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Abstract 39 

As thermal regimes change worldwide, projections of future population and species persistence 40 

often require estimates of how population growth rates depend on temperature. These projections 41 

rarely account for how temporal variation in temperature can systematically modify growth rates 42 

relative to projections based on constant temperatures. Here, we tested the hypothesis that 43 

population growth rates in fluctuating thermal environments differ from growth rates in constant 44 

conditions, and that the differing thermal performance curves (TPCs) can be predicted 45 

quantitatively. With experimental populations of the green alga Tetraselmis tetrahele, we show 46 

that nonlinear averaging techniques accurately predicted increased as well as decreased 47 

population growth rates in fluctuating thermal regimes relative to constant thermal regimes. We 48 

extrapolate from these results to project critical temperatures for population growth and 49 

persistence of 89 phytoplankton species in naturally variable thermal environments. These results 50 

advance our ability to predict population dynamics in the context of global change.  51 
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Introduction 52 

Organisms live in variable environments. Demographic rates and outcomes that integrate 53 

temporal or spatial environmental variation may differ substantially from what might be 54 

predicted based on short-term physiological responses to constant, non-varying experimental 55 

environments. For example, population growth rates are predicted to vary with temperature as 56 

described by their thermal performance curve (TPC), often equated to an organisms’ thermal 57 

niche (Figure 1A). Parameters of the thermal niche, such as the upper and lower critical 58 

temperatures for population growth, or the optimal temperatures for maximum rates of 59 

population growth, are important parameters in the large and growing body of synthesis research 60 

that links physiological processes with projected population responses to climate change [1–3]. 61 

However, elements of the thermal niche are often documented in physiological assays that use 62 

constant laboratory environments. Thermally variable environments can lead to population 63 

growth rates over time that differ substantially from estimates based on the average temperature 64 

over the same time period [4,5]. This difference complicates projections of population 65 

performance based on physiological assays under constant conditions [6], prompting calls for 66 

ecologists to explicitly incorporate environmental variation into predictions and models of 67 

population and species’ performance in the field [7]. Because temporal patterns of environmental 68 

variability differ across regions and the lifespans of organisms, an approach that allows 69 

quantitative scaling from thermal performance curves of population growth generated under 70 

constant laboratory conditions to population performance in a variable thermal regime may be 71 

particularly useful for understanding patterns of abundance and distribution, and species’ 72 

responses to climate change. 73 

 74 
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Biological responses to environmental variation depend on whether the relationship between 75 

performance and an environmental gradient is linear or nonlinear [5,8,9], and if nonlinear, 76 

whether it is accelerating with increasing temperature, or decelerating (Figure 1A). When 77 

performance, P, changes nonlinearly with environmental conditions, E, time-averaged 78 

performance in a variable environment 𝑃 𝐸  does not necessarily equal performance at the mean 79 

environmental condition 𝑃 𝐸 . This fact, captured by the well-known mathematical rule 80 

‘Jensen’s inequality’, leads to clear predictions about how environmental variability should 81 

affect performance over time [8,10]. Jensen’s inequality states that if P is a nonlinear function of 82 

E, then 𝑃 𝐸   > 𝑃 𝐸 	where 𝑃 𝐸  is accelerating (i.e. positive second derivative) and 𝑃 𝐸   < 83 

𝑃 𝐸 	where 𝑃 𝐸 	is decelerating (i.e. negative second derivative) (Figure 1B). In the context of 84 

temperature, the relationship between organismal or population performance and temperature, 85 

captured in the thermal performance curve (Figure 1A), is almost always nonlinear [11] so the 86 

often implicitly assumed linear relationship between environment and population growth in 87 

demographic models is inadequate to describe population dynamics over temperature gradients 88 

[12]. The potential ecological and evolutionary effects of Jensen’s inequality have been shown in 89 

several recent studies [1,6,13,14]. Yet, ecologists struggle to incorporate thermal variability 90 

when making predictions about the effects of temperature on growth, abundance, and 91 

distributions of species in nature, often assuming that species’ thermal experiences are well 92 

represented by the mean temperature of their environment. 93 

 94 

The typical shapes of TPCs (Figure 1A) [15], with an accelerating phase at lower temperatures 95 

and a decelerating phase at higher temperatures within a thermal performance curve suggests 96 

positive effects of thermal variation at low temperatures and negative effects at high 97 
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temperatures [7,14]. Current estimates of the consequences of temporal thermal variability for 98 

population-level performance such as population growth rate have assumed a certain shape to the 99 

curve (i.e. a Gaussian rise and a parabolic fall;  [1]) thus forcing certain outcomes of temporal 100 

variability. New evidence suggests that the shape and skew of the TPC can vary substantially 101 

among species, phenotypes, or contexts [16], leading to potentially more nuanced responses to 102 

environmental variation that may be predicted from empirical thermal performance curves. To 103 

date, empirical tests of how temporal temperature variability affects population growth rates 104 

have been based on tests at only two temperatures [17].  This restricted sampling of the TPC has 105 

precluded testing of quantitative predictions based on the curvature of the TPC. 106 

