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Abstract 
We have undertaken a systematic haplotype analysis of the positional type of 

biclusters analysing samples collected from 164 breast cancer patients and 86 

women with no known history of breast cancer. We present here the haplotypes 

and LD patterns in more than 80 genes distributed across all chromosomes and 

how they differ between cases and controls. We aim by this to 1) identify genes 

with different haplotype distribution or LD patterns between breast cancer 

patients and controls and 2) to evaluate the intratumoral mRNA expression 

patterns in breast cancer associated particularly to the cancer susceptibility 

haplotypes. A significant difference in haplotype distribution between cases and 

controls was observed for a total of 35 genes including ABCC1, AKT2, NFKB1, 

TGFBR2 and XRCC4. In addition we see a negative correlation between LD 

patterns in cases and controls for neighboring markers in 8 genes such as 

CDKN1A, EPHX1 and XRCC1. 
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Introduction 
The common disease common variant hypothesis is the foundation for 

large scale whole genome analyses of extensive population cohorts aiming at 

identifying low penetrant markers that in concert result in an increased risk of 

cancer. Nearly 1300 published GWAS studies have so far identified 6551 

markers associated with various diseases and traits such as asthma, multiple 

sclerosis and various cancer types (1). For breast cancer specifically SNPs in 

41 genes including FGFR2, TOX3, TERT and ERBB4 have been associated 

to the disease (2-5). These studies view the risk of common genetic variation 

only and the number of markers is restricted to the number of SNPs on the 

studied arrays without focus on particular genes or functionality. Here we 

have taken an alternative route based on a candidate gene approach without 

restriction to frequency. Moreover, we did not study single disease associated 

SNPs but looked for differences in haplotype distribution and LD patterns 

between cases and controls. Linkage disequilibrium (LD) is the association 

between two markers (SNPs) resulting from common inheritance of two typically 

nearby loci. LD is eroded by mutations, gene conversions and recombination 

events, and is influenced by the age of the mutations as well as the history and 

size of the populations in which they are studied. Several measurements are 

used to estimate LD such as D’ (6) and r2 (7). D’ shows larger variability within 

and between populations and is more influenced by sample size (8,9). D’ takes 

into account the history of the markers and is more robust with regards to 
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frequency while r2 is less affected by problems related to sampling (8). It is also 

possible to use statistical estimates of population recombination rates (ρ) instead 

of pairwise measures of LD (9). This measure correlates well across populations 

and relates the LD pattern directly to the underlying recombination process (7). 

Haplotypes are strings or combinations of co-inherited SNPs residing at regions 

of high LD and separated by areas with high recombination and low LD (8). They 

are inherited from parents as a single unit and tend to break at recombination 

hotspots (3). In population studies in contrast to linkage analysis in families, an 

absolute determination of haplotypes is not possible, but studies of phased 

estimations have proven these to be a very good approximation. The results from 

these studies indicate an error in assigning phase to genotypes of approximately 

5 % in unrelated individuals (10). This uncertainty can be adjusted for as we have 

previously described (11). 

The choice of LD block was motivated by our studies in eQTLs. Our 

findings indicate that the breast cancer risk variants found by the GWASs may 

exert their effect through the regulation of expression, and that the genes 

harboring these risk variants are significantly differentially expressed between 

the well established breast cancer subtypes (12). Given the significant role 

mRNA expression patterns play in the development of breast cancer, we 

hypothesize that SNPs associated to clusters of deregulated co-expressed 

mRNA transcripts may lead us to novel susceptibility markers. We have 

previously described that among 583 candidate SNPs in 203 genes of the 

reactive oxygen species metabolism/signaling, there are SNPs significantly 
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associated over the random to the expression of subsets of unselected 

transcripts in the tumor of breast cancer (13). Furthermore, these subsets of 

transcripts are enriched for given functional pathways also over the random. 

Multiple SNPs (biclustes) that together share significantly many common 

associations to a set of transcripts were identified. These biclusters were 

either located in different genes on different chromosomes, suggesting a 

multi-locus regulatory effect on a pathway (functional biclusters) or clustered 

in the same gene or chromosomal region (positional biclusters). With the 

present study we have undertaken a systematic haplotype analysis of these 

positional  biclusters extending the analysis to samples collected from 164 

breast cancer patients and 86 women with no known history of breast cancer. 

We aim by this study to 1) formally assess the degree of LD between the 

SNPs in the positional biclusters associated to expression 2) use these eQTL 

hits to identify cancer susceptibility haplotypes by comparing the distribution 

or LD patterns between 1592 breast cancer patients and 1892 controls.   

 

Material and Methods 

Genotyping 

We have genotyped 164 breast cancer patients and 86 healthy women 

with no known history of cancer (two negative mammography screenings). The 

panel of SNPs genotyped are thoroughly described in (14) but in short, SNPs in 

candidate genes involved in the metabolism of reactive oxygen species and 
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xenobiotics, DNA repair, cell cycle and apoptosis were genotyped using a mini-

sequencing (SNP-IT) method multiplexing up to twelve SNPs in one tube. The 

polymerase chain reaction, clean up with ExoI and SAP and SNP-IT reaction are 

performed in one tube and the reaction mix hybridized to an array. Each of the 

twelve SNP-IT primers contain a tag that utilizes sorting of the multiplex reaction 

on the array. The mini-sequencing reaction is a two colour reaction and signal is 

detected after laser excitation of the fluorophores on the SNP-stream UHT 

system.  

Validation analysis of selected SNPs 

Validation of selected SNPs were done using the Sequenom MassARRY 

platform and iPLEX genotyping assays (www.sequenom.com/home/) (15).  

Microarray expression analysis.  

For 50 of the breast cancer patients, expression data were also available. 

Tumour tissue (20-50mg) was dissected and powdered in liquid nitrogen and 

total RNA was prepared by standard procedures. Whole genome microarray 

expression analysis has been performed using cDNA microarrays as described 

in (16-18).  

