups (see Methods).
This analysis indicates that for UCEC higher MATH
score is associated with poorer patient survival (Figure
S8A). The same trend is observed for COAD and HNSC.
For OV, the direction of the trend is caller-dependent.

Copy number mediates prognostic power of allele
frequency distributions

Allele frequency variation in a tumor is impacted by
locus-to-locus copy number variation in addition to sub-
clonal heterogeneity, and decomposing these two contri-
butions may be important for clinical prognosis. We
therefore repeated the above survival analysis but re-
placed MATH score with the standard deviation of CNV
over mutated loci (Figure 3B and Figure S9). This
CNV analysis yielded more robust results across muta-
tion callers than the MATH score analysis (Figure S10).
Specifically, we found that copy number variation is cor-
related with survival in KIRC, OV, and UCEC for at
least two mutation callers. Multiple hypothesis correc-
tion led to a robust effect in UCEC for all mutation
callers as well as significance in OV for SomaticSniper
and VarScan. This result indicates that copy number
variation is a more robust predictor of patient survival
than allele frequency distribution.

Despite the lack of statistical significance, for most can-
cers, higher CNV standard deviation led to poorer sur-
vival and this effect was robust across mutation callers
(Figure S8B). This was most pronounced for SKCM,
STAD, and UCEC. An exception was OV where higher
copy number standard deviation was predictive of better
survival.

To further distinguish the effect of allele frequencies
and copy numbers on patient survival, we filtered out
mutant allele frequencies at loci with |CNV | > 0.2 and
calculated the log rank test for MATH using the remain-
ing sites (Figure S11). Analysis of this set with mul-
tiple hypothesis correction did not yield any significant
results, indicating that MATH clinical predictions are in-
deed driven by copy number aberrations. This result can
be more clearly seen from the correlation between allele
frequency variation and copy number variation. Pear-
son correlation coefficients between copy number stan-
dard deviation and MATH score were positive for all tu-
mor types and all mutation callers (Figure 4A). This
effect was even stronger when we compared copy number
standard deviation to allele frequency standard deviation

(Figure 4B). This further supports that allele frequency
distributions are highly influenced by copy number aber-
rations across the genome (see examples in Figure 4C
and Figure 4D).

Finally, to check how phenotype is influenced by copy
number changes of mutated genes, we analyzed gene ex-
pression in UCEC. We compared expression levels of mu-
tated genes having copy number amplification (CNV >
1.5) to the same genes in other tumors lacking mutation
and amplification (|CNV | < 0.1) (Figure S12 and Meth-
ods). We observed that 88% of studied genes exhibited
higher expression levels when they had a mutation and
were amplified. This suggests that copy number ampli-
fication affects survival because it mediates expression
changes in mutated genes. We also tested whether this
relationship was true when we used CNV standard devi-
ation across the entire genome rather than at just mu-
tated loci. Interestingly, the whole genome value had no
predictive power for survival (Figure S15). This result
indicates that the phenotypic impact arises from ampli-
fication of mutated loci, rather than general alteration of
copy numbers across the genome.

Distribution-based measures of intratumoral
heterogeneity are consistent with many evolutionary

scenarios

The multiple contributions to MATH suggest a theo-
retical question: what is the uniqueness of MATH score
in distinguishing different underlying evolutionary sce-
narios? To answer this we considered the allele frequency
distributions in the linear evolution model [30] and com-
puted MATH score as a function of model parameters, in
the simplifying case of no CNVs. The linear model is the
simplest model of tumor evolution with selection and as-
sumes that occasional driver mutations lead to selective
sweeps in a background of neutral mutations (Figure
5A).