 107 

Here we tested whether population growth in a temporally variable thermal environment reflects 108 

the effects of nonlinear averaging of performance at each temperature experienced. For a fast-109 

growing green alga, we tested whether TPCs for population growth generated under constant 110 

conditions could predict the outcome of population growth in thermally fluctuating 111 

environments. We hypothesized that for populations of this alga, which has overlapping 112 

generations and short generation times, population growth measured over several generations 113 

would reflect the instantaneous effects of time-averaging of acute thermal responses. 114 

Alternatively, if time-dependent stress or acclimation effects that depend on recent thermal 115 

history modify growth rates in fluctuating environments [18–20], then population performance in 116 

naturally variable environments may not be predicted directly from TPCs generated under 117 

constant laboratory conditions, and would require a more detailed understanding of the 118 

mechanisms and time-course of thermal niche plasticity.   119 

 120 
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Following from Jensen’s inequality, we predicted that increased temperature variability over the 121 

range of cold temperatures to the left of the inflection point of the TPC (i.e. in the accelerating 122 

portion of the curve, where the second derivative of the TPC is positive; Figure 1B) would lead 123 

to higher growth rates relative to constant conditions, and that temperature variability in the 124 

range of warm temperatures to the right of the inflection point would be detrimental (i.e. where 125 

the second derivative of the TPC is negative; Figures 1B and 2A, dashed curve). Then, drawing 126 

on a global dataset of empirical TPCs for phytoplankton population growth rates, which vary in 127 

shape (skew and position) as well as geographic origin, we use nonlinear averaging (Equation 1) 128 

to estimate in situ population growth rates, given levels of in situ environmental variation at each 129 

species’ isolation location. We estimate the extent to which predicted growth rates at each 130 

isolation location differ when they are predicted using nonlinear averaging of fluctuating 131 

temperatures over time, as compared to when they are predicted based on mean annual 132 

temperatures only. By including a range of phytoplankton TPC shapes from a global distribution, 133 

we explore the consequences of considering thermal variability in projections of population 134 

growth rates, with implications for patterns of abundance and distribution.  135 

 136 

Methods 137 

Using nonlinear averaging to predict population growth in variable environments  138 

When time series of temperatures experienced by organisms are available and population growth 139 

rate, 𝑟 is given by a thermal performance curve, 𝑟 = 𝑓(𝑇), then the expected growth rate, 140 

𝐸 𝑟 	averaged over time, t, can be calculated by taking the average of the performance at 141 

individual time steps: 142 

𝐸 𝑟 = 	
1
𝜏 𝑓 𝑇,

-

,./

																									 (1) 143 
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where t indexes time.  144 

 145 

Empirical records of environmental or body temperatures across time required to use Equation 1 146 

are often not available; however, mean and variance of the distribution of environmental 147 

temperatures over a period of time may be more readily accessible. An alternative approach to 148 

estimating expected performance under variable conditions when only the mean and variance of 149 

the temperature distribution are available is to approximate expected performance under variable 150 

conditions using a Taylor approximation of the TPC (Equation S5, an approach that has been 151 

incorporated into scale transition theory [7,14,21]). We explore expectations and results using 152 

this approach from scale transition theory as well, and compare results using both approaches, to 153 

increase the toolkit for ecologists with different kinds of temperature data available (see 154 

Electronic Supplementary Material (ESM), Appendix A).  155 

 156 

Experimental quantification of TPCs in constant and fluctuating environments  157 

We experimentally quantified acute TPCs in constant and varying thermal environments for 158 

Tetraselmis tetrahele, a globally distributed coastal marine phytoplankton species. We used 159 

acute TPCs estimated directly from experimental populations, rather than longer-term 160 

acclimatized TPCs, to match the time scale of temperature exposure under constant and 161 

fluctuating conditions and to simulate the effects of temperature variability in real time. The 162 

cultured strain used here was obtained from the Canadian Centre for the Culture of 163 

Microorganisms (UW414), and was originally isolated off the coast of Vancouver Island, British 164 

Columbia, Canada. The T. tetrahele was maintained in laboratory culture in ESAW medium 165 
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(Enriched Seawater, Artificial Water, [22]) at 16°C on a 16:8 light:dark cycle under nutrient and 166 

light saturated conditions before the start of the experiments.  167 

 168 

We initiated twenty replicate experimental populations of T. tetrahele in 30 mL glass test tubes 169 

containing 20 mL of 10uM nitrate ESAW medium at a density of  ~ 700 cells/mL under constant 170 

temperature conditions at 0°C, 5°C, 10°C, 15°C, 20°C, 24°C, 27°C, 29°C, and 32°C, and under 171 

fluctuating temperature conditions with the same mean temperatures as the constant conditions, 172 

but fluctuating ± 5°C; i.e. 0°C – 10°C, 5°C – 15°C, 10°C – 20°C, 15°C – 25°C, 19°C – 29°C and 173 