SNP-expression association analysis 

Unselected subset of 3351 mRNA transcripts was obtained by filtering for 

signal quality (ratio of spot intensity over background exceeding 1.5 in at least 

80% of the experiments in each dye channel). The analysis of the SNP-

expression associations are published earlier in (13). For these patients 
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additional 28 SNPs were available for the haplotype analysis. In short, the 

correlation between genotypes and expression level of the different mRNA 

transcripts were assessed using three, different statistical approaches; ANOVA, 

QMIS and LOOCV. For each SNP locus and each transcript, the one-way 

ANOVA p-value was computed for the expression vector and grouping of the 

samples based on SNP locus genotypes (19) assuming the null hypothesis that 

the expression level distributions are the same, regardless of the genotype class. 

QMIS (Quantitative Mutual Information Score). For a SNP locus s and an 

expression vector q of transcript t, let G be a partition of samples induced by the 

genotype values at locus s. For an expression level threshold p, let Cp be a 

partition of samples defined by the q<p and q≥p. The mutual information score 

(MIS) is the difference between the entropy of the partition Cp and the conditional 

entropy of Cp given G: MIS(Cp, G) = H(Cp) – H(Cp |G), where H is the entropy 

function. The quantitative mutual information score is defined to be the maximum 

possible MIS, i.e., QMIS(C,G) = maxmin(q) ≤p≤max(q)MIS(Cp,,G). An exact p-

value for the mutual information score can be computed exactly by an efficient 

exhaustive approach (20). In this case, the null hypothesis is that genotype 

values have the same distribution, regardless of expression levels. For QMIS, 

769 SNP-transcript association pairs with p-values ≤ 1.0E -04 were observed, 

representing an FDR of 0.2. LOOCV (Leave Out Cross Validation) for a given 

SNP in the data set, its genotypes were utilized to group samples. For each 

grouping, leave-one-out-cross-validation analysis was performed, trying to 
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predict from the expression data which genotype group each sample belongs to 

(similar to the methods described in (21)). 

 

Gene Ontology analysis (GO) 

The group of transcripts associated to the same SNP or group of SNPs 

was analysed with regards to enrichment of GO terms based on GO terms 

downloaded from Source (http://source.stanford.edu/cgi-

bin/source/sourceSearch), for this analysis the p-value cut-off for the SNP-

expression association was set at 0.05 and 0.01. The significant 

overrepresentation for a GO term was calculated taking into account the total 

number of; 1) genes on the expression array, 2) genes associated with the GO 

term, 3) genes associated to the SNP and 4) the number of genes associated 

with the SNP or group of SNPs, that belong to the GO term. The z score was 

calculated according (14) by subtracting the expected number of genes in a GO 

term from the observed and diving this by the standard deviation of the observed. 

  )(
)exp(

observedstd
ectedobservedz −

=
 

 

 

Calculation of LD and Spearman’s correlation coefficient 

SNPs that had discovery rate lower than 75% were excluded. Initially, the 

panels of SNPs were screened for clusters containing a minimum of 3 SNPs with 

no more than 100 kb between neighboring SNPs. For the genes represented in 
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these clusters – all genotyped SNPs were included. LD estimations were done in 

two steps. First, we estimated the haplotypes for cases and controls separately 

from our population genotype data using the recombination model implemented 

in the program PHASE (Stephens, M. et al.) with 5 different seeds and 100. The 

significance of the difference in haplotype distribution between cases and 

controls was calculated in Phase. The second step was the evaluation of the LD 

for all included genes. For this purpose, we calculated pairwise D’ for cases and 

controls separately for all possible SNP combinations within a gene and under 

consideration of the uncertainty in phase estimation (11). PHASE also provides 

the recombination rate as a measure of dependency between the SNPs for all 

adjacent SNPs within a gene. To evaluate the difference for each gene between 

the LD-patterns of cases and controls, we calculated Spearman’s correlation 

coefficient ρ as done in (9). The correlation is given as a value between -1 ≤ 0 ≤-

1, where 0 indicates no correlation, whereas -1 and 1 indicates high negative and 

positive correlation respectively. We calculated this nonparametric correlation 

coefficient 1) using all markers for D’ and 2) using only adjacent markers for ρ. 

 

Analysing the relationship between haplotypes and expression levels 

of transcripts associated to multiple SNPs within a gene 

The non-parametric Mann Whitney or Kruskal Wallis test was used to 

analyse the possible connection between the haplotypes estimated for a gene 

and the expression levels of transcripts associated to all or a subset of the SNPs 

within the given haplotypes. The analysis were performed using SPSS v15.0, the 
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p-values are exact (50 iterations), two-tailed and not corrected for multiple 

testing. 

 

Estimating population subdivision – calculating the fixation index 

Population subdivision was estimated using the Arlequin Software to 

calculate the Fixation index (Fst). This index measures the population 

differentiation between two groups and its values range from 0 to 1 (with 0 

meaning that the populations are completely similar with regard to allele 

frequencies and 1 being that the populations are completely differentiated (22). 

 

Results and discussion 

The overall study design is given in Supplementary Figure 1. A total of 687 

SNPs in 203 genes selected from pathways related to the ROS metabolism and 

signaling were genotyped in 169 breast cancer patients and 86 controls (14). 

Haplotypes were inferred and of the 687 SNPs, a subset of 457 SNPs were 

available at HapMap with associated frequency information. The full list of SNPs 

used in the analysis can be found in Supplementary Table 1 together with 

information on gene affiliation, chromosomal position, allelic variation and strand 

genotyped.  

