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Abbreviations 

ARIES  Accessible Resource for Integrated Epigenomic Studies 

ALSPAC Avon Longitudinal Study of Parents and Children 

BOX  Bart’s Oxford family study of Type 1 Diabetes 

CpG  Cytosine-phosphate-guanine dinucleotides 

GWAS  Genome-wide association study 

HLA  Human leukocyte antigen 

JLIM  Joint likelihood mapping 

LD  Linkage disequilibrium 

SNP  Single nucleotide polymorphism 

T1D  Type 1 diabetes 

MAF  Minor allele frequency 

MR  Mendelian Randomization 

mQTL  methylation quantitative trait loci 

RA  Rheumatoid arthritis 

2SMR  Two Sample Mendelian Randomization 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 15, 2018. ; https://doi.org/10.1101/248260doi: bioRxiv preprint 

https://doi.org/10.1101/248260


3 

 

Abstract  

The risk of Type 1 diabetes comprises both genetic and environmental components. We 

investigated whether genetic susceptibility could be mediated by changes in DNA 

methylation, an epigenetic mechanism that potentially plays a role in autoimmune diabetes. 

Using data from a non-diabetic population comprising blood samples taken at birth (n=844), 

childhood (n=911) and adolescence (n=907), we evaluated the association between 65 top 

GWAS single nucleotide polymorphisms (SNPs) and genome-wide DNA methylation levels 

interrogating 99% RefSeq genes. We identified 159 proximal SNP-cytosine phosphate 

guanine (CpG) pairs (cis), and 7 distal SNP-CpG associations (trans) at birth, childhood, and 

adolescence. We also found systematic enrichment for DNA methylation related SNPs to be 

associated with T1D across the genome, after controlling for the SNPs’ genomic 

characteristics. For each of the proximal CpG site identified, we used the principles of 

Mendelian Randomization to infer the putative causal relationship between DNA methylation 

levels and T1D. With genetic colocalization analysis, we discovered 10 CpGs at 5 loci, 

including ITGB3BP, AFF3, PTPN2, CTSH and CTLA4, where DNA methylation is 

potentially on the causal pathway to T1D. Nine out of ten SNP – CpG associations showed 

similar patterns in an independent T1D cohort (n=45). Our data imply that DNA methylation 

mediate the polygenic risk of T1D and dissecting their molecular mechanisms may uncover 

novel disease aetiologies.  
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Significance statement 

So far genome wide association studies identified 62 loci contributing to the genetic risk of 

Type 1 diabetes. However, the underlying mechanisms mediating genetic susceptibilities are 

largely unknown. DNA methylation is an epigenetic mechanism, which can be influenced by 

genetic polymorphisms and is potentially causal to Type 1 diabetes by altering chromatin 

conformation and gene expression. We investigated the causal relationships between type 1 

diabetes-associated loci and DNA methylation. Our data suggest that methylation potentially 

mediates the genetic risk at 5 loci.  These effects were consistently detected in a non-diabetic 

population at birth, childhood and adolescence, and the majority of which were replicated in a 

type 1 diabetes cohort. Dissecting their molecular mechanisms may uncover novel 

mechanisms of disease aetiology.  
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Introduction 

Type 1 diabetes (T1D) is a polygenic disease with more than 50% of genetic susceptibility 

attributable to the human leukocyte antigen (HLA) class II region (1). Beta cell autoimmunity 

is thought to result from impaired tolerance to islet autoantigens, which were presented on the 

HLA complex to autoreactive T cells. Many non-HLA genes also contribute to the 

dysregulation of the immune system with relatively small effects. Over the last decade, 

genome-wide association studies have identified 62 independent loci and over 100 GWAS 

SNPs associated with T1D risk (2), but the most associated variants are not necessarily causal 

due to linkage disequilibrium (LD) with many other SNPs. Fine mapping has pinpointed a 

number of credible variants, many of which are localized to enhancers, implying that they 

may influence disease through gene regulation (3).  

 

DNA methylation and histone modification are epigenetic events that can regulate gene 

expression. DNA methylation occurs at cytosine – phosphate – guanine (CpG) residues and 

can be modified by genetic and / or environmental exposure. Genetic and epigenetic 

interactions have been postulated to contribute to susceptibility to a number of autoimmune 

disorders (4, 5). 

 

Previous work was focused on identifying methylation differences among T1D monozygotic 

twins where genetic differences, age, gender, and in utero environmental effects are 

normalized (6), allowing changes of DNA methylation levels that are purely introduced by 

non-shared environment to be captured (7-9) . It is however unknown whether the genetic 

susceptibility of T1D is mediated by changes of DNA methylation, which subsequently lead 

to altered gene expression and immune cell function. 
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Mendelian Randomization (MR) is a statistical framework to infer causal relationships in 

hypothesis testing, using genetic variants to create a pseudo-experimental design. Since 

genetic polymorphisms are randomly assigned at conception and not influenced by 

environmental confounders, they can be used as instruments to proxy exposures that are 

potentially influencing a trait, thereby mimicking a randomised controlled trial (10). In the 

context of DNA methylation, SNPs that regulate methylation levels at nearby CpG sites 

(defined within 1Mb distance, known as cis-mQTLs) can be used to investigate the causal 

effect of DNA methylation on a trait (11). If a CpG site mediates genetic risk of T1D, the 

casual effect of this CpG site can be interpreted as the change in log odds for T1D per unit 

increase in the CpG methylation level due to its associated SNP. Compared with traditional 