22°C – 32°C. We created fluctuating temperature treatments by programming temperature-174 

controlled incubators (Panasonic MR 154) to switch between the low and high temperature once 175 

per day (i.e. approximately 11.5 hours at the high temperature and approximately 11.5 hours at 176 

the low temperature, with 30 minutes of transition time in between each temperature cycle). We 177 

verified the temperature fluctuations in the experimental populations by measuring water 178 

temperatures inside test tubes with 20 mL of water at 1 minute intervals with iButton 179 

temperature loggers (Maxim/Dallas Semiconductor)). The fluctuation period of 11.5 hours 180 

corresponds to approximately half a generation time at 20°C. To avoid experimental artifacts 181 

associated with confounding the temperature cycles with daily light cycles, we grew all 182 

experimental populations under 24-hour continuous light, at saturating light intensities of 150 183 

umol/m2/s (see Figure S1 in ESM). The source population was acclimated to 24-hour continuous 184 

light for four months prior to the experiment. We sampled each of the twenty replicate 185 

populations, with four replicates sampled destructively at each of five time points over the period 186 

corresponding to the exponential growth phase at each temperature. The intervals between 187 

sampling periods depended on the temperature, such that for the warmer temperatures (>15°C) 188 
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sampling time points were condensed (up to 3 samples per day) to capture exponential growth, 189 

while at the colder temperatures (=<15°C) sampling intervals were spread out over longer time 190 

periods (i.e. one to five days between sampling points at 0°C and 5°C). Population abundances 191 

and cell biovolumes (using area-by-diameter estimation, ABD) were measured from 250 uL 192 

samples using a FlowCAM (flow rate = 0.3 ml/min; FlowCAM VS Series, Fluid Imaging 193 

Technologies).  194 

 195 

Estimating the temperature dependence of population growth in constant and variable 196 

conditions  197 

We estimated the temperature-dependence of population growth directly from the observed time 198 

series of population abundance over the temperature gradient [23]. We modeled the temperature-199 

dependent intrinsic rate of population growth, r, during the exponential growth phase as:  200 

𝑁 𝑡 = 	𝑁 0 𝑒4(5),							
(2), 201 

where N(t) is the number of individuals at time t, and 𝑟 𝑇  is given by [16]:  202 

𝑟 𝑇 = 	𝑎𝑒95 1 −
𝑇 − 𝑧
𝑤
2

=

(3) 203 

using non-linear least squares regression with the nls.LM function in the minpack.LM package in 204 

R [24].  Population growth rate, r, is a function of temperature, T, a and b are parameters from 205 

the Eppley curve [25] that together describe the increase in maximum observed population 206 

growth rates with temperature, z determines the location of the maximum of the quadratic 207 

portion of the function and w is the range over which the growth rate is positive (i.e. the thermal 208 

breadth). We also estimated the temperature dependence of population growth via an ‘indirect’ 209 
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approach [23] (ESM, Appendix A), in which we first estimated growth rates at each temperature 210 

separately, and then fit the TPC (Equation 3) to the growth estimates at each temperature. We 211 

present the results from this ‘indirect’ approach in the ESM (Figures S2 and S6). To test our 212 

hypothesis that performance at constant temperatures predicts performance in fluctuating thermal 213 

regimes, we then fit Equations 2 and 3 to the time series of population abundance in the variable 214 

experimental treatments, using T =  𝑇 , the mean temperature in each treatment in the variable 215 

thermal regimes. 216 

 217 

Importantly, this generalized TPC equation (Equation 3) does not force the TPC to take on any 218 

particular values of a, b or z or w, such that estimated TPCs can be either fully decelerating 219 

throughout the entire range of temperatures over which growth is positive, or can have any 220 

combination of accelerating and decelerating portions. We favored this TPC equation over others 221 

because of this flexibility, because it is parameterized with biologically meaningful parameters, 222 

and because has been used previously in studies of phytoplankton TPCs [16,26]. For comparison, 223 

we fitted several other functional forms to the experimental dataset (e.g. a Gaussian x Gompertz 224 

function, as in [13]) but did not find any better fits when we compared models via AIC.  225 

 226 

We quantified four critical temperatures of the TPC (Equation 3) that define the thermal niche 227 

(Figure 1A): the optimal temperature for population growth, 𝑇?@,,	the minimum temperature for 228 

positive population growth, 𝑇	ABC, the maximum temperature for positive population 229 

growth,	𝑇	ADE , and thermal niche breadth under constant conditions, w. Here we use  𝑇	ABC and 230 

𝑇	ADE to denote the lower and upper limits of the thermal niche for population growth, and note 231 

that they are analogous to, but distinct from CTmin and CTmax which are the critical lower and 232 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2018. ; https://doi.org/10.1101/247908doi: bioRxiv preprint 

https://doi.org/10.1101/247908
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

upper limits for organism function [27].  Since 𝑇?@,, 𝑇	ABC	and 𝑇ADE are not parameters of 233 

Equation 3, but rather features of the curve, we identified 𝑇?@, via numerical optimization using 234 

the optim function in R and 𝑇	ABC		and 𝑇ADE	by finding the roots of the TPC using the uniroot 235 

function in R. We quantified the analogs of these critical temperatures under thermally variable 236 

conditions and refer to them as the minimum mean and maximum mean temperatures for 237 

positive population growth under fluctuating conditions, 𝑇ABC and  𝑇ADE respectively, the mean 238 

temperature for optimal growth under fluctuating conditions, 𝑇?@,, and thermal niche breadth, 𝑤. 239 

