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Abstract	
	
	 Spatiotemporal	 regulation	 of	 the	 biochemical	 information	 is	 often	 linked	 to	
supramolecular	 organizations	 proteins	 and	 nucleic	 acids,	 which	 generate	 membraneless	
cellular	organelles.	Owing	to	difficulties	in	high-resolution	structural	studies,	the	driving	forces	
of	 assembling	 these	 low-complexity	 polymers	 have	 yet	 to	 be	 elucidated.	 Polymer	 physics	
approaches	 captured	 the	 experimentally	 demonstrated	 critical	 role	 of	 binding	 element	
multivalency	and	highlighted	the	importance	of	linker	solvation.	Here	we	present	a	simulation	
method	based	on	a	fuzzy	mathematical	framework.	This	approach	is	suitable	to	handle	the	
heterogeneity	of	interactions	pattern	generated	by	redundant	binding	motifs	and	the	resulted	
multiplicity	 of	 conformational	 states.	 Using	 a	 hypothetical	 polymer,	 fuzzy	 simulations	
recapitulate	 the	experimental	observations	on	valency-dependence	and	are	more	efficient	
than	the	one-to-one	binding	model.	Systematic	studies	on	binding	element	affinity	and	linker	
dynamics	 demonstrate	 that	 these	 two	 factors	 present	 alternative	 scenarios	 to	 promote	
polymerization:	stronger	binding	result	in	more	ordered	states,	whereas	increasing	dynamics	
contributes	to	heterogeneity	and	a	more	favorable	entropy	of	the	assembly.	We	propose	that	
the	 fuzzy	 framework	 could	 be	 employed	 to	 characterize/predict	 mutations	 leading	 to	
pathological	aggregates.	
	
	
Introduction	
	

Proteins	 can	 form	 a	 wide	 variety	 of	 assemblies,	 regarding	 composition,	 size,	 and	
dynamics.	In	addition	to	simple	binary,	ternary	complexes	and	middle-size	oligomers,	proteins	
may	 also	 assemble	 into	 higher-order	 organizations.	 These	 supramolecular	 assemblies	 are	
implicated	in	different	biological	processes	ranging	from	normal	physiology	to	disease	[1,	2].	
For	 example,	 to	 minimize	 signaling	 noise	 for	 low-affinity	 effectors	 signaling	 complexes	
frequently	increase	local	concentration	of	binding	sites	via	higher-order	protein	assembly	[3].	
Recent	discoveries	revealed	that	supramolecular	organizations	of	proteins	and	nucleic	acids	
can	generate	functional	cellular	compartments	[4,	5].	They	appear	at	various	points	on	the	
biological	 landscape	 and	 usually	 lack	 a	 membrane	 boundary	 [6].	 Such	 membraneless	
organelles	can	serve	as	biomolecular	storages	upon	stress,	bioreactors	to	accelerate	chemical	
reactions	as	well	as	signaling	devices,	which	assembly/disassembly	is	regulated	by	a	variety	of	
pathways	 [7-9].	 Although	 such	 cellular	 bodies,	 for	 example	 the	 nucleolus	 functioning	 in	
ribosomal	 RNA	 transcription	 were	 discovered	 long	 ago,	 their	 molecular	 basis	 and	 the	
underlying	 physical	 forces	 have	 remained	 largely	 enigmatic.	 Seminal	 works	 by	 the	
Brangwynne,	Hyman,	Parker	labs	revealed	that	these	organelles	are	created	by	a	process	of	
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liquid-liquid	demixing,	once	the	component	concentration	exceeds	the	saturation	limit	[10,	
11].	 This	 phenomenon,	 also	 termed	 as	 phase	 transition	 have	 been	 described	 by	 polymer	
physics	[12].	In	this	sense,	protein	chains	could	be	considered	as	biological	polymers,	which	
could	be	crosslinked	to	generate	a	large,	system-spanning	network.	

Later	studies	revealed	that	proteins,	which	participate	in	this	process	have	degenerate	
binding	motifs	and	their	sequences	are	often	composed	of	tandem	repeats	of	a	few	residues	
[13].	Owing	to	their	information	content,	these	sequences	are	also	termed	as	low-complexity	
(LC)	regions	or	domains.		Multivalency	is	a	critical	component	of	phase	transition,	as	it	was	
demonstrated	by	the	Rosen	 lab	using	engineered	SH3	domains	and	 interacting	proline-rich	
motifs	[14].	Another	interesting	feature	is	that	proteins,	which	form	membraneless	organelles	
often	possess	long	segments	without	a	well-defined	tertiary	structure,	termed	as	intrinsically	
disordered	proteins/regions	(IDPs/IDRs)	[15].	The	relationship	between	the	dynamics	of	these	
disordered	segments	and	the	characteristics	of	the	resulted	membraneless	organelles	have	
yet	to	be	elucidated.	