 

Impact of multiple SNPs (biclusters) on the expression profile;  
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For 50 of the patients genotyped here expression data were available and we 

have previously reported the association of 538 SNPs to the intratumoral mRNA 

expression in these patients (13). Many of the studied genes, e.g. ABCC1, 

ALOX12, DPYD, GSTM3, NOX3, IL10 and IL8 were shown to harbor multiple 

SNPs significantly associated to the level of transcripts in cis and trans (for full 

list see Supplementary Table 2). We have formally assessed the degree of LD 

between the multiple SNPs regulating the same group of transcripts and observe 

that many of these are in strong linkage disequilibrium such as in the genes of 

DPYD, TXNIP, GSTA4, PPP1R9A, NFKBIA, IGF1R, ABCC1 and as shown for 

XDH and IL1R1 on chromosome 2 Figure 1 (figures for all other chromosomes 

are given in Supplementary Figure 2a-u). Further analyzing the characteristics 

of these subsets of coexpressed transcripts by gene ontology analysis (p-value 

cut-off for the SNP-transcript association: 0.01), we find for SNPs in more than 

25 genes a significant overrepresentation of GO terms in the list of regulated 

transcripts at p-value< 0.001 (Table 1). Compelling examples are: 1) 18 SNPs in 

DPYD (involved in pyrimidine base degradation) which together with a SNP in 

GSTM4 all are associated to the expression of a group of 10 transcripts among 

which there is an overrepresentation of the GO term regulation of cell growth and 

2) 6 SNPs in GSTA4 associated to a group of 20 transcripts with an 

overrepresentation of the GO term transcriptional activator activity.  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2018. ; https://doi.org/10.1101/248047doi: bioRxiv preprint 

https://doi.org/10.1101/248047


In addition, we also found transcripts such as ANKS1, CREG, NFKB1, TYMS 

and USP1 that were associated each to multiple SNPs (Supplementary Table 

3). 

Analysis of the haplotype distribution and chromosome wise LD 

pattern in the case vs. the control population 

Haplotypes were estimated for all genes harboring more than 3 SNPs with a 

maximum distance between neighboring SNPs of 100 kb (n=83). Haplotypes 

were inferred for the case and control groups separately and the significance of 

the difference in their distribution was evaluated. A significant difference (p<0.05) 

in haplotype distribution between cases and controls was observed for 35 genes 

such as ABCC1, AKT2, NFKB1, ALOX15B, GSR and PIK3CA (Table 2). 

The pairwise LD was estimated for: 1) all markers and 2) only between 

neighboring markers by the standard measurements D’ and r2 under 

consideration of the uncertainty in phase estimation as described in (11). In 

addition for the neighboring markers, ρ (estimating the population recombination 

rate across multiple populations) was calculated as described by Evans and 

Cardon (9). Looking at neighboring markers there is a negative correlation (ρ < -

0.700) between the LD patterns in cases and controls in 8 genes such as 

CDKN1A, EPHX1 and XRCC1 (Table 3, panel A). When including all possible 

pairwise comparisons for the D’ measure, the Spearman’s correlation analysis 

revealed a negative correlation for PQLC2, SOD2 and PIK3CA (Table 3, panel 

B). Comparing the pairwise correlation analysis between cancers and controls 
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with the haplotype distribution analysis we see that for the genes where we find a 

significant different haplotype distribution between cases and controls the 

correlation is either very low or positive. These results indicate that the difference 

between cases and controls may be identified by studying together the degree of 

correlation of LD patterns and the haplotype frequency distribution.  

Additionally, we investigated neighboring clusters of genes for differences in LD 

structure and found a negative correlation between the LD values for cases and 

controls in neighboring regions for gene-pairs such as IL1A+IL1B, RAF1+XPC 

and NFKBIA+FOS (Supplementary Table 4). These results suggest that the 

impact of a SNP on susceptibility may be fortified by its organization into 

haplotype structure including more than one gene, which together may confer 

higher risk.  

 

Impact of the identified putative susceptibility haplotypes on the 

expression profile; 

The haplotypes that were found significantly differently distributed between cases 

and controls in the genes ABCC1, BCL2, IGF1R, LIG4, PPP1R9A and TXNIP. 

were then tested for association to intratumoral expression. The increased 

complexity with increasing number of estimated haplotypes made it difficult to 

detect any significant trends for ABCC1, BCL2, IGF1R and partly PPP1R9A but 

for both LIG4 and TXNIP a significant association between the expression level 

of several transcripts and the estimated haplotypes was identified. For TXNIP, 

the second most frequent haplotype (AAAGGAG, Table 1) was found associated 
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to the expression level of MADH4, NFE2L1 and TRAP240  (exact p-value <0.001 

and 0.001 respectively, Figure 2 a and b). For LIG4, three transcript probes 

linked to the overrepresented GO term “ubiquitin cycle” were available 

representing the expression levels of FBXO11, TSG101 and CDC34. 

Combinations of the second most frequent haplotype (CACCT, Table 1) show a 

significantly different expression level for FBXO11 (exact p-value 0.009, Figure 

2c).  

 

Frequency distribution of the htSNPs derived from the putative 

susceptibility haplotypes associated to expression in cases and 

controls. 

A total of 42 htSNPs in 9 genes (ABCC1, IL1R1, PPP3CA, NFKB1, BCL2, 

IGF1R, LIG4, PPP1R9A and TXNIP) with both significant difference in haplotype 

distribution between cases and controls and an association between multiple 

SNPs in the gene an intratumoral expression, either in cis or trans, were selected 

for case control analysis. All in all we genotyped 3484 samples divided in 1592 

samples from BC patients/survivors and 1892 controls. 16 of the 42 investigated 

SNPs were found associated or borderline associated with case-control status 

(Table 4). Three SNPs, rs 215094 in ABCC1,(p<2.25E-04) rs878335 in IGF1R 

(p< 5.58E-09) and rs1805388 in Lig4 (p<  7.73E-6) were significant after 

BonFerroni correction with the SNP in IGF1R reaching genome wide significance 

level.  
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Controls vs hapmap Caucasians  

Population subdivision between our sample material and the HapMap samples 

was estimated by the Fixation index (Fst) which measures the population 

differentiation between two or more (22). The Fst was calculated separately for 

the nine genes with ≤7 loci available for analysis (BCL2, IGF1R, IL10, NFKB1, 

NOX3, TANK, TGFBR2, TXNIP and XRCC4, Table 1) and then averaged over 

all genes. The average Fst was 0.0065, indicating a negligible difference between 

the two populations. 

 

Conclusion 

Several studies have looked into the relationship between single SNPs and 

risk of sporadic breast cancer both at the single SNP level and the GWAS level. 