Because 𝑇	ABC from the estimated curve could be below the freezing point of seawater -1.8°C, we 240 

used an additional metric of thermal breadth, in which we set 𝑇	ABC to be -1.8°C if it was 241 

estimated to be below -1.8°C, because we assumed that Tetraselmis tetrahele cannot maintain 242 

positive population growth below the freezing point of seawater. We then calculated the range of 243 

temperatures over which population growth rate is positive as the difference between 𝑇	ABC	and 244 

𝑇ADE.		 245 

 246 

To generate estimates of uncertainty in critical temperatures of the TPC (e.g. Topt) under constant 247 

and variable conditions, we determined confidence intervals around fitted thermal performance 248 

curves using non-parametric bootstrapping of mean-centered residuals using the nlsBoot function 249 

with 999 iterations in the nlstools package in R. We calculated 95% confidence intervals as the 250 

range between the 2.5th and 97.5th quantiles. 251 

 252 

To test our hypothesis that the performance in varying conditions can be explained by nonlinear 253 

averaging performance at each temperature experienced, we generated an expected TPC for T. 254 

tetrahele under thermally fluctuating conditions.  We evaluated Equation 1 with 𝑓(𝑇) equal to 255 
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the TPC fitted using Equation 3, for all values of T between 0°C and 33°C (i.e. the entire TPC).  256 

We generated confidence intervals around the expected TPC under variable conditions by 257 

evaluating Equation 1 for each of the 999 bootstrapped constant-environment curves and 258 

calculating 95% confidence intervals as the range between the 2.5th and 97.5th quantiles (Figure 259 

2A, dashed band).  260 

 261 

Following Jensen’s inequality, we expected that increased temperature variability should 262 

increase population growth in the accelerating phase of the TPC and decrease population growth 263 

rate in the decelerating phase of the TPC (Figure 1), and that the shift between positive and 264 

negative effects of temperature variability should occur at the inflection point of the constant-265 

temperature TPC. We predicted that increased range of variability should shift the lower and 266 

upper limits of the TPC under variable conditions (𝑇	ABC and  𝑇ADE) to lower temperatures than 267 

𝑇ABC and 𝑇ADE since the TPC is left skewed. We expected the time-averaged maximum growth 268 

rate, rmax, to decrease under variable temperature conditions relative to constant conditions 269 

because 𝑇?@, is always in a decelerating portion of the constant TPC curve. Finally, we expected 270 

the thermal breadth under fluctuating conditions, 𝑤, to also decrease under fluctuating conditions 271 

if 𝑇	ABC is close to freezing, thus preventing 𝑇ABC from shifting to lower temperatures to 272 

compensate for decreased 𝑇ADE . 273 

 274 

Applying nonlinear averaging to estimate in situ phytoplankton population growth rates  275 

We estimated time-averaged population growth rates in thermally variable environments for a 276 

diverse set of phytoplankton species using nonlinear averaging (Equation 1) and scale transition 277 

theory (Equation S5). We estimated TPCs for 89 species by fitting Equation 3 to published 278 
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phytoplankton growth rates [26] measured in the lab at arrays of constant temperatures using 279 

maximum likelihood estimation with the mle2 function in the bblme package in R [28] (ESM, 280 

Appendix A).  281 

 282 

For each of these 89 species, we used historical reconstructed sea surface temperature data to 283 

characterize thermal regimes at isolation locations reported in the original studies. For each 284 

species’ isolation location, we extracted daily sea surface temperatures (SST) from the closest 285 

point in NOAA’s Optimum Interpolation Sea Surface Temperature dataset (OISST), Advanced 286 

Very High Resolution Radiometer (AVHRR) and Advanced Microwave Scanning Radiometer 287 

on the Earth Observing System (AMSR-E) AVHRR+AMSR, which uses additional data from 288 

AMSR-E, available from 2002 to 2011 [29]. This dataset has 0.25° spatial resolution. We 289 

calculated the mean and standard deviation of daily sea surface temperatures from 1981 – 2011. 290 

We used daily temperature data because these data reflect diurnal and seasonal variation that is 291 

central to understanding patterns of long-term population persistence in phytoplankton.  292 

 293 

Statistical estimation of ‘realized’ TPCs  294 

We produced two TPCs for each phytoplankton species – one generated assuming temperatures 295 

remain constant through time (akin to constant lab conditions) (‘constant’ scenario), and one that 296 

incorporates natural patterns of thermal variability from their habitat (‘variable’ scenario). For 297 

the ‘constant’ scenario, we fitted Equation 3 to each species’ population growth rate dataset 298 

using the methods described above, and estimated a growth rate, r, for the species at the isolation 299 

location using T = mean annual SST at the isolation location. For the ‘variable’ scenario, we 300 

estimated in situ growth rates using two approaches: first using Equation 1 where Tt is daily 301 
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temperature at the isolation location and where 𝑓 𝑇 	is the TPC fit using Equation 3, and second 302 

using the scale transition theory (Taylor approximation) approach (Equation S5) where 𝑓 𝑇 	is 303 

the TPC fit using Equation 3, 𝑇 and 𝜎=5 are the mean and standard deviation of daily 304 