MR, where the effects of genetic instruments on exposure and on associated traits are 

measured in the same population (hence one-sample MR), Two-Sample MR (2SMR) has 

been developed to enable causal inference using summary statistics from GWAS alone, 

circumventing the requirement that DNA methylation levels and T1D status are measured in 

the same sample, enabling much larger sample sizes (10). When a SNP is associated with 

both DNA methylation and T1D, four potential scenarios can occur: 

(1) the genetic variant has a causal effect on T1D mediated by the changes of DNA 

methylation levels (illustrated in Figure 1a); 

(2) the genetic variant has a causal effect on T1D (i.e. via altering gene expression), 

which in turn alters DNA methylation levels (Figure 1b); 

(3) the genetic variant that causes changes in DNA methylation levels is in LD with the 

causal variance of T1D (Figure 1c); 

(4) the genetic variant causes changes in DNA methylation levels and T1D via separate 

mechanisms, an effect known as horizontal pleiotropy (Figure 1d). 
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In this study, we aimed to determine whether the genetic risk of T1D can be mediated by 

DNA methylation (scenario 1, Figure 1a) and to distinguish scenarios 2 & 3 from scenario 1. 

Firstly, in a non-diabetic population (Accessible Resource For Integrated Epigenomic Studies, 

also known as the ARIES cohort) we performed an epigenome-wide association analysis 

identifying CpGs that are related to top T1D GWAS variants. Secondly, we tested whether 

there is an overall association between cis-mQTLs and T1D. Subsequently, following the 

framework outlined in Richardson et al 2017 (12), we combined the principles of 2SMR with 

genetic colocalization methods to assess whether these GWAS variants related CpG sites 

mediate T1D genetic risk. Finally, we tested whether the findings can be replicated in an 

independent cohort with T1D patients and their relatives (the BOX cohort). A flow chart 

summarising the analysis procedure is shown in Figure 2.  

 

Results 

The association between DNA methylation and T1D susceptible SNPs across three-time 

points 

To establish associations between top T1D GWAS variants and DNA methylation, we 

regressed 65 independent SNPs with 459,734 CpG sites using a mixed effect linear model. 

Whole blood DNA methylation levels of these CpG sites were measured in the ARIES cohort 

at three-time points during life (adolescence, childhood and birth). Of the 65 independent 

T1D GWAS variants, thirty-eight SNPs were consistently found to associate with a total of 

166 CpG sites under the Bonferroni corrected threshold (0.05/65*459,734, p < 1.6 e-9) at 

three-time points. Seven T1D variant-CpG pairs were in trans (distance >1Mb) and the 

remaining were in cis; these data are summarised in SI Table 1. Figure 3 shows the genomic 
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distribution of 166 total CpGs, including extensive associations at the HLA locus. According 

to 450k array annotation, approximately 45% CpGs were located in the gene body / introns; 

24% were located in promoters / distal promoters. Methylation variance (R2) explained by 

T1D SNPs varied largely, the strongest association lies between rs7149271 and cg20045882 

on chromosome 14, where rs7149271 explained greater than 78% methylation variance 

across all three-time points. At the HLA locus, rs3104163 is in high LD with rs9272346 

(r2=0.84), a variant most strongly associated with T1D (T1D OR=18.5). rs3104363 regulates 

70 CpGs within the HLA locus and the most strongly associated CpG site was cg01889448, 

for which rs3104363 explained at least 53% methylation variance across three-time points. 

However, it is important to note that the estimates of methylation variances explained by T1D 

SNPs might be inflated by the “winner’s curse”. The overall effect sizes of T1D variants on 

DNA methylation levels are consistent at three-time points, where the correlation between 

adolescence and childhood is 0.996 (95% CI: 0.995, 0.997, p < 2.2e-16); between 

adolescence and birth is 0.984 (95% CI: 0.979, 0.989, p < 2.2e-16); and between childhood 

and birth is 0.987 (95% CI: 0.982, 0.990, p < 2.2e-16). 

 

cis-mQTLs are enriched in SNPs with low GWAS p-values associated with Type 1 

diabetes 

We next investigated whether cis-mQTLs are associated with T1D more than expected by 

chance. We hypothesized that cis-mQTLs would have more extreme p-values associated with 

T1D than non-mQTLs that are matched by SNP properties (allele frequency, LD, gene 

distance), or by genomic annotations (i.e. promoter, intron, exon, 5’ UTR, or 3’ UTR). As a 

primary analysis, we overlapped cis-mQTLs detected at adolescence that are known to pose 

strong effects on DNA methylation (p < 1e-14) (13) with an initial discovery GWAS 
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summary statistic dataset (Data 1) and obtained 4,562 cis-mQTLs together with their T1D 

GWAS p-values. These cis-mQTLs were evenly distributed across the genome (data not 

shown) and were devoid of HLA-SNPs (chr6: 28,477, 797-33, 448,354, hg19). Their overall 

associations with T1D were significantly enriched in SNPs with low GWAS p-values, 

matching null SNPs to cis-mQTLs either by SNP properties (Figure 4 a) or by genomic 

annotations (Figure 4 b). Secondary analyses using cis-mQTLs detected at childhood and 

birth revealed the same findings (SI Figure 1). To verify these observations, we performed 

the same analyses using the replication summary statistics (Data 2). Compared to enrichment 

analysis using Data 1, there was a stronger enrichment when cis-mQTLs were matched by 