The success of the former in identifying low penetrance alleles have been limited 

while the latter has identified regions of 10q26 (FGFR2), 16q12.1 (TNRC9), 

5q11.2 (MAP3KI), 8q24, 11p15.5, 5q12 and recently 1p11.2, 14q24.1 

(RAD51L1), 3p24 and 17q23.2 to be linked to risk of sporadic breast cancer 

(3,23-27). In this study we have chosen to look at the association between 

haplotypes and LD patterns in more than 80 genes distributed across all 

chromosomes and how they differ between cases and controls and identify 

differences in both, interestingly not at the same time, in important cancer related 

genes such as NFKB1, PIK3CA and CDKN1A. We also link the results of our 

haplotype analysis to our previously published results revealing an association 
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between the germline variation and the expression level in the tumor itself (13). 

Our SNPs are not representative for the whole genome – they are selected from 

a candidate gene approach but they anyway make grounds for comparing 

haplotype patterns between cases and controls and to estimate to what extent 

these results can be extrapolated to other populations through the genetic 

similarity with data extracted for the Caucasian samples included in the HapMap 

project. If we manage to find SNPs in the classical and novel regulatory areas of 

the genes that correlate to the expression of genes in breast cancer, we will be 

able to predict the risk of developing certain molecular portraits of breast cancer 

before the cancer has at all occurred. 
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Table legends 
 
Table 1. GO analysis of the set of transcripts associated to groups of SNPs in single 
genes reveals an overrepresentation of GO terms among these transcripts (p-value<0.001, 
Supplementary Table 5: p-value<0.05). Genes with a significant difference in haplotype 
distribution between cases and controls are given in bold (Table 3).  
 
Table 2. Genes with significantly different haplotype distribution between cases and 
controls. P value of 0.01 indicates 0.01 or less. 
 
Table 3. Spearmann’s correlation between LD of cases and controls for neighbouring 
SNPs (panel A) and all SNPs (panel B) within a gene based on r and D' values 
respectively. Listed here are only genes with an absolute correlation between 0.7 and 1 
 
Supplementary Table 1. SNPs included in analysis with information on gene affiliation, 
chromosomal position, allelic variants and strand genotyped. 
 
Supplementary Table 2. Multiple SNPs located in the same gene were found associated 
to the expression level of a number of transcripts by both ANOVA and QMIS analysis in 
[1]. Listed here are the gene info, rs-numbers, probe id of associated transcripts, most 
significant p-value from association analysis as well as whether the association is in cis or 
in trans. 
 
Supplementary Table 3 Transcripts associated to genetic variation of multiple SNPs 
located within the same gene by both ANOVA and QMIS analysis in [1]. Listed here are 
gene info for identified transcripts,rs-numbers and gene info of associated SNPs, most 
significant p-value from association analysis as well as whether the association is in cis or 
in trans. 
 
Supplementary Table 2. Spearmann’s correlation based on D' values between LD of 
cases and controls calculated in the intergenic areas.  Listed here are only intergenic 
regions with an absolute correlation between 0.4 and 1 
 
 
Supplementary Table 4. List of transcripts regulated by several SNPs 
 
Supplementary Table 5. GO analysis of the set of transcripts associated to groups of 
SNPs in single genes reveals an overrepresentation of GO terms among these transcripts 
(p-value < 0.05). “Top” indicates the number of the regulated transcripts associated with 
the given GO term. 
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Figure legends 
 
Figure 1 LD pattern in chromosome 2 for the cases together with information on 
overrepresented GO terms among associated transcripts. X-axis indicates the significance 
level of the LD while the |D’| values are plotted on the Y-axis, values along the diagonal 
are intragenic, adjacent panels give information on intergenic regions.  
 
Figure 2 Boxplots showing the spread in the expression levels of the transcripts probes 
for MADH4 (A) and NFE2L1 (B) for the different haplotype combinations of TXNIP as 
well as the spread in the expression levels of the transcripts FBXO11 for the different 
haplotype combinations of LIG4  
 
Supplementary Figure 1 Flow chart of the sample material and analysis 
 
Supplementary Figure 2a-u.Chromosome wise LD for the cases together with 
information on overrepresented GO terms among associated transcripts. X-axis indicates 
the significance level of the LD while the |D’| values are plotted on the Y-axis, values 
along the diagonal are intragenic, adjacent panels give information on intergenic regions. 
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Figure 2 Boxplots showing the spread in the expression levels of the transcripts probes associated to haplotypes of 1) TXNIP: MADH4 (A) and 
NFE2L1 (B) and 2) LIG4: FBXO11 (C). The haplotypes presented in the figure is as follows (1=CAAGGAG, 3=CAAACTG, 4=CGGGGAG and 
5=AAAGGAG) for TXNIP and (1=TACCT, 2=TATCT, 3=TATTT and 4= CACCT) for LIG4, (for full list of the haplotypes with a frequency of 
more than 1% in the studied sample set and identified frequency in the controls and cases separately see Supplementary Table 2). 

 

A  B  C  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2018. ; https://doi.org/10.1101/248047doi: bioRxiv preprint 

https://doi.org/10.1101/248047


Gene

# of 
associated 
SNPs SNP(s)

# of 
transcripts 
regulated

GO term overrepresentated in 
group of transcripts z-score p-value Top Top transcript members of Go term

ABCC1 5 212083, 212088, 215067, 215094, 2062541 51 intracellular signaling cascade 4.017746 2.93787E-05 6 SHC1, RAB2L, SYK, PARG1, HSPC163, AKAP13
BCL2 8 1381548, 2551402, 899966, 1481031, 720321, 1016860, 1982673, 2062011 16 heparin binding 3.4840574 0.000246937 3 AAMP, SERPINC1, SERPINE2

7 ossification 3.7774165 7.92318E-05 3 SPARC, OSTF1, MGP
10 inner membrane 4.15958 1.59417E-05 4 COX6A1, SURF1, UQCR, COX6C
10 regulation of cell growth 4.15958 1.59417E-05 4 COVA1, TSG101, IGFBP5, CTGF
5 mitochondrial electron transport chain 4.7101364 1.23776E-06 3 SURF1, UQCR, CYC1
20 transcriptional activator activity 4.087544 2.17982E-05 3 MYB, TP53BP1, FOXC1
11 protein kinase activity 5.894784 1.87586E-09 3 CCL2, CDK4, TRB2