The allele frequency distribution can be specified by a
variable w that we call the ‘neutral fraction’ (See Meth-
ods, equation (4)), i.e. the fraction of total somatic mu-
tations that occurred after the last selective sweep. We
analytically derived a closed form for MATH score as
a function of w (equation (5)). Assuming exponential
growth for time-dependence, there are a continuous set
of choices of t1 (the time from birth of the first tumor
cell until the last selective sweep) and t2 (the time since
the last selective sweep) that lead to identical values of
w and MATH (Figure 5B). Thus MATH score does not
uniquely specify a tumor’s evolutionary history, even in
the absence of copy number effects.

To understand the functional dependence of MATH on
neutral fraction, we plotted these results and compared
them to simulations (Figure 5C). These results show
two regimes of behavior across w. MATH score is zero
when w ≤ 0.5 (the clonal regime – most mutations are
clonal due to the sweep). Addition of noise leads to an
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increase in MATH score in this clonal regime, but does
not significantly affect MATH for w > 0.5 (the neutral
regime – most mutations have evolved neutrally but vary
in when they arose). In the neutral regime MATH is
not a one-to-one function of w, and two very different
allele frequency distributions can have the same score.
These results show the limitations of single distribution-
based scores to uniquely distinguish tumor evolutionary
scenarios. Further features of the distribution, such as
bimodality, should be used to resolve this degeneracy.

DISCUSSION

In a pan-cancer analysis of 4722 samples we explored
the robustness of allele frequency distributions to muta-
tion calling and their power for clinical prediction. We
demonstrated that the mutation calling process can sig-
nificantly influence the shape of allele frequency distribu-
tions. In general, higher variation in allele frequency was
correlated with poorer survival, though this result was
statistically significant in only a few cases. The only can-
cer type with statistically significant results robust across
mutation callers was UCEC, but this reflected higher lev-
els of copy number variation along the genome rather
than increased subclonal heterogeneity. These results
suggest that current single-variable measures of subclonal
diversity from exome-seq data are not causally related to
clinical outcome.

Our results are consistent with copy number aberra-
tions being a more important predictor of outcome, which
has previously been reported over pooled TCGA cancer
types [3]. In our analysis most tumor types showed a reg-
ular, though not always statistically significant, trend be-
tween increased copy number variation and shorter sur-
vival time. Notably, high copy number variation has been
previously reported to be associated with poor patient
survival in serious endometrial carcinoma [31]. When we
analyzed TCGA annotated clinical features for associa-
tions with CNV standard deviation, we found increased
CNV variation for serous carcinoma (Figure S13) and
high grade tumors.

Ovarian cancer is opposite to the common copy num-
ber trend, in that tumors with more CNV variation
are associated with longer survival. However, in ovar-
ian cancer BRCA1 deletions often lead to the high-CNV
tandem duplicator phenotype, and this phenotype has
been found to have better clinical outcome [32]. Indeed,
in the TCGA data we observe that increased deletions
in BRCA1 are correlated with CNV standard deviation
(Figure S14), suggesting that the ovarian cancer effect
is mediated by the tandem duplicator phenotype.

Despite these findings, we cannot conclude that sub-
clonal heterogeneity is not relevant to survival, as the
processes by which resistant populations develop remain
poorly understood even though they are crucial to out-
come. For example, our work shows that gross estimates
of subclonal heterogeneity from exome-seq data have lit-

tle predictive power, but other studies have shown that
resistance can arise from populations too small to be de-
tectable by exome-seq [33]. Higher resolution measure-
ments of subclonal heterogeneity may solve this chal-
lenge, and further development of robust computational
analyses will be a critical part of such measurements.
Clinical data are also still sparse and improving them is
a concomitant need.

Finally, we have shown that multiple evolutionary his-
tories can lead to the same allele frequency distributions,
and that different allele frequency distributions can have
the same MATH score. This degeneracy of scenarios
leading to the same measurement is an important reason
why new descriptors of heterogeneity are needed. Future
surveys over different evolutionary scenarios should be
valuable for distinguishing what types of heterogeneity
measurements are most likely to reveal features predic-
tive of survival.