SNP properties (SI Figure 1) and when cis-mQTLs were matched by genomic annotations (SI 

Figure 1). These data suggest that there is a shared genetic influence of DNA methylation 

levels and T1D. Furthermore, from each of the enrichment analyses we identified a number 

of cis-mQTLs that have smaller observed GWAS p-values than theoretical p-values (the 

probability of T1D association by chance). Most of these cis-mQTLs lie within known T1D 

susceptible loci and are in strong to moderate LD with index SNPs. However, rs605093 

resides at Chr11q24.3 that was not reported by previous GWA studies or in LD with any 

index variants (p observed. meta = 4.22x10-6, p theoretical = 1.01x10-5).  

 

DNA methylation potentially mediate T1D genetic risk 

To assess the causal effect of DNA methylation levels for each of the detected proximal CpG 

sites on T1D risk, we performed forward 2SMR using CpGs as individual exposures and T1D 

as outcome (Figure 1a). After removing SNPs in high LD, SNPs on X chromosomes, and 

those without odds ratios as well as palindromic SNPs with harmonizing issues (14). One 

hundred and twenty-eight CpG associations unique to 33 cis-mQTLs remained. CpGs with 
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trans associations were removed from the analysis in order to minimize the possibility of 

horizontal pleiotropy because trans-mQTLs may regulate CpGs and T1D via different 

pathways. We ensured that none of the genetic instruments was associated with confounder - 

fasting glucose concentrations as identified in the European GWAS meta-analysis (p < 5e-8) 

(15). Results showed that the Wald ratios for all the 128 CpGs were significant and the 

effects were consistent at adolescence, childhood and birth (p < 0.05, SI Table 2).  

 

Forward 2SMR using a single genetic instrument could suffer from weak instrumental bias. 

In addition, reverse causation and horizontal pleiotropy are not easily distinguishable (as 

shown in Figure 1 b & d, respectively). To test the causal effect of T1D liability on DNA 

methylation, we performed reverse MR using T1D as exposure and CpG sites as outcomes. 

128 CpGs were tested as outcomes individually and multiple mQTLs (instruments) were used 

for exposure (Figure 1b).  Since multiple testing needs to be accounted for the outcomes, but 

some of the tests are not independent due to correlations of the tested CpG sites (i.e. CpGs 

are co-methylated if they are located close to each other on a chromosome), we used 

matSpDlite to estimate the number of independent CpGs. It suggested that there were 124 

independent CpGs in the outcome and a p-value of 4.12e-4 is required to keep the type I error 

rate at 5%. At this threshold, there was no evidence for reverse causation at all three-time 

points. However, it is important to note that the statistical power to detect an effect in this 

direction is low because the outcome sample size was small. These data are summarised in SI 

Table 2.  

 

MR-Steiger test to verify the direction of causality 
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We also used the MR-Steiger test to verify the findings in 2SMR. MR-Steiger estimates 

whether DNA methylation or T1D is more likely to be the exposure by testing whether 

mQTLs primarily explain the variance of methylation or T1D (16). Results showed that 

within the HLA region, SNPs explained methylation variance more than T1D variance for 

most CpG sites (36 out of the 64 CpGs showed methylation as the exposure consistent at 

three-time points, p < 0.01, sensitivity ratio >2.35, SI Table 3). Outside the HLA, the same 

causal direction was inferred for all the CpGs and this effect was consistent at all three-time 

points (SI Table 3). We did not perform MR-Steiger test at the reverse direction due to 

insufficient statistical power to detect an effect at this direction.  

 

Bivariate fine mapping pinpointed overlapping methylation and T1D causal variants 

To exclude the possibility that mQTLs are simply in LD with T1D causal variants (illustrated 

in Figure 1c), we searched for evidence of the shared causal variants for the 128 CpG sites 

and for T1D within the 1Mb window centred around their top associated mQTLs. For the 32 

non-HLA loci, although most causal variants for DNA methylation were simply in LD with 

the causal variants for T1D, JLIM analysis found colocalization of shared causal variants in 5 

loci, mediated by 10 CpG sites in total (p < 1e-3, Table 1, Figure 5). CpGs in the HLA region 

were however excluded from the analysis owing to the extensive LD structure and high false 

discovery rate (17).  

 

Replication in T1D cohort 

To check whether genetic and CpG relationships discovered in the ARIES general population 

can be replicated in a T1D population, we assessed the 10 SNP - CpG associations that 

survived JLIM analysis in 45 individuals participating the Bart’s Oxford family study of type 
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1 diabetes (BOX), where genome-wide methylation data were available. In this cohort T1D 

probands together with their parents and grandparents with or without diabetes were analysed 

(detailed clinical characteristics are summarised in SI Table 4). Nine out of ten associations 

showed similar patterns comparing to the ARIES cohort, after fitting the DNA methylation 

levels and SNP genotype into linear regression models (Figure 6). However, given the small 

sample size of the replication cohort, there is insufficient power to obtain significant p values 

for cg05762488 and for cg025744700 (Figure 6).  

