
Mutation accumulation differentially impacts ageing in mammalian tissues 

Zeliha Gözde Turan1, Poorya Parvizi1, Handan Melike Dönertaş2, Jenny Tung3, Philipp Khaitovich4,

Mehmet Somel1*

1Department of Biological Sciences, METU, Ankara, Turkey. 
2European  Molecular  Biology  Laboratory,  European  Bioinformatics  Institute  EMBL-EBI,

Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
3Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
4 CAS-MPG Partner Institute for Computational Biology, Shanghai, PRC. 
 *Corresponding author: msomel@metu.edu.tr

Abstract

Medawar’s  mutation  accumulation  (MA)  hypothesis  explains  ageing  by  the  declining  force  of

natural selection with age: slightly deleterious germline mutations that are functional in old age are

not effectively eliminated by selection and therefore lead to ageing-related phenotypes. Although

widely  cited,  empirical  support  for  the  MA hypothesis,  particularly  molecular  evidence,  has

remained limited. Here we test one of its predictions, that genes relatively highly expressed in old

adults vs. young adults  should be under weaker purifying selection than those relatively highly

expressed in young adults. To do so, we combine 23 RNA-sequencing and 35 microarray gene

expression datasets (including 9 tissues from 5 mammalian species) with protein and regulatory

sequence  conservation  estimates  across  mammals.  We  identify  age-related  decrease  in

transcriptome conservation (ADICT) in four tissues, brain, liver, lung, and artery, but not in other

tissues, most notably muscle and heart. ADICT is driven both by decreased expression of highly

conserved genes and up-regulation of poorly conserved genes during ageing, in line with the MA

hypothesis. Lowly conserved and up-regulated genes in ADICT-associated tissues have overlapping

functional properties,  particularly involving apoptosis and inflammation,  with no evidence for a

history of positive selection. Our results suggest that tissues vary in how evolution has shaped their

ageing  patterns.  We  find  that  in  some  tissues,  genes  up-regulated  during  ageing,  possibly  in

response to accumulating cellular and histological damage, are under weaker purifying selection

than other genes. We propose that accumulation of slightly deleterious substitutions in these genes

may underlie their suboptimal regulation and activity during ageing, shaping senescent phenotypes

such as inflammaging. 
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Introduction 

To date, more than 300 theories have been postulated to explain senescence, i.e. age-related loss of

function  and  increase  in  mortality  rates1.  The  mutation  accumulation  (MA)  hypothesis,  an

evolutionary  explanation  for  ageing first  developed by J.B.S.  Haldane2 and Peter  Medawar3,  is

among  the  most  influential  of  such theories.  It  states  that  negative  selection  against  germ-line

substitutions that exhibit harmful effects only during old age will be inefficient. Such substitutions

can eventually fix through genetic drift, and thus contribute to observed senescent phenotypes4. The

MA hypothesis generates several testable predictions. One expectation is that genetic variance in

fitness-related traits, such as reproductive success or survival, will increase with age2,5.  A second

expectation is that inbreeding depression will also increase with age. In line with these predictions,

several studies have shown age-related increase in genetic variance in fitness-related traits in either

laboratory (Drosophila melanogaster: refs. 6,7) [but see refs. 8–10] or natural populations (Soay sheep,

red deer: ref.  11). In humans, heritability of CpG methylation patterns was shown to increase with

age  for  about  100  genome-wide  loci  also  consistent  with  MA,  although  possible  fitness

consequences were not evaluated12. In an indirect test of the expectation for inbreeding depression,

outbreeding was reported to  reduce age-related increase in  mortality  in hermaphroditic  snails13,

again in line with MA. Finally, Rodríguez et al.14 studied >2,500 human genetic variants linked to

120 genetic diseases and reported that variants associated with late-onset disease segregate at higher

frequencies than those associated with early-onset disease, a third prediction under MA14.

Beyond  those  cited  above,  relatively  few  studies  have  used  empirical  data  to  test  the  MA

hypothesis. In particular, the possibly variable contribution of MA in the ageing processes affecting

different species and their different tissues has not yet been tackled. In addition, we have limited

understanding of the nature and prevalence of late-expressed substitutions, with the exception of a

few extreme cases such as the CAG repeat variants in the huntingtin gene that cause Huntington's

disease5. 