CONCLUSIONS

We studied the robustness of allele frequency distribu-
tions to mutation calling procedures across TCGA can-
cers and explored their prognostic power for patient sur-
vival. We found that mutation callers differ significantly
in their estimates of the distributions of allele frequencies
for individual tumors, and that the association between
allele frequency distribution and survival is non-robust to
these differences. The major exception is uterine corpus
endometrial carcinoma, but the observed effect is me-
diated by copy number variation rather than subclonal
heterogeneity. Our work has implications for cancer pre-
cision medicine, as we show that current measures of het-
erogeneity are not predictive of survival except through
an indirect association with copy number variation.

METHODS

Computational Time

The average time required to run a task was 2 hours
and 25 minutes. We ran a total of 14865 jobs, with total
wall time of 1496 days.

Sample Selection

Samples were chosen only if tumor/normal Illumina
exome-seq data existed with alignment to hg19, and cor-
responding clinical and Affymetrix SNP Array somatic
copy number variation data were present. Mutations
were called by three mutation callers and samples were
discarded if any mutation caller did not find any somatic
mutations in that sample. If multiple tumor/normal sam-
ple types were available, the smallest sample code was
used.
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Mutation Caller Parameters

Mutation calling was done with minor tweaks to the
default parameters of each mutation caller (Table I) as
shown below.

TABLE I. Mutation caller parameters

Caller Version Parameters

MuTect 1.1.7 default

SomaticSniper 1.0.5.0 -Q 40 -L -G -F

VarScan 2.3.9 –min-coverage 10
–min-coverage-normal 10
–min-coverage-tumor 10
–min-var-freq 0.05

Postprocessing Filters

We applied post-processing filters on the output VCF
files to extract the somatic mutations. For MuTect and
VarScan we selected mutations with FILTER=PASS,
and in all cases we only used mutations which had zero
allele frequency for normal sample and a non-zero value
for the tumor. A read depth filter of minimum 50 was
also applied to both normal and tumor samples. Fur-
thermore, we discarded mutations which had tumor or
normal allele frequency < 0.1. For more detail on muta-
tion calling process and parameters see Figure S1 and
Table I.

Statistical Distances

To calculate the earth mover distance (EMD)[34], we
produced histograms of allele frequencies for each sam-
ple using bins of size 0.025 and followed the procedure
in [35] for chain-connected spaces. For two probability
distributions f(x) and g(x) with histogram abundances
fj and gj and N bins, EMD can be written as [35]:

EMD(f, g) =
N−1∑
i=1

i∑
j=1

|fj − gj | (2)

Quantities reported in this paper are the median of
this value across each cohort (Figure 2B).

We also used another method for quantifying differ-
ences between distributions of allele frequencies, where
we smoothed the histogram of allele frequencies us-
ing Gaussian kernel density estimation with standard
deviation σ = 0.02, leading to two continuous func-
tions F1(f) and F2(f). We then calculated the cumu-
lative absolute difference of these two functions using∫ 1

0
|F1(f) − F2(f)|df . Again the median of cohort was

calculated as a single measure of statistical distance (Fig-
ure 2C).

Allele Frequency and Read Depth

Read depth and allele frequency were extracted from
the FORMAT field of VCF files. Multiallelic and bial-
lelic sites were treated similarly and their allele frequen-
cies corresponded to the ratio of alternative alleles to
reference alleles. For MuTect and VarScan the allele fre-
quency computed by the software was directly extracted
from VCF files, and for SomaticSniper this was done by
using the reference and alternative read counts reported
by the software.

Copy Number Data

For copy number analysis we used copy number level
3 TCGA data measured by Affymetrix SNP Array 6.0
which was already aligned to hg19 and normalized for
somatic copy number detection. The quantity used
throughout the paper is the Segment Mean column in
the files which is either used directly or determined at
the SNV locus of interest. Wherever mentioned in the
text, copy number filtering was done according to [36]
where loci with |CNV | > 0.2 were removed.