temperatures over the period 1981-2011. Our purpose in using these two approaches was to 305 

compare the predictions made with empirical time series of temperature vs. only the mean and 306 

standard deviation of the temperature distribution. We present the results from the scale 307 

transition theory approach in the ESM. Then, for each species and isolation location, we applied 308 

these approaches over the entire TPC, to generate an expected growth rate at each mean 309 

temperature assuming a distribution of temperatures that is identical to the daily temperature 310 

distribution observed over the historical time period. To do this, we first generated a synthetic 311 

temperature distribution around each mean temperature from -2°C to 40°C by taking the 312 

distribution of temperatures over the historical time series at each isolation location, subtracting 313 

the mean, and then adding each temperature from -2°C to 40°C. We then predicted time 314 

averaged growth rates as described above (using Equations 1 and S5). This process yielded a 315 

‘realized’ TPC, which represents expected growth rates given natural patterns of temperature 316 

variability. For the ‘constant’ and ‘variable’ scenarios, we compared three attributes of TPCs:  317 

𝑇?@,, 𝑇	ABC and 𝑇ADE. Given that differences in TPCs based on constant vs variable thermal 318 

environments depend on curve shape and temperature variance (Equation S5), we also explored 319 

how the discrepancies in estimated critical temperatures and population growth rates at average 320 

in situ temperatures depend on the shape of the TPC observed in constant lab conditions. We 321 

examined the effects of curve attributes including the skew, using a curve skewness metric 322 

developed by [26] (Supplementary Equation 5 in [26]), which standardizes the absolute 323 

skewness of the curve by the niche width, w, using OLS regression. All analyses were conducted 324 
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in R (version 3.4.1, [30]). All of the data and code for these analyses are available at 325 

https://github.com/JoeyBernhardt/thermal-variability.  326 

 327 

Results 328 

1) Does population growth in a thermally variable environment reflect the effects of non-linear 329 

averaging over the TPC?  330 

 331 

Population growth in fluctuating conditions differed from that in constant thermal conditions 332 

over the thermal gradient, and the differences were predicted quantitatively by nonlinear 333 

averaging of temporal variation in temperature-dependent performance (95% CI of the growth 334 

rate estimates under fluctuating conditions overlapped with predicted growth rates from Equation 335 

1; orange curve and dashed band in Figure 2B). Consistent with expectations based on Jensen’s 336 

inequality and nonlinear averaging, experimental populations of T. tetrahele had higher 337 

population growth rates under fluctuating temperature conditions compared to constant 338 

conditions over accelerating portions of the TPC (i.e. at low mean temperatures; 5°C and 10°C), 339 

but lower growth rates under fluctuating temperature conditions compared to constant conditions 340 

over decelerating portions of the TPC (i.e. at mean temperatures above 10°C, including 15°C, 341 

24°C and 27°C and 29°C) (Figure 2B). Notably, population growth was lower under fluctuating 342 

conditions relative to constant conditions at 24°C, which is close to 𝑇?@, in this population of T. 343 

tetrahele (Figure 2B). Populations had negative growth rates at 32°C. The shift between positive 344 

effects of temperature fluctuations on population growth at low temperatures and negative effects 345 

of fluctuations at warmer temperatures aligned with the inflection point of the constant-346 
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temperature TPC (16.76 °C, 95% CI: 16.76°C, 16.81°C), providing strong empirical support for 347 

nonlinear averaging in predicting population growth in thermally variable environments.  348 

 349 

Thermal variation altered estimated parameter values and key features of the realized thermal 350 

performance curve. The maximum exponential growth rate (𝑟ADE) was lower under variable 351 

conditions than constant conditions, 𝑟ADE	= 1.54 day-1 (95% CI: 1.52 day-1, 1.56 day-1) vs. 352 

𝑟ADE =1.20 day-1 (95% CI: 1.15 day-1, 1.25 day-1) (Figure 2A, B).  Estimated mean optimal 353 

temperatures for growth rate were lower under variable conditions: 𝑇?@, =	24.69°C (95% CI: 354 

24.52°C, 24.88°C) vs. 𝑇?@, = 21.92°C (95% CI 21.48°C, 22.43°C). Maximum mean 355 

temperatures for positive growth rates were lower under variable conditions 	𝑇ADE = 32.39°C 356 

(95% CI: 32.13°C, 32.64°C) vs. 𝑇ADE = 30.31°C (95% CI: 29.24°C, 31.97°C). All estimated 357 

critical temperatures under fluctuating conditions (	𝑇?@,, 𝑇ADE	, 𝑇ABC)	were quantitatively 358 

consistent with theoretical predictions from Equation 1 (i.e. had 95% CI overlapping the 359 

predicted values from Equation 1; Figure 2B, C). The range of temperatures associated with 360 

positive growth rates, accounting for the freezing point of seawater, i.e. 	𝑇	ADE −	 	𝑇HIJ	 was 361 

34.19°C (95% CI: 33.93°C, 34.44°C) under constant conditions and 32.11°C (95% CI: 31.04°C, 362 