Higher-order	 protein	 organizations	 exhibit	 a	 wide	 spectrum	 of	 states	 with	 distinct	
dynamics.	Prions/amyloids	are	stabilized	by	b-zippers,	resulting	in	static,	solid-like	inheritable	
entities	[16].	Signalosomes,	such	as	inflammasomes	or	necrosomes	could	resemble	prion-like,	
stable	 structures	 [17]	 or	 be	 dynamic,	 for	 example	 the	 autophagosome	 [18].	
Ribonucleoproteins	(RNP)	generate	dynamic	granules	or	liquid-like	droplets	[19].	Nuclear	pore	
complexes	(NPCs)	are	somewhat	more	stable	and	form	hydrogels	[20].	Intriguingly,	the	very	
same	protein	could	be	organized	into	higher-order	states	with	distinct	dynamics.	Pathological	
mutations	may	induce	conversion	of	liquid-like	droplets	to	solid	fibrils,	for	example	in	case	of	
the	 Fus	 or	 hnRNPA	 protein,	 familial	 mutations	 of	 which	 appear	 in	 Amyothrophic	 lateral	
sclerosis	(ALS)	[1,	2].	In	order	to	understand	how	such	aberrant	transitions	occur,	molecular	
factors	determining	the	material	state	have	to	be	determined.		

Recently,	a	unified	framework	for	higher-order	structures	has	been	proposed,	which	
decomposed	the	material	state	to	three	factors	[21].	First,	low-affinity	interacting	elements,	
such	as	cation-pi,	pi-pi,	aromatic	hydrogens	bonds	are	required	for	a	dynamical	equilibrium	
with	fast	off-rates.	Second,	degenerate	interactions	between	the	binding	elements	increase	
the	number	of	microstates	and	results	 in	 favorable	entropy.	Third,	protein	segments	must	
preserve	 their	 conformational	 entropy	 to	 enable	 interactions	 in	 a	 vast	 number	 of	
arrangements.	 This	 phenomenon,	which	 is	 referred	 to	 as	 fuzziness	 [22,	 23],	 is	 a	 universal	
feature	of	all	higher-order	assemblies	[21].	Indeed,	NMR	data	indicates	similar	conformational	
heterogeneity	 of	 Fus	 in	 its	 free	 and	 bound	 states	 [19].	 Modelling	 the	 effect	 of	 fuzziness	
however	is	challenging,	owing	to	the	large	system	size	and	entropy.	

Both	microscopic	and	macroscopic	methods	could	be	applied	to	gain	insights	into	the	
driving	forces	of	the	assembly.	In	the	microscopic,	polymer	physics	treatment,	intramolecular	
interactions	 within	 the	 individual	 polymers	 are	 exchanged	 for	 intermolecular	 interactions	
between	the	different	chains	to	form	reversible,	system-spanning	crosslinks	[12].	This	process	
could	 be	 described	 by	 the	 Flory–Huggins	 theory	 [24],	 which	 quantifies	 the	 critical	
concentration	 and	 explains	 the	 surface	 tension	 of	 the	 droplets.	 In	 a	 macroscopic	
approximation,	 phase	 separation	 is	 driven	 by	 solvation	 effects,	 when	 the	 condensed	
biomolecular	environment	provides	a	more	favorable	environment	for	protein	chains	than	the	
solvent	 [25].	 A	 simplified	 polymer	 physics	 approach	 has	 been	 applied	 to	 recapitulate	 the	
valency-dependence	of	phase	transition	of	the	artificial	system	containing	SH3	domains	and	
proline-rich	 motifs	 [14].	 Despite	 the	 heavy	 assumptions	 of	 the	 model,	 such	 as	 the	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 15, 2018. ; https://doi.org/10.1101/248062doi: bioRxiv preprint 

https://doi.org/10.1101/248062


dimensionless	molecules	with	no	upper	boundary	for	the	concentration,	linkers	with	infinite	
flexibility	to	enable	any	kinds	of	binding	arrangements,	and	the	lack	of	cooperativity	between	
the	 different	 binding	 sites,	 these	 rule-based	 stochastic	 simulations	 provided	 results	 in	
agreement	with	 the	 experimental	 observations	 as	well	 as	with	 theoretical	 estimates	 [14].		
Recently,	a	more	detailed	Monte	Carlo	simulation	on	a	coarse-grained	lattice	was	applied	on	
the	same	system	[26].	This	model	enabled	to	study	the	properties	of	the	 linkers,	using	the	
effective	solvation	volume	as	a	single	parameter.	This	quantity,	which	was	derived	from	all-
atom	simulations,	expressed	the	preference	of	the	linkers	for	themselves	or	the	solvent,	based	
on	which	compact	and	extended	chains	could	be	distinguished.	The	results	shed	light	on	how	
different	 protein	 sequences	 affect	 phase	 transition,	 depending	 on	 their	 compaction	 and	
solvation	properties	 [26,	 27].	Neither	 of	 these	 techniques	 however,	 could	 account	 for	 the	
conformational	properties	(i.e.	dynamics)	of	the	linkers,	which	could	be	dramatically	altered	
by	pathological	mutations.		