Copy Number Scaled By Genomic Range

To produce Figure S15B, the standard deviation of
scaled copy numbers was used. Scaling was done by mul-
tiplying the copy number value by the number of bases it
covers. This quantity provides a measure of copy num-
ber variability which is more influenced by larger copy
number events.

Survival Data

Survival information was gathered from the TCGA
data portal by parsing the clinical json files for field
diagnoses.days to death as survival time. In cases
where this field was not available, we used diag-
noses.days to last follow up instead. The field diag-
noses.vital status was used for determining censored
data.

Survival Analysis

Survival analysis was done using Kaplan-Meier curves
and log rank test method from the Lifelines Python pack-
age [37]. Only the first 4 years of survival information
was used for analyses and any sample with longer overall
survival was censored at this time point.

Survival difference values (Figure S8) were defined by
calculating the Kaplan-Meier curves (Figure S6, Fig-
ure S9) for two groups with high and low variabiltiy
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score (divided across the median of the score used). We
then integrated the absolute value of difference of survival
functions:

1

Tmax

∫ Tmax

0

[SHigh(t)− SLow(t)]dt (3)

where SHigh(t) and SLow(t) are the survival functions
of the two groups and Tmax corresponds to the maximum
time of data collection (4 years). This definition leads to
a quantity between−1 and 1 which is more negative if the
high score group has worse survival, and more positive if
the high score group has better survival.

Expression Analysis

To confirm that copy number amplification influences
expression, we downloaded the corresponding RNAseq
expression results (RPKM values) of UCEC for each sam-
ple from the TCGA database. RPKM values of mu-
tated loci with copy number amplification (defined as
CNV > 1.5) from all tumors were selected. We call this
quantity Rij , where i is the index of sample and j is the
index of gene. For each value of Rij , the RPKM value
of gene j in the remaining samples was added to a list
SRij if it was expressed, not mutated, and with no copy
number change (defined as |CNV | < 0.1). We then av-
eraged the elements of this list to get Sij . This quantity
can be thought of as the typical expression level of a gene
without any genomic alterations. We then calculated the
logarithm RPKM ratio, log(Rij/Sij) as a measure of fold
change effect of mutations and copy number amplifica-
tions on gene expression. A histogram of this quantity is
shown in Figure S12 where positive values correspond to
an increase in expression due to an amplification event.

Mathematical Modeling

The mathematical model presented in this paper is a
linear of model of tumor evolution [30], where any driver
mutation leads to a selective sweep and the remaining
mutations are passenger mutations. All the mutations
before the last selective sweep are clonal with allele fre-
quency 0.5. The remaining mutations follow the neutral
model, with cumulative distribution of allele frequency
f proportional to 1/f [19]. Then, the overall allele fre-
quency distribution is the combination of these two dis-
tributions sampled according to their occurrence rates
(see Supplementary Material):

P (F ≤ f) =


0, f < fmin,
ν
2

(
1

fmin
− 1

f

)
, fmin ≤ f < 0.5,

1, f = 0.5.

(4)

where ν = 2wfmin

1−2fmin
, w is the ‘neutral fraction’ and is

defined as the fraction of all mutations that are neutral,
and fmin is the minimum measurable allele frequency.
The latter quantity is necessary in order to avoid singu-
larity at f = 0. In our simulations we set fmin = 0.1.
The results of simulations with no measurement noise
(Figure 5C) were calculated using 300 samples from this
distribution, and their variations reflect this sampling er-
ror.

We derived a closed form for MATH score of the
model as a function of w (see Supplementary Material
for derivation):

MATH = 148.26×


0, w ≤ 0.5,
0.5
φ − 1, 0.5 < w ≤ 0.5 + ∆w

−ν+
√
ν2+φ2

φ , w > 0.5 + ∆w.

(5)

where φ = νfmin

ν−fmin
, and ∆w =

√
1+32f2

min−1
16fmin

.