HIF1AN 1 2295779 19 extracellular matrix structural constituent 14.076864 <1E-14 3 MFAP2, LUM, COL6A1
IER3 1 14350 28 structural constituent of ribosome 5.9378867 1.4436E-09 3 MRPS2, RPL31, RPS6

76 endoplasmic reticulum 4.275154 9.55026E-06 6 STS, SYNCRIP, ALG5, CYP1B1, VHL, GNAZ
21 microsome 4.501634 3.37165E-06 3 STS, CYP1B1, STCH
38 transcription coactivator activity 5.535717 1.54979E-08 5 ELF4, RNF4, NCOA2, DP1, TIF1
18 blood coagulation 4.4390535 4.51777E-06 3 TFPI, WAS, THBD
17 transmembrane receptor activity 4.601597 2.09632E-06 3 IL1R1, FCER1G, THBD

IL8 3 4073, 2227547, 2227306 19 extracellular matrix structural constituent 6.5541277 2.79841E-11 5 FBN1, COL5A2, BGN, COL3A1, MFAP2
LIG3 4 3136027, 2074516, 2074522, 1003918 73 intracellular 4.359937 6.50499E-06 3 BAT4, RFP, ASB1
LIG4 4 868284, 1805388, 1805389, 1805386 28 ubiquitin cycle 4.4994664 3.40621E-06 3 FBXO11, TSG101, CDC34
NDUFA8 2 6822, 1411445 19 extracellular matrix structural constituent 8.083895 <1E-14 4 COL4A2, COL4A1, COL6A2, COL6A1
NFAT5 2 1437134, 920191 38 transcription coactivator activity 4.962491 3.47974E-07 3 TAF7, TIF1, HTATIP2

10 epidermal differentiation 5.8582754 2.33849E-09 3 KRT5, PLOD, FLOT2
8 central nervous system development 6.6552978 1.41364E-11 3 DRPLA, RPS6KA3, ADORA2A

NFKBIA 3 696, 2233415, 1022714 24 response to stress 7.2226477 2.54907E-13 3 HIF1A, MAPK8, MKNK2
NQO1 3 1800566, 1541979, 744972 20 protein modification 4.7224402 1.16516E-06 3 AGPAT1, GPAA1, MMP15
PDGFC 2 1425492, 2113992 250 integral to membrane 3.3582497 0.000392189 3 STX17, FLOT1, SLC39A1
PPP1R15A 3 638050, 557806, 626140 38 transcription coactivator activity 4.9209385 4.30651E-07 4 TFDP1, ELF3, NFATC3, SF1
PPP1R9A 7 854549, 854518, 705377, 854537, 854524, 854523, 854539 29 inflammatory response 5.0928392 1.7637E-07 4 TLR5, NFATC3, RAC1, TNFRSF5

11 antigen processing 6.4047303 7.53178E-11 3 HLA-DMA, HLA-DQB1, HLA-DPB1
10 antigen presentation 6.7584443 6.97409E-12 3 HLA-DMA, HLA-DQB1, HLA-DPB1
8 exogenous antigen 7.648024 1.02141E-14 3 HLA-DMA, HLA-DQB1, HLA-DPB1
8 mhc class ii receptor activity 7.648024 1.02141E-14 3 HLA-DMA, HLA-DQB1, HLA-DPB1
8 exogenous antigen via mhc class ii 7.648024 1.02141E-14 3 HLA-DMA, HLA-DQB1, HLA-DPB1
10 core complex 3.818641 6.70944E-05 3 POLR2K, POLR2G, POLR2F

10 dna-directed rna polymerase ii 3.818641 6.70944E-05 3 POLR2K, POLR2G, POLR2F

TNFAIP2 4 8126, 2234131, 2234143, 710100 45 extracellular space 5.1493545 1.30692E-07 5 HSPG2, YARS, APOD, TNFAIP2, SERPING1
TOP2B 3 1881708, 1881709, 1001647 28 structural constituent of ribosome 4.6068473 2.0441E-06 3 LAMR1, NHP2L1, MRPL15
TXNIP 4 4755, 7211, 7212, 9245 13 transcription cofactor activity 6.652163 1.44408E-11 3 MADH4, NFE2L1, TRAP240
UGT2A1 3 1432314, 1432324, 1432336 56 protein biosynthesis 6.098483 5.35399E-10 5 ETF1, MRPS21, KIAA0256, SCYE1, NACA
XDH 15 2073316, 206798, 206801, 1042039, 1366814, 1366817, 494852, 992137, 732436, 1366811, 

1429374, 1054889, 743163, 2070294, 207428
6 rho small monomeric gtpase activity 5.165976 1.19594E-07 3 ARHG, ARHE, CDC42

DPYD 19 1889229, 2151563, 2065943, 1023245, 2786507, 1337521, 1337522,  1801265, 
290855, 866129, 1413229, 2039448, 828054, 1879371, 1415681, 827500, 1333727, 2811187, 
(569998, GSTM4)

GSTA4 6 1032419, 316128, 316130, 316131, 316132, 367836

IGF1R 8 907799, 907807, 2137680, 1568502, 2229765, 871335, 1567811, 2715438

IL1R1 5 871656, 997049, 871658, 2160227, 871659

TGFBR3 284170, 284176, 284190, 284873, 284874, 901917, 1192529, 2253316, 913059, 2038931, 
2799547, 1805113, 2279455, 1192524, 2007686, 2634021, 717923

17

Table 1. GO analysis of the set of transcripts associated to groups of SNPs in single genes reveals an overrepresentation of GO terms among these transcripts ( p-
value<0.001). Genes with a significant difference in haplotype distribution between cases and controls are given in bold.