 

Discussion 

One hypothesis of the mechanisms underlying T1D is that genetic variants alter DNA 

methylation levels, which in turn influence genes that are essential to immune tolerance as 

well as beta cell function, increasing the risk of T1D. To the best of our knowledge, this is the 

first study that systematically evaluated this hypothesis. We showed that of the 65 T1D top 

GWAS variants, 38 influence DNA methylation levels of 166 CpG sites consistently at birth, 

childhood and adolescence; 40% of CpGs were located at the HLA region and strongly 

associated with rs3104363; cis-mQTLs were found to influence T1D more than expected by 

chance. Using the principles of Mendelian randomization, we showed that DNA methylation 

potentially mediate the polygenic risk of T1D in many loci. However, subsequent joint 

likelihood mapping restricted these to 5 non-HLA loci where T1D susceptibility is putatively 

mediated by the differential methylation levels at 10 CpGs. In an independent T1D cohort 

containing 45 individuals, we observed similar patterns in nine of ten SNP-CpG pairs. 

 

Our EWAS analysis identified widespread genetic and epigenetic associations in the known 

T1D susceptible loci. The only previous study by Fradin et al., took a candidate gene 
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approach and investigated 7 CpG sites at the insulin promoter in a total of 802 individuals 

using pyrosequencing (18). Our data generally agree with theirs, but we showed rs689 

dependent associations with cg21574853 and cg24338752. The differences observed may be 

because we adjusted for cellular composition in whole blood data and removed potential 

confounders, whereas Fradin et al., could not perform such adjustment when methylation 

levels were measured using pyrosequencing. Unfortunately, there were no beta coefficients 

available for rs689 and its proxy SNPs in our GWAS summary statistics, we therefore could 

not proceed to test the causality of methylation at the INS locus.  

 

We observed strong associations between cis-mQTLs and T1D in the enrichment analyses 

based on GWAS meta-analysis p-values. However, a previous enrichment analysis based on 

SNP heritability did not show significant association with T1D (13). Narrow sense 

heritability of T1D was estimated to be approximately 0.8 (19, 20), T1D was thus considered 

highly heritable. The lack of enrichment of cis-mQTLs in SNP heritability found by the 

previous study, was probably due to limited number of cis-mQTLs used in the estimation. 

Since approximately 20,000 cis-mQTLs were identified in the ARIES study (13), more cis-

mQTLs are perhaps required to capture enough genotypic variance to explain a highly 

heritable condition. The number of cis-mQTLs is less of a concern for p-value based 

enrichment analysis because rather than testing a null hypothesis of SNP heritability, it tests 

the null hypothesis of uniformly distributed p-values. However, one caveat of our analysis is 

that there was an overlapping control population (WTCCC control samples) between the data 

source of Data 1 and Data 2. Data 2 was therefore not completely independent of Data 1. We 

found that rs605093 (chr11: 128604232, hg19) was associated with T1D more than expected 

by chance. In a previous T1D meta-analysis, rs605093 was detected as one of the most 

associated T1D SNPs but failed to reach genome-wide significance, although no follow-up 
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study was performed to confirm its true association (21). Since GWAS tends to omit variants 

with small effect sizes due to the burden of multiple testing, our data may suggest a weak 

effect of rs605093 on T1D. This SNP is located at the intron 1 of FLI-1 (Friend leukemia 

integration 1 transcription factor), which overlaps with a known susceptible region for 

rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). It is possible that this 

locus contributes to autoimmune risk via a shared mechanism.  

 

In the HLA locus, the majority of the rs3104363 associated CpGs were tested as potentially 

causal to T1D at the forward direction. Previously, a similar conclusion at the HLA region 

was reached by a study of Rheumatoid arthritis (RA) using causal inference test (CIT), a 

regression based approach rather than mendelian randomization, which is an instrumental 

variable approach (4, 16). Since T1D and Rheumatoid arthritis (RA) share HLA-DRB1 

susceptibilities (22), our findings generally support a mediatory role of DNA methylation. 

Due to the extensive LD structure within the HLA region, however, we cannot use JLIM to 

reliably estimate whether there are shared causal variants for methylation and T1D, and thus 

cannot rule out the possibility that causal variants for DNA methylation and causal variants 

for T1D are simply in LD. As high-risk variants at the HLA regions are classically thought to 

influence autoantigen presentation by modulating the affinity and conformation between the 

peptide and the HLA binding pocket (23), whether DNA methylation is truly involved in 

mediating HLA risk requires further functional confirmation.  

 

In non-HLA loci our data suggest a potential functional role of DNA methylation in T1D risk. 

The 5 loci included genes that are known to alter immune / islet cell function, such as CTLA4, 

CTSH and PTPN2. Interrogating regulatory features from the ENCODE/Roadmap 
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consortium revealed that CpGs within 3 of 5 loci were overlapping with apparent 

chromosome regulatory elements (SI Figure 2). For example, the rs2269242 (tagging 

ITGB3BP) associated CpG site cg05762488 is located within a dense DNase I hypersensitive 

region and transcription factor binding site adjacent to the gene PGM1 (phosphoglucomutase 

-1) and upstream of the gene ITGB3BP (integrin beta 3 binding protein beta3-endonexin). 

ITGB3BP is a new candidate gene to T1D identified in a recent study (2), it encodes a 

transcriptional coregulator that is involved in signalling pathways of apoptosis (24). The two 

rs9653442 (tagging AFF3) related CpG sites cg06183267 and cg07349094 are situated in the 

exon1 of AFF3 (AF4/FMR2 Family Member 3), which is a region enriched with DNase I 

hypersensitivity and H3K4me3 (associates with enhancers) signals in a range of immune cells. 