The role of MA in ageing therefore awaits testing through new approaches that encompass a larger

number of traits, a wider array of species, different tissues, and that include molecular data. One

such approach would be to take advantage of widely available transcriptome data,  in particular

genome-wide  gene  expression  datasets  that  comprise  adult  individuals  of  varying  age.  Such

transcriptome datasets have traditionally been used to identify functional processes affected by or
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underlying senescence, although they can also be used to test evolutionary theories, as we show

here.

In previous work, we used prefrontal cortex transcriptome age-series from humans to test whether

protein sequence conservation varies among genes that are highly expressed at different ages15. This

analysis  showed  that  are  relatively  highly  expressed  genes  in  young  adults  vs.  old  adults  are

evolutionarily more conserved than those that are relatively highly expressed genes in old adults vs.

young adults, which we call  age-related  decrease  in  conservation of the  transcriptome (ADICT),

consistent with the MA hypothesis. However, this work analysed only one brain region and did not

distinguish between two distinct processes: (a) up-regulation of lowly conserved genes with age

and,  (b)  down-regulation  of  highly  conserved genes  with  age.  Both  processes  could  cause  the

ADICT effect, but only (a) would be predicted by MA. 

To address these limitations, here we expanded our analysis to include 9 different tissue types and 5

mammalian species. First,  we investigated the prevalence of the ADICT pattern across multiple

mammalian ageing datasets, using estimates of protein and regulatory sequence conservation across

mammals. Second, we determined whether genes up-regulated late in life show low evolutionary

conservation, as predicted by MA. In other words, we tested whether slightly deleterious mutations

are more likely to fix in genes that are more highly expressed in old age, such as genes that respond

to age-associated tissue damage16,17.

Results 

Age-related decrease in conservation of the transcriptome

We collected published transcriptome age-series of young and old adults of 5 mammalian species,

generated  using  RNA-sequencing  or  microarrays  (Homo  sapiens,  Macaca  mulatta,  Macata

fascicularis, Rattus norvegicus, Mus musculus; n = 58 datasets and 2041 unique samples in all). The

datasets include different brain regions (humans, macaques, rats, and mice), muscle (humans, rats,

and mice), artery (humans, macaques, and rats), heart (humans),  skin (humans and mice), kidney

(humans and mice), liver (humans and mice), lung (humans and mice), and spleen (mice). Across

all analysed datasets (n  = 9 to 116 individuals, mean = 35.2), human ages range from 16 to 106

years, macaque ages range from 4 to 28 years, rat ages range from 3 to 30 months, and mouse ages

range from 8 to 130 weeks (Supplementary Table 1).  

We studied congruence in age-related gene expression change across the 58 datasets. First, for each

gene in each dataset we calculated the Spearman correlation coefficient between gene expression
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level and individual age (ρEA).  We then compared datasets to estimate pairwise similarity in  ρEA

values across common genes.  ρEA values were mostly (72% of comparisons) positively correlated

across data sets, indicating that the same genes’ expression levels were similarly affected by age

(Supplementary Fig. 1).  

As measure of gene sequence conservation we used estimates of purifying selection on protein

sequence (ω0), calculated by  Kryuchkova-Mostacci and Robinson-Rechavi (2015)18 and estimated

for the human or the mouse branch using the branch-site model19. ω0 is the dN/dS ratio calculated for

those sites determined to be under purifying selection, and thus is expected to be a direct measure of

the strength of purifying selection on a gene. We further calculated an adjusted protein conservation

metric (ω0
*) for each gene, factoring out the possible effects of GC content, CDS length, intron

length,  intron  number,  mean  expression,  median  expression,  maximum  expression,  tissue

specificity, network connectivity, phyletic age, and number of paralogs, using a multiple regression

model  following  Kryuchkova-Mostacci  and  Robinson-Rechavi  (2015)18.  The  value  -ω0
*  (ω0

*

multiplied by -1) represents the main protein sequence conservation metric we used in our analyses,

where more positive values represent more conserved genes.

We then investigated the prevalence of ADICT in mammalian ageing. To do so, we first calculated

the  Spearman  correlation  coefficient  between  gene  expression  level  and  the  protein  sequence

conservation metric (which we call ρEC) across all genes, for each individual in each dataset (Figs.