The allele frequency measurement error can be mod-
eled by a binomial distribution, where observing a muta-
tion on a sequencing read is a Bernoulli trial. For TCGA
whole exome sequencing, read depths are quite large (on
average 100X) and this error can be approximated by
a Gaussian distribution. Therefore, to implement allele
frequency noise we drew 300 samples from the distribu-
tion in equation (4) and used each resulting value f to

sample from the normal distribution N (f, f(1−f)N ). Here
N = 100 is the sequencing read depth.

Alignment to GRCh38

To compare our results with alignments to the new
genome, we downloaded 227 TCGA breast cancer BAM
files of whole exome sequencing data from Cancer Ge-
nomics Hub (CGHub) [38]. After converting the bam
files to FASTQ files, we remapped the FASTQ files
to hg38 reference genome with the Burrows-Wheeler
Aligner (BWA) [39]. The somatic mutations were called
by MuTect [23]. We found that the allele distributions
contained less mutations overall, but their shapes were
relatively similar (Figure S16)

Clinical Feature Selection

Random forest feature selction of clinical data (Figure
S13) was done using ExtraTreesClassifier function from
Python package scikit-learn [40], with default parameters
and 250 estimators. Features with 20% or more unknown
values were discarded and the remaining unknown values
were set to the median of the feature for numerical fea-
tures or the mode for categorical features. Data labeling
was done by comparing CNV standard deviation to its
median.
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FIG. 1. Analysis design. A) Schematic of the analysis process for 4722 TCGA samples. Somatic mutation calling was carried
out on the NCI Cancer Genomics Cloud [28] with Amazon Web Services [29] backend, followed by additional local analysis. B)
Number of samples studied from each cancer.
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FIG. 2. Comparisons of allele frequency distributions for different mutation callers. A) Distribution of Kolmogorov-
Smirnov (KS) test p-values corresponding to the null hypothesis that mutation callers will produce similar allele frequency
distributions, plotted pairwise for HNSC. The red dashed line indicates the Bonferroni corrected significance threshold α = 0.05.
The percentage of samples that fall below this threshold are shown on each graph. B) Percentage of significantly different samples
for mutation caller pairs, grouped by cancer type. C) Comparison of allele frequency distributions using earth mover’s distance.

A	 B	

FIG. 3. Significance analysis of measures of genomic variations and patient survival. A) Survival analysis log rank
test p-values for high and low MATH score groups, and B) Survival analysis log rank test p-values for high and low CNV
standard deviation groups. Stars correponds to values smaller than significance threshold 0.05. Double stars show significant
results after Benjamini-Hochberg correction across all cancer types and mutation callers.
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A	 B	

C	 D	

FIG. 4. Correlation between allele frequency variations and copy number variations. A) Pearson correlation
coefficient of CNV standard deviation and MATH score. B) Pearson correlation coefficient of CNV standard deviation and
allele frequency standard deviation. C) CNV standard deviation versus MATH score, plotted for HNSC (mutations called by
MuTect). Each circle is an individual sample. D) CNV standard deviation versus allele frequency standard deviation, plotted
for HNSC (mutations called by MuTect).
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A	 t1	 t2	

C	

B	

FIG. 5. Theoretical analysis of MATH score. A) Schematic diagram of linear tumor evolution model. t1 is the time from
birth of founder cell until the last selective sweep. t2 is the time from last selective sweep until biopsy. B) Contour plots of
neutral fraction, w, and MATH as a function of t1 and t2 for a noiseless exponentially growing model of linear evolution. w is
the fraction of total mutations that occurred after the last selective sweep. For this growth model, w = 2t2/