		We	developed	a	novel	approach,	which	exploits	the	intrinsic	fuzziness	of	higher-order	
protein	 organizations	 [21].	 Here	 fuzziness	 refers	 to	 the	 function-related	 structural	
heterogeneity	 of	 proteins,	 which	 is	 resulted	 by	 redundant/degenerate,	 often	 transient	
interactions	[28,	29].	Such	conformation	and	interaction	heterogeneity	can	enable	adaptive	
transitions	in	proteins	[23].	The	importance	of	fuzziness	on	regulated	organization	and	activity	
of	protein-protein	or	protein-nucleic	acid	assemblies	has	been	demonstrated	experimentally	
[30].	Fuzziness	is	also	known	as	a	mathematical	concept,	where	the	membership	in	given	sets	
is	described	by	a	function,	varying	between	[0,1]	instead	of	a	single	[0	or	1]	value.	Fuzziness	
has	been	derived	from	the	seminal	work	of	Lotfi	Zadeh	[31],	and	has	been	implicated	in	the	
electronic	 control	 of	 ~3000	 artificially	 intelligent	 devices	 [32].	 Mathematical	 fuzziness	
however,	has	not	been	applied	to	protein	interactions.		

Here	we	 attempt	 to	 use	 the	mathematical	 concept	 of	 fuzziness	 to	 describe	 phase	
transition	 of	 low-complexity	 protein	 sequences.	 In	 this	 model,	 a	 single	 binding	 site	 can	
simultaneously	interact	with	multiple	binding	elements	to	different	extents,	in	contrast	to	the	
previous	approaches,	where	only	one-to-one	binding	was	considered.	We	demonstrate	that	
incorporation	 of	 fuzzy	 relations	 between	 the	 degenerate	 interaction	 elements	 not	 only	
increases	efficiency	of	the	simulations,	but	also	enables	to	account	for	other	important	factors	
such	as	local	concentration	or	linker	dynamics.		

	

Methods	

Model	system.	The	model	is	a	hypothetical	biological	polymer,	which	is	composed	of	
N	residues.	Each	residue	 is	characterized	by	two	values:	binding	preference	and	dynamics.	
Both	 values	 vary	 in	 a	 [0,1]	 range.	 Binding	 preference	 >	 0.3	 designate	 residues	 involved	 in	
binding,	 dynamical	 values	 >	 0.3	 correspond	 to	 linker	 residues.	 Binding	 elements	 (a)	 are	
defined	as	a	continuous	stretch	of	at	least	5	residues	with	binding	preference	>	0.3.	Linkers	
(l)	are	defined	as	all	other	segments	connecting	the	binding	elements.	 If	the	length	of	the	
linker	 is	£	 3,	 the	 two	 connected	 binding	 elements	 are	merged.	 These	 two	 characteristics	
(binding	preference,	dynamics)	enable	to	consider	binding	elements	with	varying	affinities	as	
well	as	allow	linkers	to	form	transient	contacts.		

Parameters.	Binding	preference	of	a	binding	element	 (ai)	 is	obtained	as	an	average	of	 the	
residue	binding	preferences:	
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𝑠"# =
%&

'#
&()
*#

				(1)	

where	sk		is	the	binding	preference	of	residue	k	and	the	binding	element	contains	ni	residues.	

Affinity	between	two	binding	elements	is	defined	as	the	average	of	the	binding	preferences	
[0,1]:	

𝐾"#,"- =
%.#/%.-

0
								(2)	

where	𝑠"#and	𝑠"- 	are	the	binding	preferences	of	the	interacting	ai	and	aj	elements.	

As	the	fuzzy	framework	allows	one	binding	element	to	interact	with	multiple	other	elements,	
the	number	of	possible	binding	elements	available	for	interaction	needs	to	be	determined.	All	
binding	elements	within	the	volume	defined	by	the	neighboring	linkers	are	considered:	

	

𝑛2345*6,"# = 	 𝛼9*
9:; 			where	𝛼9 	∈ 𝑉># 			(3)	

	

where	𝑛2345*6,"# 		is	the	maximum	number	of	interaction	sites	around	the	binding	element	ai.	
The	available	volume	for	ai	 interactions	 is	defined	by	the	 length	of	 the	 longer	neighboring	
linker	(li).	In	the	default	case,	𝑉># 		is	a	spherical	volume	with	a	radius	of	li:	

𝑉># =
?@>#A

B
		(4)	

	

This	volume	could	be	re-scaled	according	to	linker	dynamics,	which	is	defined	as	the	average	
of	the	residue	dynamics:	

𝐷5 =
D&E

&()
>

			(5)	

where	dk	is	the	dynamical	value	of	residue	k,	and	li	is	the	length	of	the	linker.	