1a, 1b). Note that the conservation metric (-ω0
*) is a constant value per gene, while gene expression

levels will differ among individuals. In general, a positive  ρEC is expected, such that more highly

expressed genes tend to be more conserved in their protein sequence20, but its degree may vary

among individuals depending on age. To test this idea, in each dataset we determined the correlation

between individual ages and ρEC (ρAρEC). Fig. 1c provides an example of such a pattern in one brain

ageing dataset21, and  Fig. 2 shows the results across all datasets. The relation between individual

ages  and  ρEC was  found  to  follow  a  mainly  linear  trajectory  (Supplementary  Fig.  9 and

Supplementary Table 3).
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Fig. 1 | Relationship between gene expression level and protein conservation. Examples of gene

expression level - protein conservation metric correlations (a) for a 20 year-old human, and (b) for a

91-year old human, in the postcentral gyrus of the brain (data from ref.  21). The analysis includes

only  age-related genes detected in this dataset (at  q  < 0.10). Each point represents a gene (n =

1688).  The x-axis shows the protein sequence conservation metric,  where more positive values

reflect higher conservation across mammals. The y-axis shows log2 transformed gene expression

level.  The  expression-conservation  ρ values  (ρEC)  are  indicated  in  the  inset.  To  improve

visualization, we removed genes with very low conservation metrics (n = 3) in panels (a) and (b).

Note that our correlation statistic, Spearman, is not affected by such potential outliers.  (c) Age-

dependent change in expression-conservation  ρ values in the human postcentral gyrus, based on

age-related  genes  in  the  same  dataset  as  panels  (a)  and  (b).  The  y-axis  shows  expression-

conservation ρ values (ρEC) calculated for each individual in this dataset (n = 39). The x-axis shows

the age of an individual. The ρ value between age and expression-conservation correlation (ρAρEC) is

indicated in the inset.

In each dataset, we used two gene sets for testing ADICT: (a) genes that showed significant age-

related  change  in  expression  levels  (at  Spearman  correlation  test  q-value  <  0.10),  and  (b)  all

expressed genes. We conducted analyses using all expressed genes in order to avoid a reduction in

statistical power in datasets with low sample sizes and to determine whether patterns that hold for

strongly age-associated genes also apply across the entire transcriptome (Supplementary Table 2).

Note that  in 21 of 58 datasets, and in particular smaller datasets, we  could not identify a set of

significant age-related genes at q < 0.10; for these datasets we only conducted the analysis using all

expressed genes (see Methods). 
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In the brain, for 18 / 19 datasets with age-related genes, we found negative ρAρEC values consistent

with the notion of ADICT. ρAρEC values for 17 of these 18 datasets were significant at nominal p <

0.05. When repeating this analysis with all expressed genes, 27 / 28 datasets had negative  ρAρEC

values, 16 of which were nominally significant. Together, these results support a general trend of

ADICT in the brain (Fig. 2). We also found significant negative ρAρEC values in the majority of liver

(3 / 4) and lung (3 / 3) datasets, and in 2 of 5 artery datasets. In contrast, we found no consistent

ADICT pattern in various muscle types (n = 10, where we identified only one nominally significant

case) or in heart, skin, spleen or kidney. We also note that in 6 / 10 muscle datasets, we did not

detect significant age-related expression change in gene-by-gene analyses (Supplementary Table 2).

Overall, 26 / 58 of the datasets showed significant ADICT signatures across age-related genes after

correction for multiple testing (q < 0.10), with this pattern driven by brain, liver, lung, and artery

(Fig.  2).  ADICT signatures were also consistent with our findings using -ω0
* when we used the

mean  PhastCons  score  as  the  measure  of  negative  selection  on  protein  coding  sequences

(Supplementary Fig. 7). 

To determine the robustness of this result with respect to our protein-coding sequence conservation

metric, we repeated the analysis using ω0 values without applying multiple regression, as well as ω

values  obtained from the  Ensembl  database  for  “one-to-one  orthologs”  between human-mouse,

human-elephant, and human-cow (i.e. raw dN/dS values). We further tested whether the trend holds

when we exclude (a)  putatively positively selected genes  (with ω >1 in our data),  (b) immune

system genes known to be generally fast  evolving19,22,23, and (c) genes down-regulated with age in

each dataset (ranging from n = 1,086 to 6,717). In addition, to exclude the possibility that ADICT

signals are driven by gene expression changes involving only few functional processes (e.g. highly

conserved developmental genes being down-regulated), we calculated ρAρEC separately for genes in

each of the largest GO Biological Process categories (n = 19, each with node size >1000 annotated

genes) (Supplementary  Fig.  2).  Negative  ρAρEC values  were  repeatedly  detected  in  the  same 25