(
t1 + 2t2

)
, where

time is measured in cell cycles. C) MATH score as a function of neutral fraction, w, for a linear tumor evolution model. Dashed
lines correspond to analytical calculations. Green dots are samples from the model with 300 mutations. Red dots are simulated
results after incorporation of Gaussian measurement noise. Insets correspond to simulated allele frequency distributions for the
two black circles, which have equal MATH scores.
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FIG. S1. Supplementary Information. Mutation calling pipelines on CGC for A) MuTect, B) SomaticSniper, and C)
VarScan
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FIG. S2. Supplementary Information. Mutation counts for different samples within HNSC compared between two mutation
callers. Samples which have distributions that are significantly different according to the Kolmogorov-Smirnov test are shown
by blue dots.
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FIG. S5. Supplementary Information. A) Median of MATH score for all cancers and mutation callers. B) Spearman
correlation coefficient of MATH scores for each cancer type called by pairs of different mutation callers.
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FIG. S6. Supplementary Information. Survival curves for all cancers and mutation callers using median MATH score as
separator. The values for median MATH score and the log rank test p-values are included on each plot. p-values smaller than
0.05 are marked in orange.
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FIG. S7. Supplementary Information. Survival analysis using MATH score of the subset of HSNC samples used in [14]
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FIG. S8. Supplementary Information. A) Survival curve difference for groups separated by MATH score, B) survival curve
difference for groups separated by CNV standard deviation
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FIG. S9. Supplementary Information. Survival curves for all cancers and mutation callers using median of CNV std as
separator. The values for median of CNV std and the log rank test p-values are included on each plot. p-values smaller than
0.05 are marked in orange.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/248435doi: bioRxiv preprint 

https://doi.org/10.1101/248435
http://creativecommons.org/licenses/by-nc/4.0/


17

A	 B	

FIG. S10. Supplementary Information. A) Median of CNV std score for all cancers and mutation callers. B) Spearman
correlation coefficient of CNV std scores for each cancer type called by pairs of different mutation callers.
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FIG. S11. Supplementary Information. Log rank test p-values for comparison of low versus high MATH score when filtered
by copy number (|CNV | < 0.2). Stars represent significant results as determined by α < 0.05

FIG. S12. Supplementary Information. Distribution of expression ratio of copy number amplified genes to normal genes
for UCEC (refer to Methods for detailed definition). This result shows that in 88% of cases copy number amplification leads to
an increase in expression of the gene.
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A	

B	

FIG. S13. Supplementary Information. A) Clinical data sorted according to their importance in classifying high and low
CNV std groups (divided across median) of UCEC. Results were achieved using random forest feature selection. B) Comparison
of CNV standard deviation for the three histologic subtypes of UCEC. Dashed red line corresponds to median of CNV standard
deviation. The Fisher’s exact test is calculated in comparison to this line.
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A	 C	

B	

FIG. S14. Supplementary Information. Comparison of exome-wide copy number standard deviation (at loci called by
SomaticSniper) against BRCA1 copy number for OV. A) Average copy number across BRCA1 plotted against copy number
standard deviation showing a negative correlation. Each dot corresponds to one patient. B) Survival analysis of patients divided
in relation to median value of BRCA1 copy number average C) Comparison of CNV standard deviation of the two groups in
B. Dashed red line corresponds to median of CNV standard deviation. Fisher’s exact test is calculated in comparison to this
line.
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A	 B	

FIG. S15. Supplementary Information. Log rank test p-values based on separating patients along median of A) standard
deviation of copy number across the genome, or B) standard deviation of copy number across the genome scaled by the
corresponding genomic range (see Methods). Dashed line corresponds to significance threshold 0.05.
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FIG. S16. Supplementary Information. A comparison of allele frequency distributions of some BRCA samples aligned to
hg19 versus GRCh38. a,b) Two examples of allele frequency distributions. c) Distribution of p-values from the Kolmogorov-
Smirnov test between the two alignments. 7% of the samples show significant differences according to Bonferroni corrected
significance level 0.05
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FIG. S17. Supplementary Information. Median and median absolute deviation (MAD) of the linear evolution model
according to equations (11) and (20). Dashed red line is the theoretical result and green dots are calculated out of 100000
samples from the distribution in equation (8).
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Mathematical Model