33.77°C) under variable conditions. The estimated thermal breadth, w, was also lower under 363 

variable conditions, but not statistically distinguishable from constant conditions (i.e. had 364 

overlapping 95% CI): 	𝑤	= 37.05°C, 95% CI: 33.57°C, 45.52°C, vs w = 41.23°C, 95% CI: 365 

37.31°C, 47.41°C).  366 

 367 

2) How different are predicted ‘realized’ TPCs in variable natural environments from 368 

predictions based on TPCs generated under constant conditions?   369 
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 370 

When we estimated the TPCs of the 89 phytoplankton species for constant and varying 371 

temperature regimes, we found that for the 90% of species that show negative skew (i.e. mean < 372 

median), 𝑇?@, in variable environments is lower than 𝑇?@,  in constant environments (Figure 3C), 373 

while for the remaining 10% of species which show a positive skew, thermal variability is 374 

expected to increase 𝑇?@,	relative to 𝑇?@,. The magnitude of the difference between 𝑇?@,	and 375 

𝑇?@,	increases with increasing standard deviation of sea surface temperature and is well 376 

explained by curve skew (slope = 85.98, 95% CI: 70.13, 101.82) and the standard deviation of 377 

sea surface temperature (slope = -0.32, 95% CI: -0.40, -0.24) (Adjusted R2 = 0.66, F2,86 = 85.32, 378 

p < 0.001) (Figure 3C).  Phytoplankton growth rate estimates that include the effects of thermal 379 

variability, 𝑟, differ from those that do not account for in situ thermal variability, r, (Figure 3D, 380 

F). Generally, predicted growth rates under variable conditions are lower than predicted growth 381 

rates assuming constant conditions (i.e. 𝑟 − 𝑟 < 0, data points below the line y = 0 in Figure 3F), 382 

however for some species living in regions with thermal regimes typically colder than the 383 

species’ 𝑇?@,, growth rates in these environments can exceed those in constant conditions (𝑟 >384 

𝑟). Importantly, the differences between	𝑟and 𝑟 are greatest for species whose isolation locations 385 

have mean temperatures that are close to their 𝑇?@,. Predicted upper thermal limits for population 386 

growth are almost always lower under variable conditions (𝑇ADE < 	𝑇ADE) (Figure 3E), and the 387 

difference between 𝑇ADE and 	𝑇ADE	increases with increasing skewness (positive slope = 53.31, 388 

95% CI: 39.77, 66.85) and standard deviation of SST (negative slope = -0.50, 95% CI: -0.57, -389 

0.43) (Adjusted R2 = 0.77, F2,75 = 132.8, p < 0.001).  390 

 391 
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For all 89 species in the global dataset, the nonlinear averaging approach (presented here) and 392 

the scale transition theory approach (see ESM, Appendix A) resulted in similar ‘realized’ TPCs 393 

in variable environments (Figure S4). Predicted critical temperatures, rmax estimates, and 394 

relationships shown in Figure 3 were all qualitatively consistent between the two approaches 395 

(Figures S4 and S5) indicating that scale transition theory, which makes use of parameters of 396 

environmental variation rather than detailed time series, leads to similar predictions in the 397 

datasets considered here.  398 

 399 

Discussion 400 

As climate changes worldwide, how temperature affects population growth is a critical link 401 

between climate and species persistence in a changing world. One common approach to project 402 

population abundance, persistence or fitness under future climate conditions is to apply 403 

mathematical curves describing population growth rate over a range of temperatures (a TPC) 404 

generated from controlled lab studies (e.g. [31]). This approach relies on the assumption that 405 

TPCs do not vary systematically with thermal variation. Here we tested this important 406 

assumption and found that natural levels of environmental variability systematically change how 407 

population growth depends on temperature. In our analysis of globally distributed phytoplankton 408 

TPCs, we found that a variable thermal environment reduced critical upper mean temperatures 409 

(Tmax) for population persistence by up to 4°C, meaning that population growth in variable 410 

conditions was much lower at warmer temperatures than would be predicted based on a TPC 411 

generated under constant conditions. This thermal differential is substantial – the 4°C difference 412 

in Tmax is on par with the magnitude of predicted temperature changes over the next 100 years 413 

[32], suggesting that projections of TPCs used for future conditions may overestimate population 414 
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performance in warming climates. Other work has compared acute thermal physiological limits 415 

(e.g. CTmax, CTmin) to environmental temperatures at range limits to assess relative sensitivities 416 

of range edges to warming (e.g. [3]) yet the underlying nonlinear negatively-skewed thermal 417 

performance curve expected for these ectotherms suggests that variability at warm range edges 418 

will have a stronger effect on population persistence than variability at cold range edges.  419 

Specifically, our findings suggest that approaches based on direct applications of lab-determined 420 

critical temperatures may under-predict range edges at boundaries defined by cold temperatures, 421 

and over-predict range edges at boundaries defined by warm temperatures.  422 

 423 

We have shown experimentally that realized TPCs in variable environments differ from those in 424 

constant environments, and that these differences are predicted qualitatively by Jensen’s 425 

inequality [8,14] and quantitatively from nonlinear time averaging of performance over the TPC 426 