AFF3 is a risk gene for rheumatoid arthritis (RA) (25), juvenile idiopathic arthritis (26) and 

T1D (2, 3); it encodes a nuclear transcriptional activator that is preferentially expressed in 

lymphoid tissue, which may be involved in lymphoid development and plasma cell 

differentiation (27, 28). It has also been shown to contribute to anti-TNF treatment responses 

in RA patients (29). The two rs3825932 (tagging CTSH) associated CpG sites cg25744700 

and cg18738367 are located in intron 1 and 5’ upstream of the gene CTSH (Cathepsin H), 

respectively. cg25744700 overlaps with a H3K27Ac peak (marks active chromatin), DNase I 

cluster, as well as a transcription factor binding region; cg18738367 co-localizes with a 

DNase I cluster. Lowered gene expression of CTSH in beta cells has been correlated with 

increased beta cell apoptosis upon cytokine exposure as well as faster diabetes progression 

(30). These data imply potential gene regulatory functions of the identified CpG sites, for 

which laboratory investigations are worth to follow up.  

 

There are several limitations of our study. Firstly, given single genetic instruments used in the 

forward 2SMR, we were unable to robustly distinguish whether genetic risk influences DNA 
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methylation and T1D separately via horizontal pleiotropy. For example, if a causal variant 

really influences gene expression level first and that subsequently influences DNA 

methylation and T1D together, then this will give a false positive result when testing the 

mediatory effect of DNA methylation using forward 2SMR. It is therefore recommended to 

verify the 2SMR findings using laboratory approaches. Secondly, regardless of non-HLA and 

HLA loci, 2SMR analyses, as well as the MR-Steiger directionality test, suffer from 

insufficient statistical power to detect an effect in the reverse direction. This is because the 

sample size available for SNP effects on CpG levels was small (approximately 1000 

individuals in the ARIES participants per time point). Thirdly, although JLIM analysis 

suggested the potential mediatory roles of 10 CpG sites, JLIM does not report which is the 

potential shared causal variants between DNA methylation and T1D, leaving the true causal 

variants to be pinpointed by other statistical and/or biological methods. Fourthly, all our 

analyses were performed using whole blood or peripheral blood lymphocyte samples. As the 

mQTL effects are likely to be tissue and cell type specific (31), attempts to interpret our 

findings in a different tissue must be conducted with caution. Another limitation is that the 

methylation 450k array typically interrogates on average 17 CpG sites per gene (32) and we 

were unable to investigate causal effects of uncovered CpG sites, it is thus possible that DNA 

methylation may mediate T1D susceptibility via other regions. Finally, in this study we only 

reported mQTLs that regulate DNA methylation consistently at birth, childhood and 

adolescence, covering the spectrum of life when diagnosis of T1D peaks. It might be possible 

that some mediatory effects of DNA methylation are only specific to a particular time point, 

especially knowing that environmental impact on DNA methylation increases later in life and 

genetic determinants of methylation heritability decreases (13). These changes are beyond the 

scope of the current analyses.  
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Within these limitations, we observed similar association patterns in 9 out of 10 SNP-CpG 

pairs in an independent cohort containing T1D probands and their relatives. Given a small 

sample size in this cohort (n= 45), we were unable to obtain significant associations for all 

the SNP-CpG pairs. Because all the T1D probands were children and their non-diabetic 

relatives were older, stratification of methylation levels by disease status was not possible due 

to confounding by age. Therefore, we could only plot our data against genotype.  In a 

previous T1D monozygotic twin study, Paul et al., suggested that variations in DNA 

methylation found in T1D affected twins were not associated with any post-zygotic genetic 

mutations (8) and therefore not genetically driven. Post-zygotic mutations occur at a 

frequency of 1.2e-7 per base pair per twin pair (33), these rare variants are unlikely to provide 

sufficient power to detect genetic and epigenetic associations. Our analyses using common 

genetic variants thus have an advantage of increased power to detect such an effect.  

 

In conclusion, the identification of putative genetically driven DNA methylation changes 

provides a rich source for follow-up functional verifications, as dissecting genetic and 

epigenetic interactions may help to uncover novel mechanism that contribute to the risk of 

T1D development.  

 

Materials and methods 

DNA methylation data  

Non-diabetic general population. DNA methylation data was obtained from the Avon 

Longitudinal Study of Parents and Children (ALSPAC) study, a large scale prospective study 

based in Avon, UK. ALSPAC recruited 14,541 pregnant women with expected delivery dates 
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between 1st April 1991 to 31st December 1992, clinical data and biological samples were 

collected during pregnancy and at regular intervals postpartum from both parents and 

offspring (34, 35). Please note that the study website contains details of all the data that is 

available through a fully searchable data dictionary 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/. DNA methylation data 

were generated either from whole blood or from peripheral blood leukocyte samples, derived 

from 1,018 mother-offspring pairs using the Illumina HumanMethylation450 BeadChip 

(‘450k array’) (Illumina, San Diego, CA, USA) as part of the Accessible Resource for 

Integrated Epigenomic Studies (ARIES) project (36). The array quantifies DNA methylation 

levels of >485,000 CpG sites, which covers 99% RefSeq genes (32). The ARIES participants 

were selected based on availability of DNA samples at two-time points for the mother 