If	the	linker	dynamics	(Di)	is	1,	all	the	available	binding	sites	are	considered	within	the	volume	
as	 defined	 in	 eq.	 4.	 If	Di)	 	 <	 1,	 the	 sphere	 radius	 is	 reduced	 proportionally	 to	 the	 linker	
dynamics:	

𝑙5
G = 𝐷5 ∗ 𝑙5 					(6)	

	where	Di	is	the	linker	dynamics	and	li	is	the	length	of	the	linker.	l’i	is	used	to	obtain	the	volume	
by	eq	4.	

Computed	 quantities.	 The	 association	 probability	 linearly	 depends	 on	 the	 binding	 affinity	
(𝐾"#,"-),	and	reciprocally	on	the	available	binding	sites	(𝑛2345*6,"#)	

	

𝑝L*
MNN =

OP'#'Q∗ ;ROPSS
#'Q ∗T.#,.-

*UVW#'Q,.#/*UVW#'Q,.-
			(7)	
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where	 the	 intrinsic	 association	 probability	 	 𝑝L*5*6 = 0.6,	the	 intrinsic	 dissociation	
probability		𝑝LNN5*6 = 0.1,	similarly	to	the	reference	[14].		

Once	interactions	are	formed	in	the	first	step,	we	define	an	occupancy	value	for	each	binding	
elements	 [0,1].	 It	 is	 calculated	 with	 an	 algebraic	 sum,	 which	 is	 the	 fuzzy	 union	 (s-norm)	
operator.	

𝜇"# = 𝑠 𝐾"#,"), 𝐾"#,"], …	, 𝐾"#,"' = 𝑠 𝑠(𝐾"#,"), 𝐾"#,"]), …	, 𝐾"#,"' 						(8)	

		𝑠(𝐾"#,"), 𝐾"#,"]) = 	𝐾"#,") + 𝐾"#,"] − 𝐾"#,") ∗ 𝐾"#,"] 											

	

where	𝑛	is	the	number	of	the	binding	elements	in	the	polymer.	

From	the	second	step,	the	affinity	of	a	given	interaction	between	ai	and	aj	also	depends	on	
the	 local	 concentration	 of	 the	 bound	 binding	 elements.	 The	 binding	 affinity	 between	 two	
elements	must	be	weighted	by	the	occupancies	of	the	neighboring	binding	sites:		

𝐾′"#,"- =
%.#/%.-

0
∗ 1 + 𝜇* + 𝜇2

*UVW#'Q,.-
2:;

*UVW#'Q,.#
*:;

b
		(9)	

		𝐾′"#,"- ∈ [0,1]	

where	𝜇*	and	𝜇2	occupancies	are	summarized	for	all	binding	elements	within	the	available	
volume	for	ai	and	aj.		If	local	concentration	is	taken	into	account	from	the	second	step,	the	
modified	affinities	(𝐾′"#,"-		)	are	used	to	determine	the	occupancies	in	eq.	8.	

The	association	probability	is	also	modified	accordingly:	

𝑝L*
MNN =

OP'#'Q∗ ;ROPSS
#'Q ∗TG.#,.-

*UVW#'Q,.#/*UVW#'Q,.-
∗ ;
;/*#'Q,.#/*#'Q,.-

			(10)	

	

where	𝐾′"#,"-		is	the	modified	binding	affinity	defined	in	eq.	9,		𝑛5*6,"# 	and	𝑛5*6,"-	are	the	actual	
number	of	binding	elements,	which	are	bound	to	ai	and	aj,	respectively.	

The	dissociation	probability	has	an	inverse	relationship	to	the	binding	affinity:	

	

𝑝LNN
MNN =

OPSS
#'Q ∗ ;ROP'#'Q

TG.#,.-
		(11)	

	

where	the	intrinsic	association	(𝑝L*5*6)	and	dissociation	(		𝑝LNN5*6 )	probabilities	are	the	same	as	in	
eq.	7,	and	𝐾′"#,"-		is	the	modified	binding	affinity	defined	in	eq.	9.	

From	the	second	step,	the	molecules	could	be	present	as	individual	chains,	or	chains	organized	
into	oligomers	or	larger	polymers.	Here	we	need	to	define	the	interaction	capacity	(‘freedom’)	
of	the	binding	elements	within	the	molecular	assembly/polymer:		

𝐹 = 	 1 − 𝜇5*
5:; 					(12)	
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where		 1 − 𝜇5 	is	the	available	interaction	capacity	of	a	given	ai	binding	element,	which	is	
summarized	for	all	binding	elements	in	the	polymer.		

Finally,	any	molecule	types	in	the	system:	individual	molecules,	oligomers	or	larger	polymers	
can	diffuse	to	another	box.	The	probability	of	the	diffusion	is	defined	as:	

𝑝D5NN =
;
f
∗ ;

;Rg#
'#'Q
#()

		(13)	

	

where	the	square	root	of	F	(eq.	12)	is	used	in	the	denominator.	

Computational	protocol:	

A	periodic	system	is	defined,	which	contains	Z	boxes,	with	dimension	w.	The	system	contains	
m	molecules,	each	composed	of	N	residues.	Initially	the	m	molecules	are	placed	randomly	in	
the	 cubes.	 The	 simulation	 protocol	 is	 based	 on	 the	 stochastic	 rule-based	 simulation	 in	
reference	[14].	