datasets (excluding one muscle dataset showing ADICT), irrespective of the metric used, the gene

sets, and GO categories involved (Supplementary Table 2 and Supplementary Fig. 2). ADICT thus

appears to be a consistent trend in multiple tissues, although it is also not a universal pattern across

all mammalian tissue types.
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Fig. 2 | Age-dependent changes in transcriptome conservation. The x-axis shows the Spearman

correlation coefficient (ρAρEC) between individual age and expression–conservation correlations (ρEC
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described in Fig. 1). The statistics are calculated separately for each dataset, and for significant age-

related genes in that dataset (light bars), as well as for all expressed genes (dark bars). Note that in

21 of 58 datasets (cases where the light bar is missing), no significant age-related gene set could be

identified (at q < 0.10). The asterisks indicate nominal significance of the Spearman correlation test,

(*):  p  ≤ 0.05, (**):  p  ≤ 0.01, (***):  p ≤ 0.001.  In the analysis using age-related genes, the 25

datasets showing nominal significance for ADICT remained significant at  q < 0.10 after applying

Benjamini-Hochberg correction (excluding one muscle dataset showing ADICT). In the analysis

using all genes, the 21 / 22 datasets showing nominal significance for ADICT remained significant

at q < 0.10 after applying Benjamini-Hochberg correction, with “Mm_Liver3” the only exception.

 

Distinct processes contribute to ADICT 

We next investigated two non-exclusive scenarios that could lead to ADICT: (a) genes that show

age-related increase in expression could be lowly conserved, consistent with MA, or (b) genes that

show age-related decrease in expression could be highly conserved, relative to genes that show no

change in  expression.  The  latter  scenario  could  occur  if  a  set  of  highly  conserved  genes  (e.g.

synaptic genes) are down-regulated during the postnatal  lifespan, as previously reported15,24,  but

would not provide direct evidence in support of MA.

To test  which  of  these  scenarios  underlie  ADICT,  we compared the  mean  conservation  metric

among (a) genes that show increases in expression with age (i.e. up-regulation, ρEA > 0.1, q < 0.1),

and (b) genes that show decreases in expression with age (ρEA < -0.1, q < 0.1), using (c) genes that

show no age-related changes in expression level as a control. We repeated this analysis across the

25 datasets showing the ADICT signature. We found results consistent with both scenarios (Fig. 3):

genes that show decreases in expression with age were more strongly conserved than genes with no

change (n = 22 / 25; 14 with bootstrap support >95%). Genes up-regulated with age were also more

weakly conserved  than genes with no change, in nearly all cases (n = 23 / 25; 15 with bootstrap

support >95%). The latter observation is in line with the MA hypothesis.

We further  hypothesized  that  genes  that  more frequently  exhibit  increased  expression with age

across tissues would be less likely to be conserved. To test this hypothesis, we selected genes shared

across the 25 ADICT datasets and counted how many times each gene was up-regulated with age.

As predicted, we observed a negative correlation between the number of cases in which a gene was

up-regulated with age and its conservation metric (ρ = -0.17, p < 0.001) (Supplementary Fig. 8a).

We further repeated this analysis for all  58 datasets,  which also revealed a significant negative

correlation (ρ = -0.24, p < 0.001) (Supplementary Fig. 8b).
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Fig. 3 |  Mean conservation metrics among gene sets with different patterns of age-related

change in expression levels.  The plots show mean conservation metric for genes that show age-

related  increase  (a)  and  age-related  decrease  (b)  in  expression  levels,  compared  to  mean

conservation metric among genes that show no significant  age-related change in expression level

(see Methods). The error bars indicate 95% confidence intervals calculated by 1,000 bootstraps, for

the 25 datasets consistent with ADICT.

Functional analysis of ADICT

To find functionally coherent gene sets that may contribute to ADICT patterns in brain, liver, lung,

and artery, we conducted Gene Ontology (GO) analysis for the 3 GO domains (Biological Process,

Cellular  Component,  Molecular  Function).  We calculated statistics  for GO analyses by ranking

genes according to both the conservation metric (-ω0
*) and expression-age correlations (ρEA) and

investigating GO term enrichment in the 10% tails of the distributions. We separately analysed (a)

genes that showed increased expression with age and low relative conservation (IELC, consistent

with  MA),  and  (b)  genes  that  showed  decreased  expression  with  age  and  high  conservation

(DEHC). We sought shared GO categories enriched in either IELC genes or DEHC genes across all

25 datasets showing the ADICT signature. To determine the random expectation for shared GO

categories, we randomly permuted ages of individuals in each dataset 1000 times, calculated  ρEA

again, and repeated the gene ranking and GO analysis.