(antenatal and at follow-up when the offspring was adolescents) and three-time points for the 

offspring (cord blood, childhood and adolescence). Methylation data from the offspring at 

adolescence (mean age 17.1 years, n=907), childhood (mean age 7.5 years, n=911) and birth 

(mean range, n=844) were used in this study. For quality control, probes with low signal to 

noise ratio (detection p-value > 0.01) or with methylated or unmethylated read counts of 0 

were removed. Additionally, SNPs on 450k array were compared with individual SNP-chip 

data on same individuals, samples with mismatched genotypes were removed. Probes with 

SNPs at the CpG site as well as probes with SNPs located at the single base extension site at 

any minor allele frequency were removed using annotations in the Minfi package, batch 

effect was normalized using the wateRmelon package (13). To retain the maximum number 

of CpG candidates, we did not remove probes that contain SNPs greater than 10 nucleotides 

from the query CpG site, as they were shown to have negligible influences on the beta values 

of the query CpG site (37). To account for cellular heterogeneity, B cell, CD4+ T cell, CD8+ 

T cell, granulocyte, monocyte, and NK cell composition in each sample was estimated using 
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a Reference-based algorithm developed by Houseman et al (38).  To remove outliers, 

bimodally distributed beta values were converted to M values (39) and then rank-transformed 

into normal distributions. The final methylation data contained 459,734 probes per individual.  

 

T1D population. As part of the methylation study, 16 families including 45 individuals were 

selected from the Bart’s Oxford (BOX) family study of type 1 diabetes (40). Probands (mean 

age ± SD: 11.3 ± 3.6 years), their parents (mean age ± SD: 41.8 ± 5.1 years) and grandparents 

(mean age ± SD:  72.7 ± 7.5 years) were analysed. Parents and grandparents may or may not 

have T1D, these individuals were summarized in SI Table 2. Briefly, DNA was extracted 

from whole blood, approximately 350ng DNA per sample were bisulfite converted and 

loaded onto the Infinium Methylation 450k BeadChip (Illumina). Samples were processed in 

Population Health Sciences, University of Bristol. DNA methylation data were normalized 

using SWAN normalization and further corrected for batch effect, age, gender and cell 

heterogeneity using the Minfi and SVA package under the R programming environment 

(version 3.2.2). methylation levels were then plotted against SNP genotypes.   

 

Individual level genotype data 

General population. Individual level genotype data on the ARIES cohort were generated 

using Illumina HumanHap550-quad chips by Sample Logistics and Genotyping Facilities at 

the Wellcome Trust Sanger Institute and LabCorp (Laboratory Corporation of America). For 

quality control, individuals with gender mismatches, minimal or excessive heterozygosity 

or >3% missingness on genotype data were removed. SNPs with minor allele frequencies 

(MAF) of >1%, a call rate of <95% or violations of Hardy-Weinberg equilibrium were 

removed. Imputation of unmeasured genotypes was performed using IMPUTE2 based on the 
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1000 genomes phase 1 version 3 as a reference panel (36, 41, 42). 113 SNPs spanning 57 

genomic regions that are associated with T1D at genome-wide significant level were obtained 

from immunobase.org, including six additional SNPs associated with T1D from a recent 

GWAS study (2). Among them, sixty-seven independent SNPs (LD r2 < 0.1) were selected 

and where necessary, proxy SNPs (minimal r2 = 0.6) were used to replace the original 

variants in order to obtain the required odds ratios for downstream MR analysis. Genotype 

data of sixty-five SNPs were available and extracted from the ARIES participants, which 

were summarised in SI Table 5.  

 

T1D population. Taqman probes for rs2269242, rs9653442, rs3087243, rs3825932, and 

rs1893217 were purchased from Life Technologies (Thermo Fisher, UK).  SNP genotypes for 

T1D probands as well as their parents and grandparents were determined using Taqman® 

allele discrimination assays (Life Technologies, UK).  

 

mQTL-CpG association analyses 

A mixed effect linear regression model was used. Typically, rank transformed M values of 

the methylation data were regressed against each of the 65 T1D GWAS variants, with age, 

gender, cellular compositions also included as covariates in the model. A Bonferroni 

threshold of 1.6x10-9 (0.05/65*465,877) was used to correct for multiple-testing. Analyses 

were performed using the MatrixEQTL package in R 3.2.2 statistical software on the 

University of Bristol High Performance Computing (HPC) cluster.  

 

T1D GWAS summary statistics 
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Summary statistics were obtained from meta-analyses: one for the initial analysis (Data 1) 

and one for replication (Data 2). Data 1 combined Affymetrix and Illumina genotyping data 

derived from the UKBS, 1958 Birth cohort, WTCCC Bipolar disorder samples, and UK 

GRID cohort(2). The final summary statistics were obtained by comparing 5913 cases and 

8828 controls. Results contained p-values, odds ratios, regression coefficients (log odds ratios) 

and their standard errors; 9,037,957 SNPs were available in this dataset. Data 2 combined 

Affymetrix and Illumina genotyping data derived from the McGill University cohort, 

Children’s hospital Philadelphia (CHOP) cohort, DCCi-EDIC cohort, T1DGC, GoKinD, and 

WTCCC (43). The summary statistics was obtained by comparing 9,934 cases and 16,956 

controls (43). Data were retrieved from Immunobase.org; only p-values from this meta-

analysis were available; 2,060,920 SNPs were available in this dataset. For the raw data 

where both summary statistics were derived from, there were some population overlap in the 

control samples from WTCCC, which were summarised in SI Table 6.  