The mathematical model described in this paper is
based on the linear evolution model of cancer [30]. Most
mutations are neutral; however occasionally driver mu-
tations occur which lead to fast selective sweeps. Allele
frequencies are determined by the timing of the last selec-
tive sweep, and the history of tumor can be divided into
two time periods in relation to this event. Consequently,
we assume that there are two sets of somatic mutations
in the tumor. The subclonal mutations which occurred
after the last selective sweep, and the clonal mutations
which occurred before the last selective sweep. The frac-
tion of mutations in these two groups will be represented
by w and 1−w respectively. The distribution of neutral
subclonal mutations follows [19]:

P (FN ≤ f) =

{
0, f < fmin,

β
(
α− 1

f

)
, fmin ≤ f ≤ 0.5.

(6)

where FN is the random variable associated with al-
lele frequencies of the neutral model. In order to have
P (FN ≤ fmin) = 0 and P (FN ≤ 0.5) = 1, we set
α = 1

fmin
, β = 1

α−2 , where fmin is the minimum allele

frequency measured. All the clonal mutations have allele
frequency 0.5 and their distribution is:

P (FC ≤ f) =

{
0, fmin ≤ f < 0.5,

1, f = 0.5.
(7)

where FC is the random variable associated with clonal
mutations. For allele frequency F = FN ∪ FC , the over-
all probability distribution will be sum of probabilities
(given that FN ∩FC=0) weighted by their rate of occur-
rence:

P (F ≤ f) = wP (FN ≤ f) + (1− w)P (FC ≤ f)

(8)

=


0, f < fmin,

wβ
(
α− 1

f

)
, fmin ≤ f < 0.5,

1, f = 0.5.

To calculate MATH score for this distribution, we
will calculate the median and median absolute deviation
(MAD) separately.

Median

We will denote the median of allele frequencies by φ.
In general φ has to satisfy the following inequalities:{

P (F ≤ φ) ≥ 0.5,

P (F ≥ φ) ≥ 0.5
=⇒

{
P (F ≤ φ) ≥ 0.5,

P (F < φ) ≤ 0.5

(9)

For φ = 0.5 the first row of equation (9) is trivial (1 ≥
0.5), and the second row leads to w ≤ 0.5. On the other
hand, for fmin ≤ φ < 0.5, equation (9) reduces to:

P (F < φ) = 0.5 =⇒ wβ(α− 1
φ ) = 0.5 (10)

=⇒ φ = 1
α−1/ν

where ν = 2wβ, which leads to φ < 0.5 only if w > 0.5.
To summarize our results, the median of allele frequencies
can be written as:

φ =

{
0.5, w ≤ 0.5,

1
α−1/ν , w > 0.5.

(11)

Sampling from the distribution in equation (8) con-
firms this result (Figure S17).

Median Absolute Deviation (MAD)

We will denote MAD by m. It can be derived from the
following relationships:

{
P (|F − φ| ≤ m) ≥ 0.5,

P (|F − φ| ≥ m) ≥ 0.5
=⇒{

P (F ≤ φ+m)− P (F < φ−m) ≥ 0.5,

P (F < φ+m)− P (F ≤ φ−m) ≤ 0.5
(12)

If w ≤ 0.5 we have φ = 0.5. We start by assuming
that m > 0. In this case φ+m > 0.5, leading to P (F ≤
φ+m) = 1 and P (F < φ+m) = 1. Hence equation (12)
can be simplified to:

{
P (F < φ−m) ≤ 0.5,

P (F ≤ φ−m) ≥ 0.5
(13)

Since φ − m < 0.5 the functions are continuous and
we can instead write P (F ≤ φ −m) = 0.5. But P (F ≤
φ −m) ≤ P (F < 0.5) < w which cannot be true, given
that w ≤ 0.5. As a result m cannot be positive. Since m
is non-negative we conclude that m = 0.
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On the other hand, for w > 0.5, we have φ = 1
α−1/ν . In

this case there are four possibilities for solving equation
(12) that we will separately explore:

I.