NFKB1 10 230498, 230505, 230525, 230526, 230531, 1609798, 1585214, 1598857, 1020760, 1020759

PPP3CA 3 1021965, 920559, 958379
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Controls Cases

PTGS2 4 0.01 1q31.1 3 2
AATA
AAGA

0.871953
0.122233

0.004498
0.995413

TXNIP 7 0.02 1q21.1 13 3

CAAGGAG
AAAGGAG
CAAACTG

0.912659
0.052922
0.004535

0.865665
0.078901
0.035556

IL10 8 0.03 1q32.1 30 9

GCGCGCCG
ACGCGCCG
ATCCGCCG
ATCTAATG
GCGTGCCG
ACGCGCCA
ATGCGCCG
ATGTAATG
ATCCGATG
ATCCAATG

0 9 503
0.233689
0.177444
0.170937
0.017846
0.029069
0.005971
0.001858
0.034942
0.017556

0 5 58
0.168315
0.241212
0.205880
0.003165
0.012455
0.017908
0.016724
0.031330
0.012814

TANK 7 0.02 2q24.2 17 4

CTGCAAC
CTGTAAC
CTACGGC
CTGCGGC

0.514038
0.293175
0.139476
0.032224

0.494155
0.251378
0.224557
0.000295

IL1R1 5 0.03 2q11.2 18 9

ATCTC
ACCAC
TTCAA
ATCAC
ATGAA
ATGAC
ATCAA
ACCAA
ACCTC

0.309799
0.221693
0.173862
0.078671
0.091558
0.013087
0.016711
0.028107
0.027812

0.411778
0.225895
0.146918
0.084747
0.047522
0.026784
0.023701
0.010536
0.006547

XPC, MGC3222 5 0.01 3p25.1 14 8

CAGAT
GAGCC
CAGCC
CGGAT
CAGAC
GAGAT
GAGAC
GGGAT

0.225685
0.223666
0.174941
0.131953
0.130723
0.052045
0.033055
0.009673

0.263328
0.201174
0.185088
0.160631
0.130002
0.023673
0.010527
0.014249

PIK3CA 3 0.01 3q26.32 5 3

ATC
CTC
ATG

0.442989
0.533736
0.010836

0.503389
0.456775
0.038121

TGFBR2 14 0.01 3p24.1 215 24

GTAGATGGCTGCCC
GTGAGTGATCAGTG
GTAGACGGCTGCCC
GTGAACGGCTAGTG
GTAGATGGCTAGCC
GTAGATGGCTAGTG
GTAGATGGCCGCCC
TTAGACGGCTGGTG
GTGAACGGCTGCCC
GTAGATAATTAGTG
GTAGATGGCTGGCC
TTAGATAATCGGCC
GTGAATAATTAGTG
GTAGATGGCTGCTG
GTAGACGGCTGGCC
GTAGATGGCTGGTG
TTAGATAATCGCCC
TTAGACGGCTGCCC
TTAGATGGCTGCCC
GTGAACGGCTGGCC
TTGAACGGCTGCCC
GTAGATGGCCAGCC
GTAGATGGCCAGTG

0.159720
0.055400
0.066236
0.033521
0.042002
0.042402
0.032147
0.016937
0.011456
0.021577
0.036540
0.018181
0.028556
0.012651
0.017967
0.023750
0.007683
0.019633
0.012387
0.000746
0.007766
0.010506
0.006027

0.149080
0.081952
0.060786
0.060892
0.050078
0.049279
0.034859
0.033880
0.035070
0.024749
0.016798
0.025054
0.016599
0.023713
0.020195
0.016411
0.024318
0.017260
0.015041
0.020181
0.014837
0.012902
0.013500

NFKB1 10 0.01 4q24 51 11

AGCTCCTGCT
GATTTACGGC
AGCTCCTCCT
GGTCTACGGC
AGTTTCCGCC
GGTTTACGGC
AGCTCCTGCC
GGTCTACGGT
GGTTTCTGCC
AGTTTCTGCC

0.034303
0.138890
0.249885
0.066730
0.075465
0.042786
0.009937
0.021990
0.013938
0.004538

0.235505
0.130323
0.014257
0.098851
0.064106
0.056117
0.056837
0.025563
0.011156
0.015111

PDGFRA 5 0.01 4q12 19 8

GGTGC
GATGC
GGTTC
AGTGC
GATTC
GATGA
AATGC
AGTTC

0.347074
0.144510
0.284364
0.038653
0.068521
0.020773
0.008002
0.031469

0.676149
0.177623
0.005556
0.074460
0.002134
0.017663
0.019636
0.000032

PPP3CA 3 0.01 4q24 8 5

AGC
AAC
AAG
GGC
GAG

0.677841
0.111075
0.046110
0.052271
0.091910

0.805401
0.068700
0.061877
0.012229
0.048143

CCNB1 5 0.01 5q13.2 16 5

TCCGG
CTTTG
TCTGA
CCCGG
TTCGG

0.391092
0.439001
0.073988
0.005581
0.029482

0.472078
0.407780
0.094056
0.018047
0.000644

Table 2. Genes with significantly 
different haplotype distribution between cases and controls. P value of 0.01 indicates 0.01 or 

less.
Haplotype frequency (%)Tot. Nr 

of hap
No. Of hap

> 1%" Hap. freq.>1% "
p-

value* Location
Nr. of 
SNPsGene (s)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2018. ; https://doi.org/10.1101/248047doi: bioRxiv preprint 

https://doi.org/10.1101/248047


Controls Cases
Haplotype frequency (%)Tot. Nr 

of hap
No. Of hap

> 1%" Hap. freq.>1% "
p-

value* Location
Nr. of 
SNPsGene (s)

XRCC4 13 0.02 5q14.2 60 11

CGGAACTCACGTG
CGGAACTAACGTG
CGGAGTCAGTGTG
TAAGACTCACACA
CGGAACTCACACA
TAAGACTAACGTG
CGGAGTCAGTACA
TAAGGTCAGTACA
TAAGGTCAGTGTG
CGGAACTAACACA

0.229599
0.121548
0.058801
0.026756
0.022659
0.032373
0.011860
0.004883
0.009525
0.020216