In	the	first	simulation	step	the	molecules	can	associate	according	to	the	probabilities,	which	
are	defined	in	eq	7.	From	the	second	iteration	step,	the	molecules	have	three	options:	they	
can	associate	(i),	dissociate	(ii)	and	diffuse	to	another,	randomly	chosen	neighboring	cell	(iii).		
Affinities	 of	 the	 interactions	 depend	 on	 the	 local	 concentration	 of	 the	 bound	 elements,	
therefore	occupancies	(eq.	8)	and	the	interaction	capacities	(eq.	12)	are	determined	in	each	
step.	Association	probabilities	(eq	10)	and	dissociation	probabilities	(eq	11)	are	proportional	
to	the	modified	affinities,	so	both	account	for	the	local	concentration	of	the	available	sites	as	
well	as	their	binding	status.	Diffusion	is	inversely	proportional	to	the	interaction	capacity,	so	
larger	polymers	have	less	chance	to	move	to	the	neighboring	box.		Linker	dynamics	is	taken	
into	account	through	the	volume,	within	which	the	available	binding	elements	are	computed.		

	

Results	

	

The	fuzzy	models	allowed	heterogeneous	interactions	with	multiple	binding	elements	
to	different	extents,	in	contrast	to	the	non-fuzzy	model,	where	contacts	are	established	with	
a	 single,	well-defined	 binding	 partner.	 All	 previous	 simulations	 of	 higher-order	 assemblies	
were	based	on	one-to-one	interactions	[14,	26].	We	performed	simulations	with	fuzzy	and	the	
one-to-one	(non-fuzzy)	binding	models	and	compared	the	probabilities	of	formation	of	large	
polymers,	 which	 were	 defined	 as	 interconnected	 m	 >	 25	 molecules.	 Using	 hypothetical	
molecules	characterized	by	binding	affinity	and	dynamics	varying	in	[0,1]	range,	we	studied	
the	impact	of	valency	on	polymer	formation.	The	model	system	contained	one	molecule	type,	
the	size	of	which	has	been	systematically	varied	between	2	to	6	binding	elements	and	linkers,	
the	length	of	which	were	arbitrary	defined	as	7	and	10	residues,	respectively	(Figure	1).	The	
system	contained	m	molecules	randomly	positioned	in	Z	boxes.	Concentration	was	modulated	
by	varying	the	size	of	the	simulation	box.	The	topologies	and	the	parameters	considered	for	
interactions	are	shown	 in	Figure	1.	Three	types	of	stochastic	movements	were	performed,	
similarly	to	the	reference	[14]:	i)	association	ii)	dissociation	iii)	diffusion	to	a	neighboring	box.	
In	addition	to	valency,	we	could	monitor	the	impact	affinity	and	local	concentration	of	binding	
elements	 as	 well	 as	 linker	 dynamics	 on	 the	 formation	 of	 large	 polymers.	 The	 results	 are	
averaged	for	10	parallel	simulations	(10000	steps)	for	each	parameter	combinations.		
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Figure	1	Schematic	representation	of	the	model	system	with	one	(left)	and	three	interacting	
molecules	 (right).	𝑠"# 	 	 is	 the	binding	preference	of	a	binding	element	 (a),	 computed	as	 the	
average	of	 the	 residue-based	binding	affinities	 (eq.	1).	Di	 is	 the	dynamics	of	 linker	 (l)	with	
length	 li,	 obtained	 as	 the	 average	 of	 the	 residue-based	 dynamics	 values	 (eq.	 5).	 Local	
concentration	of	the	available	binding	sites	is	computed	within	a	volume	𝑉># 	,	which	is	scaled	
by	the	linker	dynamics	(Di,	eq.	6).		

	Multi-valency	is	considered	as	the	major	driving	force	of	phase	transition	[6,	14].	The	
impact	of	valency	and	concentration	on	the	probability	of	 formation	of	 large	polymers	are	
shown	in	Figure	2.	Concentration	is	given	in	arbitrary	units,	which	decreases	with	increasing	
cube	size.	Both	one-to-one	and	fuzzy	simulations	show	strong	dependence	on	the	number	of	
binding	elements,	recapitulating	previous	experimental	observations	[14].		

Figure	2		Probability	of	large	polymers	as	a	function	of	valency	and	edge	length	in	one-to-one	
(upper)	 and	 fuzzy	 (lower)	 binding	 models.	 Valency	 is	 defined	 as	 the	 number	 of	 binding	
elements.	Concentration	 is	given	by	 the	number	of	molecules/volume	 (L3).	Binding	element	
affinity=1.0,	linker	dynamics=1.0.	