{
fmin ≤ φ+m < 0.5,

φ−m < fmin.

Functions are continuous in this region. So P (F ≤
φ+m) = 0.5, which can be solved similarly to equa-
tion (11) and gives φ+m = φ =⇒ m = 0. However
this cannot be true, because the assumptions of this
case can only be true for positive m.

II.

{
fmin ≤ φ+m < 0.5,

fmin ≤ φ−m < 0.5.

Functions are continuous in this region and we can
write:

P (F ≤ φ+m)− P (F < φ−m) = 0.5 (14)

=⇒ wβ(α− 1

φ+m
)− wβ(α− 1

φ−m
) = 0.5

=⇒ 1

φ−m
− 1

φ+m
=

1

ν
=⇒ 2m

φ2 −m2
=

1

ν

=⇒ m2 + 2νm− φ2 = 0

=⇒ m = −ν +
√
ν2 + φ2

This result is bounded by m = 0.5− φ.

III.

{
0.5 ≤ φ+m,

φ−m < fmin.

Functions are not continuous in this region. We can
write the second row of equation (12) as

P (F < φ+m) ≤ 0.5. But P (F < φ+m) ≥ P (F <
0.5) = w > 0.5. Hence this cannot be true.

IV.

{
0.5 ≤ φ+m,

fmin ≤ φ−m < 0.5.

Functions are not continuous in this region. We can
write the first row of equation (12) as:

P (F ≤ φ+m)− P (F < φ−m) ≥ 0.5 (15)

=⇒ P (F < φ−m) ≤ 0.5

=⇒ 0.5ν(α− 1

φ−m
) ≤ 0.5

=⇒ φ−m ≤ 1

α− 1
ν

=⇒ φ−m ≤ φ

which is a trivial result. For the second row of equa-
tion (12) we have:

P (F < φ+m)− P (F ≤ φ−m) ≤ 0.5 (16)

If φ+m > 0.5 equation (16) leads to:

P (F ≤ φ−m) ≥ 0.5 (17)

=⇒ 0.5ν(α− 1

φ−m
) ≥ 0.5

=⇒ φ−m ≥ 1

α− 1
ν

=⇒ φ−m ≥ φ =⇒ m = 0

which does not satisfy the assumptions of this case
and cannot be true. On the other hand, if φ+m =
0.5 equation (16) is equal to:

P (F ≤ φ−m) ≥ w − 0.5 (18)

=⇒ 0.5ν(α− 1

φ−m
) ≥ w − 0.5

After some calculation we find:

w ≤ 0.5 +

√
α2 + 32− α

16
(19)

In conclusion, only cases II and IV lead to acceptable
solutions. To summarize these results, for MAD we have:

m =


0, w ≤ 0.5,

0.5− φ, 0.5 < w ≤ 0.5 + ∆w

−ν +
√
ν2 + φ2, w > 0.5 + ∆w.

(20)

where ∆w =
√
α2+32−α

16 . Sampling from the distribu-
tion in equation (8) confirms this result (Figure S17).

MATH Score

MATH can be derived by the following formula:

MATH =
1.4826×m

φ
× 100 (21)

where the constant is the scale factor for median ab-
solute deviation. Using equations (11) and (20) we can
write this as:

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2018. ; https://doi.org/10.1101/248435doi: bioRxiv preprint 

https://doi.org/10.1101/248435
http://creativecommons.org/licenses/by-nc/4.0/


24

MATH = 148.26×


0, w ≤ 0.5,
0.5
φ − 1, 0.5 < w ≤ 0.5 + ∆w

−ν+
√
ν2+φ2

φ , w > 0.5 + ∆w.

(22)
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