 

mQTL summary data 

mQTL summary data was obtained from ARIES participants from a previous study (13), in 

which 450k DNA methylation data derived from blood samples of children collected at birth, 

childhood, adolescence as well as blood samples collected from their mothers at pregnancy 

and middle age were regressed against individual level genotype at genome-wide scale. CpGs 

that showed significant associations (p < 1e-14, Type I error ate 0.2%) with SNPs were 

retrieved using the TwoSampleMR R package.  

 

mQTL enrichment analyses 
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To test the hypothesis that mQTLs are enriched in SNPs with low T1D GWAS p-values more 

than expected by chance, independent mQTLs (LD r2<0.1) that have shown strong effect 

(p<1x10-14) on DNA methylation during adolescence in ARIES cohort (13) were retrieved 

using the TwoSampleMR R package. The likelihood of mQTL enrichment could either be 

due to their 1) distinct SNP properties or 2) due to distinct genomic locations. To control for 

these two factors, null SNPs were selected to match mQTLs in two ways. Firstly, null SNPs 

were chosen based on similarities in MAF and LD structures (44). Briefly, null SNPs must be 

at least 1000kb away from mQTLs; the maximum MAF deviation of null SNPs from mQTLs 

is 0.02; and LD scores of null SNPs are in the same quintile bin of mQTLs. Secondly, null 

SNPs were chosen based on similarities in genomic annotations, such as, intron, exon, 5’UTR, 

3’UTR or promoter SNPs. For both methods, null SNPs were sampled without replacement. 

Fisher’s combined probability test was used to obtain an overall association with T1D for all 

the mQTLs: 

  ���
� ~ � 2 � ln 	�

�

���

 

To generate a distribution for null SNPs, the same number of null SNPs (4,562) was 

randomly drawn and 10,000 iterations were generated. Fisher’s combined probability test was 

used to estimate 10,000 combined p-values for null SNPs. The empirical p-value, reflecting 

the likelihood of observing a combined p-value at least as extreme as the combined p-value 

for mQTLs in the null distribution, is calculated by ranking all the 10,000 null p-values.  

 

Two-sample bi-directional Mendelian Randomization 

To test the causal effect of DNA methylation on T1D genetic susceptibility, forward 2SMR 

was used (Figure 1a). To be considered as valid instruments to proxy DNA methylation, 
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SNPs must meet three key assumptions (45). First, SNPs must be strongly associated with 

DNA methylation; second, SNPs must only influence T1D via DNA methylation; third, SNPs 

must be independent of confounders of the methylation-T1D associations (i.e. hyperglycemia 

and medications). The associations between mQTLs and CpG sites (beta coefficient) were 

established using the ARIES cohort (sample 1). The associations between mQTLs and T1D 

(log odds) were obtained from the GWAS summary statistics Data 1 (sample 2). To reduce 

potential pleotropic effect (SNPs that influence multiple CpG sites via independent pathways), 

only cis-mQTLs were chosen as instruments.  This was necessary as the majority of CpG 

sites in this analysis can only be instrumented using a single cis-acting mQTL, which means 

we were unable to robustly investigate pleiotropy. To exclude potential instrument-

confounder associations, we also examined whether instruments were associated with fasting 

glucose concentration in a large GWAS meta-analysis involving 133,010 non-diabetic 

European individuals (15). The causal effect of CpG to T1D was then determined using a 

Wald ratio estimator, calculated by dividing the log odds of cis-mQTLs on T1D association 

by the beta coefficient of cis-mQTLs on CpG association (46). 

 

To test the causal effect of T1D on DNA methylation, T1D GWAS SNPs were used as 

multiple instruments for each CpG as outcome. For each CpG site, mQTL that was used as an 

instrument in the forward 2SMR was excluded. The causal effects of multiple SNPs were 

combined in a fixed-effect meta-analysis using MR – inverse variance weighting (IVW). All 

the above analyses were performed using the TwoSampleMR R package.  

 

We used matrix spectral decomposition (matSpDlite) (47) to determine the number of 

independent tests in the outcome. “matSpDlite” calculates the number of independent 
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variables in the correlation matrix generated from all the CpG sites, by examining the ratio of 

observed eigenvalue variance to its theoretical maximum (47). It also reports an alpha level 

that is required to keep the Type I Error rate at 5%.  

 

MR-Steiger directionally test 

2SMR estimates the causal effect under an important assumption that the exposure is known. 

This however, in some situations particularly in the case of DNA methylation, is difficult to 

ascertain as it is unclear whether genetic risk first causes changes in DNA methylation which 

subsequently results in T1D risk or vice versa.  To evaluate this, we used MR-Steiger to 

access whether DNA methylation is likely the exposure and T1D risk is likely the outcome. 

MR-Steiger estimates the proportion of variance in the exposure and in the outcome that is 

explained by genetic instruments. Causal direction is then determined based on whether 

exposure variance or outcome variance is subject to the primary effect of SNPs (16).  This 

was performed in TwoSampleMR R package.  