0.353006
0.051329
0.081718
0.037067
0.038418
0.002874
0.012605
0.014989
0.012409
0.006561

IER3, FLOT1 4 0.01 6p21.33 6 4

CACC
CATC
CATT
CTTC

0.006744
0.834971
0.111069
0.037016

0.823071
0.171974
0.003507
0.001007

NOX3 7 0.01 6q25.3 44 8

GGGGTCA
GGGGTCC
GGGGCCA
GGGGCCC
GGAATCA
GGAATCC
GGGGTAC
GGGGCAC

0.020360
0.016381
0.434521
0.364135
0.037590
0.028165
0.000116
0.034837

0.411175
0.332584
0.011417
0.009913
0.079271
0.069558
0.021412
0.000207

PPP1R9A 6 0.04 7q21.3 25 9

ACAGTC
TTGGCT
TTGACT
ACAGCT
TCAACT
ACAACT
TCAGCT
TTGGTC 
TCAGTC

0.266450
0.261208
0.186323
0.050812
0.075680
0.033680
0.037238
0.045283
0.015332

0.307818
0.306296
0.131406
0.071011
0.054396
0.052567
0.028066
0.014458
0.018127

GSR 3 0.01 8p12 4 2
CAG
CAA

0.921753
0.054588

0.960371
0.036553

PDGFRL 6 0.01 8p22 31 10

G G C
ACGATC
AGAATC
GGAGTC
GGAATC
ACAATC
AGGATC
ACAGTC
AGAGTG
GGAGTG

0 39 6
0.151244
0.142394
0.046576
0.027317
0.029419
0.052660
0.015068
0.055505
0.033848

0 590 9
0.152154
0.140139
0.091591
0.057604
0.037510
0.018406
0.030906
0.000532
0.000709

GSTP1 3 0.04 11q13.2 7 3

ACC
GTT
ATT

0.604080
0.354126
0.017792

0.638464
0.339410
0.021478

CCND1,FLJ42258 3 0.05 11q13.3 6 3

TAG
TGC
TGG

0.357149
0.406703
0.221147

0.463277
0.289934
0.237858

CDK2,SILV, RAB5B 6 0.01 12q13.2 12 4

CAGGGC
CAGGGG
CATGGC
CAGGAC

0.832252
0.079164
0.031895
0.025254

0.912600
0.075237
0.003168
0.002869

LIG4,C13orf6 5 0.04 13q33.3 10 4

TACCT
CACCT
TATCT
TATTT

0.664213
0.161037
0.132246
0.024655

0.679079
0.131308
0.132383
0.056769

NOX5 4 0.02 15q23 4 3

GGAG
GGGG
TGAG

0.911390
0.047386
0.041224

0.946262
0.046985
0.003765

IGF1R 7 0.04 15q26.3 115 22

GCATAGA
GCATGGG
GCATGGA
GCATATA
GCACAGA
CTATGGA
CTATAGA
GCATGTA
CTATGGG
CTATATA
CCATGGA
CTACAGA
CCATAGA
GCATAGG
GCGTGGG
CTACGTA
GCACGTA
CTATGTA
CCATGGG
GCGTAGA
CTACGGG

0.164431
0.089676
0.078899
0.071077
0.065305
0.024052
0.025723
0.034747
0.022218
0.014430
0.013170
0.019649
0.031387
0.024496
0.021673
0.004887
0.008105
0.009085
0.016483
0.011778
0.010612

0.155902
0.095857
0.094462
0.061278
0.048441
0.051052
0.035314
0.029203
0.030210
0.029300
0.024623
0.019941
0.012467
0.015017
0.015105
0.021284
0.017565
0.015981
0.011514
0.013432
0.012677

ABCC1 6 0.01 16p13.11 51 12

TACACG
TATCTA
TATACG
TACCCG
CGCCCG
TACCTA
TACATA
CACCCG
CACACG
CGCACG
TACCTG

0.060470
0.068313
0.046879
0.104373
0.044661
0.049865
0.013110
0.046067
0.020836
0.022173
0.021234

0.153020
0.086060
0.078974
0.034471
0.025139
0.021073
0.043541
0.021520
0.033933
0.031074
0.012495

ALOX15B 4 0.01 17p13.1 10 6

GTCT
GCCT
ATCT
ACCC
GCCC
ACCT

0.077256
0.796801
0.010251
0.044981
0.013049
0.056381

0.802388
0.035392
0.089543
0.021830
0.034648
0.003313

MAPK7,MFAP4 4 0.01 17p11.2 5 2
GGGC
GGGT

0.978139
0.021688

0.819479
0.176348
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Controls Cases
Haplotype frequency (%)Tot. Nr 

of hap
No. Of hap

> 1%" Hap. freq.>1% "
p-

value* Location
Nr. of 
SNPsGene (s)

PRKCA 5 0.01 17q24.2 26 12

CACAA
CAAAG
CCCGA
CCCAA
TACAA
CACGA
TAAAG
CACAG
CCAAA
TCAAG

0.197403
0.186905
0.098155
0.070620
0.097847
0.087234
0.054397
0.019759
0.005873
0.000995

0.160090
0.118722
0.118051
0.098702
0.076954
0.039990
0.039115
0.019017
0.022615
0.018576

COX10 5 0.03 17p12 24 8

CTTGT
CCTGT
CCCAC
ACTGT
CTCGT
CCCGT
ATTGT
CTCAC

0.374931
0.198348
0.136531
0.051837
0.060769
0.030241
0.067519
0.028492

0.428094
0.172466
0.114793
0.055525
0.049999
0.063912
0.034288
0.033244

BCL2 8 0.04 18q21.33 89 19

GTAGCTGG
GTAGCTGA
GTAATAGG
ATAGCTGG
GTAGCTAG
GGAGCTGG
GTAATAGA
GTAACTGG
GTAATTGG
GGAGCTGA
GTAATAAG
GGAATAGG
GTAATTGA
GTAACTGA
GTAGCAAG
ATAGCTGA
GTAGCTAA
GGAATAGA