Heterogeneous	interactions	with	multiple	partners	enable	polymer	formation	even	at	
lower	 valency.	 	 Indeed,	 polymerization	 in	 fuzzy	 simulations	 occur	 almost	 at	 one	 order	 of	
magnitude	 lower	 concentration	 than	 in	 the	 one-to-one	 binding	 model	 (Figure	 2).	 In	
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simulations,	which	were	conducted	using	 lower	binding	element	affinities	(0.35)	and	 linker	
dynamics	 (0.35)	 no	 higher-order	 oligomers	 (m	 >	 25)	 were	 observed	 in	 the	 one-to-one	
simulations,	while	polymers	were	formed	in	case	of	>	4	binding	elements	in	the	fuzzy	model	
(Figure	3).	This	illustrates	that	multi-valency	influences	polymerization	via	generating	a	large	
number	of	microstates	and	improved	binding	entropy.	

	

	
Figure	3		Probability	of	large	polymers	as	a	function	of	valency	and	edge	length	in	one-to-one	
(upper)	 and	 fuzzy	 (lower)	 binding	 models.	 Valency	 is	 defined	 as	 the	 number	 of	 binding	
elements.	Concentration	 is	given	by	 the	number	of	molecules/volume	 (L3).	Binding	element	
affinity=0.35,	linker	dynamics=0.35.	

Higher	affinity	between	the	interacting	elements	increases	the	association	probability	
(eq.	10)	and	thus	requires	lower	valency	for	polymerization	as	reflected	by	both	one-to-one	
and	fuzzy	simulations	(Figure	4	upper	panel).	Binding	affinity	has	a	pronounced	effect	on	the	
one-to-one	 binding	 model	 and	 values	 >	 0.4	 can	 induce	 polymer	 formation	 with	 binding	
elements	>	4	(using	the	same	conditions	as	in	Figure	3,	where	no	aggregation	was	observed).		
In	 the	 fuzzy	 simulations,	 polymerization	 occurs	 at	 lower	 affinity	 (Figure	 4	 lower	 panel),	
illustrating	 that	 partial,	 heterogeneous	 binding	 may	 compensate	 for	 lower	 affinity	 in	
formation	of	higher-order	assemblies.	This	is	consistent	with	abundance	of	weakly	interacting	
motifs,	 such	 as	 cation-pi,	 pi-pi,	 aromatic	 hydrogen	 bonds	 in	 proteins	 composing	
membraneless	organelles	 [10,	 11].	Obviously,	 above	a	 certain	 limit,	 increasing	affinity	 and	
valency	induces	formation	of	aggregates	or	amyloid	structures	and	not	dynamical	assemblies,	
as	it	will	be	discussed	later.		
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Figure	4		Probability	of	large	polymers	as	a	function	of	valency	and	binding	element	affinity	in	
one-to-one	 (upper)	 and	 fuzzy	 (lower)	 binding	models.	Valency	 is	 defined	as	 the	number	of	
binding	elements,	which		affinity	(𝑠"#)	is	computed	as	the	average	of	the	residue-based	values	
(eq.	1).	Linker	dynamics=0.35,	box	length	=	20.	

The	fuzzy	model	can	take	the	effect	of	local	concentration	of	the	binding	elements	into	
account	via	the	modified	affinity	values	(eq.	9),	which	are	incorporated	into	both	association	
and	dissociation	probabilities	(eq.	10,	eq.	11).	As	anticipated,	higher	local	concentration	of	the	
binding	sites	considerably	lowers	the	phase	boundary,	even	in	case	of	lower	valency	(Figure	
5).	 The	 partial,	 heterogeneous	 interactions	 in	 the	 fuzzy	model	 correspond	 to	 those	 in	 an	
encounter	complex	[34],	which	were	shown	to	facilitate	productive	contacts.	

	
	

Figure	5	Probability	of	large	polymers	as	a	function	of	valency	and	binding	affinity	in	the	fuzzy	
binding	model	with	 (upper)	and	without	 (lower)	 considering	 the	 local	concentration	effect.	
Local	concentration	is	computed	by	eq.	9.	Linker	dynamics=0.35,	box	length	=	20.	
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Intrinsically	 disordered	 regions	 influence	 phase	 boundary	 via	 increasing	 linker	
dynamics		[21,	26].	In	most	studies,	linkers	are	implicitly	assumed	to	have	infinite	flexibility	to	
enable	all	possible	contact	combinations	in	higher-order	assemblies.	Limited	linker	dynamics	
however,	would	 reduce	 the	number	of	contact	 topologies	 (i.e.	microstates)	 realized	 in	 the	
system.	 This	 effect	 has	 never	 been	 studied	 systematically.	 In	 Figure	 6	 we	 present	 the	
dependence	of	polymer	formation	on	linker	dynamics,	which	was	varied	in	the	range	of	[0,1],	
while	 keeping	 the	 affinity	 of	 binding	 elements	 constant.	 If	 D=1,	 linkers	 preserve	 their	
conformational	heterogeneity	similarly	to	their	unbound	state	[19],	while	in	case	of	D=	0,	the	
linkers	collapse	and	become	rigid	in	the	assembly.	The	latter	case	is	hypothetical,	and	is	never	
realized	in	biological	systems.	