 

Bivariate fine mapping  

Another MR assumption is that cis-mQTLs only influence T1D via DNA methylation. This is 

however not always true because some cis-mQTLs may simply be in LD with a causal 

variant influencing T1D (Figure 1 c). To this end, we implemented joint likelihood mapping 

(JLIM) (17) to investigate whether causal variants for DNA methylation (GWAS SNPs that 

cause DNA methylation changes) are likely to be the same causal variants for T1D. Given a 

mQTL - CpG pair, JLIM estimates the putative causal SNP for this CpG site within a 1-Mb 

window centred around that mQTL. It also estimates the putative causal SNP for T1D within 

the same region.  Concordance between top SNPs for the two sets of traits would suggest that 
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DNA methylation potentially reside in the causal pathway to T1D risk. The concordance rates 

were determined after accounting for chance, under 1000 permutations. However, JLIM 

cannot rule out the possibility that cis-mQTLs influence methylation and T1D via two 

independent mechanisms (horizontal pleiotropy, as shown in Figure 1 d); in addition, it does 

not specify which SNP is the putative causal variant in a particular region.  
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SNP Effect allele Candidate gene CpG ID CpG position CpG effect (beta±SE) T1D effect (beta±SE) 2SMR effect 2SMR p value 

rs2269242 A ITGB3BP,PGM1 cg05762488 Chr1: 64140332 0.059 (0.006) 0.168 (0.030) 2.843 (0.508) 2.14E-08 

rs9653442 C AFF3 cg06183267 Chr2: 100759134 -0.100 (0.006) 0.124 (0.025) -1.236 (0.250) 7.05E-07 

rs9653442 C AFF3 cg07349094 Chr2: 100759014 -0.157 (0.009) 0.124 (0.025) -0.791 (0.160) 7.05E-07 

rs3087243 A CTLA4 cg22572158 Chr2: 204731068 -0.070 (0.008) -0.178 (0.025) 2.534 (0.356) 1.08E-12 

rs3825932 T CTSH cg25744700 Chr15: 79237217 -0.204 (0.012) -0.141 (0.030) 0.692 (0.147) 2.60E-06 

rs3825932 T CTSH cg18738367 Chr15: 79238723 0.093 (0.006) -0.141 (0.030) -1.523 (0.324) 2.60E-06 

rs1893217 G PTPN2 cg09945482 Chr18: 12777974 -0.188 (0.016) 0.250 (0.032) -1.331 (0.170) 5.61E-15 

rs1893217 G PTPN2 cg23544223 Chr18: 12777786 -0.175 (0.011) 0.250 (0.032) -1.428 (0.183) 5.61E-15 

rs1893217 G PTPN2 cg23598886 Chr18: 12777645 -0.414 (0.023) 0.250 (0.032) -0.604 (0.077) 5.61E-15 

rs1893217 G PTPN2 cg24737193 Chr18: 12778029 -0.223 (0.159) 0.250 (0.032) -1.123 (0.144) 5.61E-15 

 

 

Table 1: Representative 2SMR results from the adolescence dataset that survived the Joint Likelihood Mapping.  

CpG effect denotes the addition of effect allele relative to other allele on CpG methylation changes (beta coefficient ±SE); T1D effect denotes 

the addition of effect allele relative to other allele on T1D risk (beta coefficient ±SE, beta coefficient equals log odds ratio); 2SMR effect denotes 

the change of log odds on T1D per unit increase in DNA methylation due to its associated SNP.  
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Figure 1: Four possible scenarios that could explain the associations between SNP, DNA methylation and T1D.

a, DNA methylation mediates the genetic risk of T1D; b, SNPs first increases T1D liability, which in turn changes DNA methylation levels; c, a SNP that regulates

DNA methylation could simply be in LD with another causal variant that influences T1D; d, a SNP is associated with DNA methylation and T1D via independent

biological pathways (horizontal pleiotropy).
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Figure 2: Flow chart summarising the overall analysis procedure in this study. 

EWAS: epigenome wide association analysis; DNAm: DNA methylation; mQTL: methylation quantitative trait loci
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Figure 3: Genomic distribution of CpG sites that are associated with T1D GWAS variants.

Manhattan plot showing the CpG sites associated with 38 T1D GWAS variants above the Bonferroni threshold 1.6e-9 (redline); green highlighted dots were those (n=166)

that were consistently detected at adolescence, childhood and birth; there is a peak reflecting mQTL-CpG association at the HLA locus (chromosome 6).
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Figure 4: cis-mQTLs are enriched in SNPs with low GWAS p-values associated with T1D.

a, A representative plot showing the enrichment analysis conducted using the adolescent data, when null SNPs were matched to cis-mQTLs via SNP properties; b, when null

SNPs were matched to cis-mQTLs via genomic annotations. T1D GWAS p-values were extracted from meta-analysis Data 1.
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Figure 5:  DNA methylation levels of CpG sites and their associations with T1D GWAS variants that survived JLIM analyses, obtained from the ARIES 

adolescent participants. 

Y - axis represents beta values for each CpG site. The inner most genotype in X - axis is comprised of two other alleles, the outer most genotype is comprised of two 

effect alleles. 
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Figure 6: Replication of SNP and DNA methylation associations in the Bart’s oxford T1D cohort.

45 individuals were analysed in the BOX cohort. Nine out of ten SNP-CpG pairs showed similar associations compared to the ARIES participants. The SNP – CpG pair 

that did not replicate the ARIES result was highlighted in red. 
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