0.274158
0.174956
0.068641
0.058198
0.041844
0.028740
0.033515
0.012179
0.020741
0.028100
0.034400
0.01733
0.019188
0.009672
0.011460
0.025580
0.009443
0.011744

0.267773
0.156950
0.086111
0.034983
0.037817
0.043804
0.035419
0.042986
0.033496
0.026647
0.018203
0.023541
0.02208
0.017863
0.016258
0.008679
0.015063
0.012961

AKT2 4 0.01 19q13.2 11 7

TGGG
TGGA
CGGA
TGAG
TGAA
TAGA
TAAA

0.399342
0.149831
0.159086
0.209520
0.081176
0.001043
0.000000

0.208998
0.248644
0.177101
0.123112
0.156805
0.055969
0.028195

POLD1 5 0.04 19q13.33

COX4I2 3 0.03 20q11.21 2 1
TGG
AGG

0.982558
0.017442

0.999882
0.000089

TXN2 3 0.01 22q12.3 5 3

TGC
TAA
CAA

0.737205
0.029907
0.225907

0.825207
0.163548
0.010979

GSTT2 3 0.04 22q11.23 6 3

GGC
GGG
GAC

0.652538
0.318276
0.020529

0.566495
0.415658
0.007874

* calculated based on the output from Phase which only gives two decimals. This means that the minimum p-value will be 0.01 for this 
calculations

"in cases and controls combined
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Gene (s) Nr. of SNPs Localisation  ρ
ABCB1 7 7q21.12 0.943
ABCC1 6 16p13.11 0.800
AKR7A2,PQLC2 3 1p36.13 1.000
ALOX15B 4 17p13.1 1.000
BCL2 8 18q21.33 0.786
CAT 4 11p13 1.000
CCND1,FLJ42258 3 11q13.3 1.000
CDC42BPB 3 14q32.32 -1.000
CDK2, SILV,RAB5B 6 12q13.2 0.700
CDKN1A 3 6p21.31 -1.000
COX10 5 17p12 1.000
COX4I2 3 20q11.21 -1.000
CYP2C8 3 10q23.33 1.000
DPYD 17 1p21.3 0.894
EGF 6 4q25 0.900
EPHX1 6 1q42.12 -0.700
FGF2 4 4q27 1.000
FOS 3 14q24.3 1.000
GADD45A 3 1p31.2 1.000
GCLC 9 6p12.1 0.762
GSR 3 8p12 1.000
GSTA4 6 6p12.1 0.900
GSTM3 3 1p13.3 1.000
GSTP1 3 11q13.2 1.000
GSTT2 3 22q11.23 1.000
IGF1 5 12q23.2 0.800
IGF1R 7 15q26.3 0.943
IGF2R 6 6q25.3 0.900
IL10 8 1q32.1 0.750
IL10RA 3 11q23.3 1.000
IL1A 3 2q13 1.000
IL1B 4 2q13 -1.000
IL1R2 3 2q11.2 1.000
KCNMB1 3 5q35.1 1.000
LIG3 3 17q12 -1.000
LIG3,RFFL 3 17q12 -1.000
LIG4,C13orf6 5 13q33.3 0.800
MAPK9 3 5q35.3 1.000
MGMT 7 10q26.3 0.886
NDUFA8 3 9q33.2 1.000
NOX3 7 6q25.3 0.829
NQO2 3 6p25.2 1.000

A. Between all pairwise LD measurements of neighbouring SNPs 

Table 3. Spearmann’s correlation between LD of cases and 
controls for neighbouring SNPs (panel A) and all SNPs 
(panel B) within a gene based on ρ and D' values 
respectively. Listed here are only genes with an absolute 
correlation between 0.7 and 1. The tables are sorted by 
gene name.
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PCNA, C20orf30,CDS2 3 20p12.3 1.000
PDGFRB 4 5q32 1.000
PIK3CA 3 3q26.32 1.000
PLCG2 3 16q23.2 -1.000
PPP1R15A, PLEKHA4, TULP2 3 19q13.33 -1.000
PPP1R1A, PDE1B 3 12.q13.2 1.000
PPP3CA 3 4q24 1.000
PRKCA 5 17q24.2 1.000
RAF1 3 3p25.2 1.000
SOD1, SFRS15 3 21q22.11 1.000
SOD2 3 6q25.3 1.000
TGFB2 4 1q41 1.000
TNFRSF6 3 17q25.1 1.000
TXN 3 9q31.3 1.000
TXN2 3 22q12.3 1.000
TXNRD2 4 22q11.21 1.000
XDH 16 2p23.1 0.800
XPC, MGC3222 5 3p25.1 0.800
XRCC1 3 19q13.31 -1.000
XRCC4 13 5q14.2 0.797

Gene (s) Nr. of SNPs D'
AKR7A2,PQLC2 3 1p36.13 -1.000
SOD2 3 6q25.3 -1.000
PIK3CA 3 3q26.32 -0.866
AKT2 4 19q13.2 0.714
IGF1 5 12q23.2 0.758
IGF1R 7 15q26.3 0.765
NAT2 4 8p22 0.771
TNFAIP2 4 14q32.32 0.771
PDGFRL 6 8p22 0.836
GSTA4 6 6p12.1 0.846
GSR 3 8p12 0.866
GSTP1 3 11q13.2 0.866
TXN2 3 22q12.3 0.866
CAT 4 11p13 0.868
IL1B 4 2q13 0.886
COX10 5 17p12 0.891
ABCC1 6 16p13.11 0.925
PDGFRB 4 5q32 0.943
EPHX1 6 1q42.12 0.943
PPP1R3B 5 8p23.1 0.988
CDC42BPB 3 14q32.32 1.000
TXNRD2 4 22q11.21 1.000
FOS 3 14q24.3 1.000
IL1R2 3 2q11.2 1.000
MAPK9 3 5q35.3 1.000
NDUFA8 3 9q33.2 1.000
NQO2 3 6p25.2 1.000
PPP1R1A, PDE1B 3 12q13.2 1.000
TNFRSF6 3 17q25.1 1.000
TXN 3 9q31.3 1.000

B. Between all pairwise LD measurements
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