	

	
Figure	6	Probability	of	large	polymers	as	a	function	of	valency	and	linker	dynamics	in	the	one-
to-one	(upper)	fuzzy	(lower)	binding	models.	Linker	dynamics	is	computed	as	the	average	of	
the	residue-based	values	(eq.	5.).	Binding	element	affinity=0.35,	box	length	=	20.	

Increasing	linker	dynamics	significantly	lowers	the	phase	boundary	in	both	one-to-one	
and	fuzzy	simulations	(Figure	6).	In	the	non-fuzzy	binding	model,	the	impact	of	linker	dynamics	
is	 comparable	 to	 that	 of	 increasing	 interaction	 affinity	 (Figure	 4),	 illustrating	 that	 either	
stronger	or	more	heterogeneous	binding	can	promote	of	assembly	formation.	Linker	dynamics	
has	larger	impact	on	the	fuzzy	simulations,	which	demonstrates	two	effects.		First,	it	highlights	
that	 preserving	 conformational	 heterogeneity	 in	 the	 assembled	 state	 has	 a	 critical	 role	 in	
mediating	a	multitude	of	binding	arrangements.	Second,	interaction	heterogeneity	correlates	
with	increasing	tendency	for	phase	transition	at	a	given	valency.		

The	interplay	between	affinity	and	linker	dynamics	in	the	fuzzy	simulations	is	shown	in	
Figures	 7-9.	 Here	 we	 systematically	 varied	 both	 quantities	 in	 the	 [0,1]	 range.	 For	 any	
combinations	of	binding	affinity	and	linker	dynamics,	the	critical	role	of	valency	is	observed.		
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Interaction	 affinity	 and	 linker	 dynamics	 act	 in	 synergy	 to	 promote	 polymerization.	
Increasing	 linker	 dynamics	 result	 in	 phase	 transition	with	 lower	 affinity	 elements.	 In	 turn,	
higher	affinity	binding	enables	polymerization	with	more	rigid	 linkers.	 Increasing	affinity	or	
dynamics	 represent	 two	 alternative	 modes	 for	 assembly,	 which	 result	 in	 supramolecular	
assemblies	with	distinct	properties.	Stronger	 interactions	will	bias	 for	more	ordered,	static	
higher-order	assemblies,	whereas	dynamical	linkers	lead	to	structurally	heterogeneous,	liquid	
like	 systems.	 	 We	 must	 note	 that	 our	 simple	 model	 cannot	 inform	 on	 the	 specificity	 of	
interactions,	especially	in	more	dynamical	systems.	

	

	
Figure	 7	Probability	 of	 large	 polymers	 as	 a	 function	 of	 binding	 element	 affinity	 and	 linker	
dynamics	in	the	fuzzy	binding	models	for	valency	n=4.	

	
Figure	 8	Probability	 of	 large	 polymers	 as	 a	 function	 of	 binding	 element	 affinity	 and	 linker	
dynamics	in	the	fuzzy	binding	models	for	valency	n=5.	
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Figure	 9	Probability	 of	 large	 polymers	 as	 a	 function	 of	 binding	 element	 affinity	 and	 linker	
dynamics	in	the	fuzzy	binding	models	for	valency	n=6.	

The	impact	of	modulating	affinity	and	linker	dynamics	on	the	material	state	could	be	
evaluated	based	on	the	entropy	of	the	system.	This	was	computed	according	to	the	reference	
[14]	as	

∆ijP'S

kl
= 𝑚×𝑛×𝑙𝑛 𝑚 					(14)	

where	∆𝑆pL*Nis	the	configurational	entropy,	kB	is	the	Boltzmann	constant,	n	is	the	valency	and	
m	is	the	number	of	molecules	within	the	polymer.	Figure	10	shows	the	relative	variation	of	
entropy	upon	systematic	changes	in	binding	element	affinity	and	linker	dynamics	in	case	of	
valency	n=5.	

		

	
Figure	10	Relative	entropies	generated	by	different	strategies	of	assembly:	modulating	binding	
element	affinity	and	linker	dynamics.		
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	The	 entropy	 of	 the	 system	 is	 tuned	 by	 the	 interplay	 between	 affinity	 and	 linker	
dynamics.	 Stronger	 interactions	 promote	 polymerization,	 especially	 at	 higher	 valency,	 but	
freeze	the	system	at	the	same	time.		More	dynamical	linkers	may	compensate	this	effect	and	
increase	entropy	by	enabling	higher	number	of	microstates.	The	present	simulations	do	not	
capture	the	entropic	penalty	due	to	the	loss	of	conformational	entropy,	which	could	also	be	
lowered	by	preserving	conformational	heterogeneity	in	the	bound	system	[19].				