IELC genes were enriched in the same 24 GO Biological Process categories in all the 25 datasets

(expected = 0; permutation test p < 0.001) (Supplementary Figs. 3 and 4, Supplementary Table 4).
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These included categories related to apoptosis,  inflammation,  and the immune response,  among

others  (see  the  REVIGO  summary  in  Supplementary  Fig.  4).  In  addition,  four  GO  Cellular

Component  categories  (expected  =  0;  p  <  0.001)  and  one  GO  Molecular  Function  category

(expected = 0;  p = 0.022) were shared among IELC genes across the 25 datasets (Supplementary

Fig.  3).  Among  DEHC  genes,  we  found  shared  enrichment  only  in  Cellular  Component  and

Molecular Function categories (permutation test  p < 0.05);  significant gene sets included synapse

and  signaling  related  functions  (Supplementary  Fig.  4  and  Supplementary  Table  4).  Although

functional analysis suggests DEHC as a potential factor for functional decline, we will only focus

on IELC as the objective of this study is to test MA hypothesis.

Age-dependent effects on regulatory region conservation

Finally,  we  asked  whether  ADICT also  extended  to  conservation  of  transcriptional  regulatory

regions. To test this possibility, we calculated the mean PhastCons score (a metric for conserved

elements) from the UCSC database based on a 100-way vertebrate alignment25, for (a) +/- 2000 bp

around the transcription start site (TSS) and (b) the 3’-UTR. We then repeated our ADICT analysis

by  substituting  these  two  regulatory  conservation  metrics  for  -ω0
*.  This  again  revealed  a

heterogeneous trend toward ADICT across tissues, with consistent ADICT trends in brain, liver, and

lung (Supplementary Fig. 5 and Supplementary Fig. 6). 

Discussion

The MA hypothesis predicts that burden of slightly deleterious germline substitutions will increase

with age due to the declining force of negative selection3. Our approach differs from earlier attempts

to test this hypothesis6–11,13,14 in two respects. First, instead of relying on intra-species variation to

estimate  mutational  load,  we  used  inter-species  divergence,  which  may  be  statistically  more

powerful as it involves a larger number of substitutions. Second, we studied the mutational load on

multiple tissues, thus taking into account the possibility that age-dependent germline mutational

load may vary among tissues, depending on tissue-specific developmental patterns, mitotic capacity,

and consequences for organism-level fitness. 

We found the age-related decrease in transcriptome conservation (ADICT) pattern in datasets from

brain, liver, lung, and artery, consistently across human, macaque, rat, and mouse. Among datasets

from all four of these tissues, genes that increased expression with age showed low conservation

(IELC). Furthermore, we found that a shared trend of up-regulation among all nine tested tissues

predicted lower evolutionary conservation. These results are consistent with the MA hypothesis. In

addition, our functional analysis suggests that processes known to underlie senescent phenotypes in
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multiple  tissues,  apoptosis  and  inflammation17,  are  particularly  influenced  by  age-dependent

mutational load. Nevertheless, the methodology depends on expression data and if the function of a

gene is modulated through other mechanisms, such as post-translational modifications or alterations

in the interaction partners, these will not be captured in our study.

Two notes  of  caution are warranted.  First,  ADICT and IELC were not  consistently  detected in

muscle,  heart,  kidney,  skin,  and  spleen  datasets,  and  the  reason  is  unclear.  These  cases  could

represent false negatives due to experimental artefacts, or they might reflect heterogeneity of the

ageing process. It is notable that we observed ADICT and/or IELC in only one of the 10 muscle

datasets. This result could be related to a weaker signature of ageing in muscle; indeed, we could

only identify age-associated genes in 4 / 10 muscle datasets (at q < 0.10), in stark contrast to brain

datasets (18 / 19). This latter result cannot be trivially explained by reduced statistical power in the

muscle data sets (sample sizes are comparable with those of brain), but could be due to increased

inter-individual  variation26 in  muscle  ageing.  The  MA  hypothesis  assumes  late  age-specific

mutations;  if  age-specific  expression  patterns  are  absent  in  a  tissue,  we would  not  expect  the

contribution of the MA process to that tissue’s ageing. This could explain variation among tissues in

ADICT prevalence.