[21]. Fluctuating temperatures changed several aspects of the ‘realized’ thermal performance 427 

curve, including the mean temperature of optimal population growth (𝑇?@,) and the maximum 428 

growth rate ( 𝑟ADE) – effectively shifting the TPC toward lower temperatures and lower 429 

population growth rates overall. Consistent with the argument that ‘suboptimal’ is optimal [13], 430 

we show both experimentally (Figure 2B) and theoretically (using empirical TPCs and in situ 431 

temperatures; Figure 3D, F) that population growth rates are often lower under variable thermal 432 

conditions relative to constant ones, and this negative effect of temperature variation is greatest 433 

for populations living close to their thermal optima. However, in contrast to the common 434 

assumption that environmental variation is always detrimental for population growth rates [12], 435 

our results suggest that populations living at mean temperatures in an accelerating part of the 436 

TPC will benefit from environmental variation. Indeed, the T. tetrahele isolate used here was 437 
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collected at a location where mean annual temperatures are far colder than its 𝑇?@,, in the 438 

accelerating portion of the negatively skewed TPC (at mean temperature = 6.92°C [29]). In this 439 

way, when TPCs have accelerating portions at the edges of the thermal niche, thermal variation 440 

may allow population persistence in environments that would be too hot or cold under constant 441 

conditions. 442 

 443 

When we applied nonlinear averaging to estimate the growth rates of globally distributed 444 

phytoplankton species, we found that the effect of variability of predicted phytoplankton thermal 445 

performance depended strongly on the shape and skew of the TPC and the degree of thermal 446 

variability in the oceans from which the phytoplankton originated. Previous approaches have, in 447 

the absence of more complete datasets, assumed a certain shape to the reaction norm or TPC (i.e. 448 

a Gaussian rise and a parabolic fall; [1]), thus forcing certain outcomes of variability. Here we 449 

used a model that does not prescribe any particular shape (i.e. allows for fully decelerating 450 

curves, or curves with accelerating portions, or any combination of decelerating and accelerating 451 

portions), thus enabling a more complete exploration of the potential effects of temperature 452 

variability on population performance. Importantly, empirical TPCs varied in skew, and whether 453 

the TPC was positively- or negatively-skewed determined the direction of the shift between 𝑇?@, 454 

and	𝑇?@,. The majority of the curves in the dataset were negatively skewed, and in these cases 455 

variability shifted 𝑇?@,	to colder temperatures. Negatively skewed TPCs are widely observed 456 

across ectothermic taxa [15], suggesting that the direction of the effects of thermal variability 457 

observed in our experiment may be general across many ectothermic taxa and ecosystems. 458 

Because the shape and skew of the TPC determine performance in variable environments, the 459 

mechanisms that determine the shape of the thermal performance curve can have an important 460 
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influence on the outcome of thermal variability on population persistence. More studies of the 461 

diversity of TPC shapes among species will elucidate the extent to which environmental 462 

variability increases or decreases performance optima relative to constant lab conditions. 463 

 464 

The mathematical tools we applied are generalizable to assessments and projections of biological 465 

responses to environmental change and should replace the direct application of TPC parameters 466 

based on constant conditions in the lab. In the absence of empirical temperature time series, 467 

predictions made based on the mean and standard deviation of the temperature distribution may 468 

provide a sufficiently accurate approach.  We predicted similar effects of thermal variability on 469 

population growth rates when these predictions were made using empirical time series of in situ 470 

SST (Equation 1) and when using a Taylor approximation approach from scale transition theory 471 

(See ESM, Equation S5, and Figures S4-5). Indeed, most of the phytoplankton strains we studied 472 

were isolated at locations with thermal regimes corresponding to portions of their TPCs lower in 473 

temperature than the highly non-linear temperature ranges near Topt. 474 

 475 

Our results, that performance in fluctuating environments can be predicted from TPCs generated 476 

in constant conditions, differ from two previous attempts to predict individual somatic growth 477 

rates in fluctuating environments based on TPCs generated in constant conditions [18,19]. 478 

Previous observations showed that short-term acute responses to diurnal temperature variation 479 

were not predictable based on TPCs generated from chronic exposure to constant temperatures 480 

over the course of development of an insect [19] and amphibian [18]. These contrasting results 481 

highlight the importance of the time scale of temperature exposures used to measure and predict 482 

performance in constant and fluctuating conditions. Biological responses to temperature, 483 
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including acclimation and thermal stress are inherently time-dependent and may accrue over the 484 

course of development in longer lived species [11,33–35], thus precluding the ability of TPCs 485 

generated over longer terms (i.e. entire lifespans of individuals) to predict temperature responses 486 

over relatively short time spans (small fractions of lifespans corresponding to daily temperature 487 

variation). In our experiments, using a fast-growing phytoplankton with short overlapping 488 

generations, we maintained the time frames of temperature exposure comparable under both 489 

constant and fluctuating conditions. We used acute thermal performance curves for population 490 

growth rates, which integrate responses to temperature over several generations, generated with a 491 

very short acclimation duration at each test temperature, to predict acute responses to thermal 492 

variability, also over several generations, thus keeping the time frames comparable. By 493 

measuring population growth over several generations in both constant and fluctuating 494 

conditions, this approach allowed us to avoid mismatches in time scale and time-dependent 495 