	

Discussion	

Protein	 function	 is	 usually	 interpreted	 within	 the	 deterministic	 framework	 of	 the	
classical	structure-function	paradigm.	This	relationship	establishes	a	connection	between	a	
well-defined	three-dimensional	organization	of	amino	acid	residues	and	the	biological	activity	
of	 the	 resulted	 conformer.	 The	 classical	 description	 also	 involves	 the	 assumption	 that	 the	
intra-	or	intermolecular	interactions	generate	a	well-defined	pattern.	Increasing	experimental	
evidence	contradict	this	simple	picture	and	demonstrate	that	biological	function	may	require	
conformation	 and	 interaction	 heterogeneity	 [23,	 30].	 Sequences	 of	 proteins	 composing	
membraneless	organelles	for	example,	are	enriched	in	redundant/degenerate	motifs,	which	
appear	 to	 contact	 in	 multiple	 ways	 resulting	 in	 a	 heterogeneous	 assembly	 [19].	 Indeed,	
structural	 and	 interaction	 heterogeneity	 is	 an	 intrinsic	 feature	 of	 higher-order	 protein	
assemblies,	ranging	from	static	to	highly	dynamical	structures	[21].		

Developing	 computational	 approaches	 to	 describe	 heterogeneous	 systems	 is	 a	
challenge.	Until	now	a	one-to-one	binding	model	has	been	employed	in	both	coarse-grained	
and	lattice	simulations	[26],	which	could	not	account	for	the	effect	of	heterogeneity,	resulted	
by	multiple,	alternative	configurations.	A	 fuzzy	mathematical	 framework	allows	co-existing	
alternative	structures	or	 interaction	patterns	 in	the	system,	which	are	realized	to	different	
extents.	Within	 the	 fuzzy	model,	one	binding	element	may	 interact	with	multiple	partners	
simultaneously	 and	 the	 contribution	 to	 alternative	 states	 are	 expressed	 via	 membership	
functions.	The	membership	of	a	binding	element	varies	in	each	configuration,	and	the	system	
remains	heterogeneous	throughout	the	trajectory.		

Here	 we	 applied	 the	 fuzzy	 framework	 to	 a	 hypothetical	 polymer	 characterized	 by	
binding	affinity	and	dynamics.	Although	our	fuzzy	model	is	highly	intuitive,	it	could	describe	
the	 basic	 features	 of	 a	 real	 protein,	 especially	 with	 a	 low-complexity	 sequence.	 The	
simulations	 recapitulate	 the	 observation	 that	 multi-valency	 is	 a	 pre-requisite	 for	 phase	
transition	 [14].	 	 As	 compared	 to	 the	 one-to-one	 (non-fuzzy)	 binding	 model,	 the	 fuzzy	
simulations	predict	a	lower	phase	boundary	(Figure	2,3).	This	illustrates	that	higher	number	
of	 iso-energetic	 sub-states	 favor	 assembly.	 Furthermore,	 more	 partial	 contacts	 (local	
concentration	 effect)	 increased	 the	 chance	 of	 productive	 interactions	 and	 polymerization	
(Figure	 5).	 Linker	 dynamics	 has	 a	 distinguished	 role	 in	 increasing	 heterogeneity,	 which	
facilitates	formation	of	large	polymers	especially	in	the	fuzzy	model	(Figure	6).	We	could	also	
systematically	investigate	the	interplay	between	binding	affinity	and	linker	dynamics	(Figure	
7-9).	 These	 two	 factors	 present	 two	 alternative	 ways	 to	 promote	 higher-order	 assembly:	
higher	affinity	for	the	binding	elements	bias	for	more	ordered	states,	whereas	more	mobile	
linkers	increase	dynamics	of	the	bound	system	(Figure	10).	Taken	together,	fuzzy	simulations	
capture	the	inherent	heterogeneity	of	higher-order	protein	assemblies	leading	to	an	efficient	
computational	technique,	which	can	be	applied	to	studying	pathological	mutations	leading	to	
more	solid	aggregates.			
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Conclusion	

Understanding	 the	 molecular	 basis	 of	 how	 higher-order	 protein	 assemblies	 are	
organized	and	regulated	is	challenging	owing	to	the	complexity	and	heterogeneity	of	these	
systems.	Here	we	applied	a	mathematical	model	based	on	a	fuzzy	framework,	where	biological	
polymers	are	described	by	multiple	co-existing	states.	To	our	knowledge	this	is	the	first	time,	
when	such	an	approach	has	been	applied	to	protein	systems.	Fuzzy	simulations	could	more	
efficiently	recapitulate	the	experimental	observations	on	multivalent	polymers	as	compared	
to	the	one-to-one	binding	model.	We	propose	that	the	fuzzy	framework	is	generally	applicable	
to	real	protein	systems,	not	only	to	the	hypothetical	model	used	in	this	study.	The	affinity	and	
dynamical	parameters	could	be	computed	based	on	the	primary	sequence.	Other	parameters	
could	 also	 be	 incorporated	 into	 the	 fuzzy	 framework	 thus	 opening	 new	 perspectives	 for	
simulating	how	complex	protein	systems	work.		
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