effects and instead test the nonlinear effects of temperature variation.  496 

 497 

The predictions we made of in situ phytoplankton population growth rates should be interpreted 498 

as first-order predictions, which do not incorporate long-term phenotypic responses to thermal 499 

variability. Organisms may be able to acclimatize or adapt to fluctuating conditions over longer-500 

term exposures [36], with the potential to alter the shape and limits of the TPC during the time-501 

course of environmental variability. The global predictions we make here should be viewed as 502 

null models which do not incorporate long-term biological responses to environmental 503 

variability, and should be tested empirically [6,7].  To extend our predictions of time-averaged 504 

growth rates at the isolation location temperatures to time-averaged growth rates over the whole 505 

thermal niche, i.e. our visualization of a ‘realized TPC’, we had to assume a particular 506 
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distribution of temperatures around each hypothetical mean, and used the variation observed at 507 

each isolation location as the residual variation around each putative mean temperature. This 508 

assumption about temperature distributions is a simplification of real thermal regimes, which 509 

likely show more complex patterns of variability and temporal autocorrelation, which can further 510 

modify the effects of variability on populations [4]. Resource supply is also likely to covary with 511 

temperature, potentially altering the outcomes of thermal variability on population growth rate. 512 

Nevertheless, even in the simplest scenario of environmental variability, we predict significant 513 

changes in realized mean TPC critical temperatures.   514 

 515 

Understanding population responses to temperature now and into the future involves 516 

understanding biological responses to changes in the full cassette of temperatures experienced – 517 

i.e. all the variation. Omitting the effects of environmental variation from population and species 518 

distribution models may limit our ability to predict species’ responses, particularly at the extreme 519 

edges of their ranges, even if variability patterns remain unchanged. We show that the effects of 520 

environmental variation can be predicted based on the shape of the functional relationship 521 

between population growth and the environment, adding another tool to the kit for forecasting 522 

species’ responses to the environment in a changing world.  523 

 524 
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Figures 624 

 625 

Figure 1. A) A thermal performance curve and its critical temperatures (Tmin, Tmax, Topt) and 626 

thermal breadth, (w). The critical temperatures are not fitted parameters of the TPC, but are 627 
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estimated by numerical optimization.  This negatively-skewed curve shows an exponential 628 

increase typical of processes following an Arrhenius function, with an accelerating region to the 629 

left of the inflection point (grey vertical line), followed by a decelerating region to the right of 630 

the inflection point. Notice that the accelerating region corresponds to the region with a positive 631 

second derivative (B). Predictions for the temperature ranges in which thermal variability is 632 

expected to increase and decrease performance relative to constant conditions are shown. Figure 633 

adapted from [7], but parameterized with T. tetrahele data from this study. 634 
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 636 

Figure 2. Thermal performance curves for T. tetrahele populations growing under constant and 637 

variable temperature conditions. A) Exponential growth rates under constant temperature 638 

conditions; green line is the fitted thermal performance curve and green shading corresponds to 639 
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95% CI generated from non-parametric bootstrapping. The dashed curve represents predicted 640 

growth rate under thermally variable conditions based on nonlinear averaging (Equation 1). 641 

Points and error bars are observed mean growth rates generated by estimating exponential 642 

growth rates at each mean temperature separately (‘indirect’ approach described in the ESM, 643 

Appendix A; error bars represent 95% CI). B) Exponential growth rates under thermally 644 

fluctuating conditions (±5°C); dashed curve is predicted based on panel A and Equation 1, 645 

orange line is the fitted thermal performance curve under fluctuating conditions, orange shading 646 

corresponds to 95% CI generated from non-parametric bootstrapping. Orange points and error 647 

bars are observed mean growth rates in the fluctuating temperature regime (estimated via the 648 

‘indirect’ approach, Appendix A; error bars represent 95% CI). C) Predicted and observed 𝑇?@, 649 

and	𝑇ADE were statistically indistinguishable (predicted: black triangles and 95% CI error bars, 650 

observed: orange triangles and 95% CI error bars), and lower than observed 𝑇ADE	and  𝑇?@,	 in 651 

constant conditions (green triangles and 95% CI error bars).   652 

 653 
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 654 

Figure 3. Curve skew and environmental variability predict differences between performance 655 

under constant and variable conditions.  A) Diagram showing predicted differences in key 656 

features of a thermal performance curve under constant (black line) and variable (grey line) 657 

environmental conditions. The distances labeled “C”, “D” and “E” illustrate the distances 658 

between curve features, plotted in the panels C-E. B) Map of all phytoplankton isolation 659 

locations used in the analysis. The color of the ocean and the points corresponds to standard 660 

deviation of daily sea surface temperatures over the time period 1981-2011 [29]. C) The 661 

difference between predicted 𝑇?@,	and 𝑇?@,	generated under constant lab conditions. D and F) 662 

Predicted differences in phytoplankton growth rates that do not incorporate in situ temperature 663 
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variation (r) vs. predicted growth rates based on Equation 1 (𝑟). E) The difference between 𝑇	ADE 664 

and		𝑇	ADE. Color coding in panels C, E, and F as in B.  665 