Second, the IELC propensity could be related to up-regulation of genes evolving under positive

selection, such as immune-related genes, instead of genes under weak negative selection. Hence,

low conservation  might  reflect  the  accumulation  of  beneficial  substitutions rather  than  weakly

deleterious  ones.  This  scenario  would  be  consistent  with  the  antagonistic  pleiotropy  (AP)

hypothesis, which argues that  substitutions that are positively selected for their early life benefits

may be harmful in late life27. However, (a) our analysis is based on an estimate of negative selection

rather  than  raw ω,  and thus  is  not  expected  to  be affected by positive selection;  (b)  when we

removed genes with ω > 1 or immune genes from our analysis, we still found the same ADICT and

IELC signals (Supplementary Fig. 10); (c) we compared IELC genes and 370 genes identified to be

under positive selection in humans through multiple genome scans28,  and we did not find more

overlap than expected compared to the background set of all genes we analysed (Fisher’s exact test

p = 0.3). While IELC may still partly derive from as-yet undetected positive selection in early life

and represent a case of antagonistic pleiotropy, it remains at least as likely that deficient purifying

selection  and  accumulation  of  slightly  deleterious  substitutions29,  as  predicted  by  the  MA

hypothesis, underlies the observed IELC signal. 
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Might the IELC phenomenon we detect contribute to physiological decline in ageing? Our finding

that inflammation and apoptosis are shared functional characteristics of IELC genes in four tissues

is  telling,  especially  given  increasing  appreciation  of  the  role  of  inflammaging,  i.e.  low-level

inflammation observed in many ageing tissues16,17,30. There are multiple examples of how chronic

inflammation can impair housekeeping functions, especially in the brain (e.g. refs. 17,31). Meanwhile,

apoptosis  is  crucial  for  eliminating  senescent  cells  during  healthy  ageing,  and  disruptions  in

apoptosis could lead to accumulation of dysfunctional cells over time. Conversely, apoptosis is also

thought  to  have  a  role  in  neurodegenerative  disease  aetiology,  such  as  Alzheimer’s  Disease

aetiology, by causing neuronal loss32. Our results suggest that genes involved in cellular and tissue

level  damage response,  such as  those with  roles  in  inflammation and apoptosis,  are  subject  to

weaker purifying selection than other genes, possibly due to their limited activity early in life. The

resulting mutational load leads to suboptimal regulation and function during ageing in particular

tissues,  when  these  genes  show  elevated  activity.  The  MA process  may  thus  contribute  to

mammalian senescent phenotypes, although at varying levels in different tissues. 

Methods

Normalization. Affymetrix .CEL files from 23 datasets15,24,33–50 were downloaded from NCBI Gene

Expression  Omnibus  (GEO)51,52 with  accession  number  and  EBI  Array  Express53.  These  raw

datasets were processed using the Bioconductor “affy” package “expresso” function54. The selected

options  for  the  “expresso”  function  were:  “rma”  for  background  correction,  "quantiles"  for

normalization,  and  “medianpolish”  for  summarization;  the  procedure  also  includes  log2

transformation55. Whenever raw data were not provided, the pre-processed series matrix files were

downloaded  from NCBI  GEO;  the  datasets  were  log2  transformed  and  quantile  normalized  if

deemed  necessary  based  on  inspection  of  the  pre-processed  data.  RNA-seq  datasets  were

downloaded from Genotype-Tissue Expression (GTEx)56. These datasets were processed using log2

transformation on the gene expression levels and quantile normalization using “preprocessCore”

package in R55. Pre-processing steps used on the analysed datasets are presented in Supplementary

Table 1.  Quantile normalization was performed on full datasets (without removing low expressed

genes).

Probeset-to-gene conversion. Affymetrix probe set IDs were converted to Ensembl gene IDs using

the Bioconductor "biomaRt" package57. We used the “useMart” function to select the dataset for the

species of interest, and the “getBM” function to retrieve the Ensembl gene IDs corresponding to

Affymetrix probe set IDs. We then followed two steps: (a) if one probe set corresponded to more

than  one  Ensembl  gene,  we  removed  that  probe  set,  (b)  if  >1  probe  set  corresponded  to  one
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Ensembl gene, we chose the probe set which had the maximum expression value across all samples

in that dataset. This approach used information only from the highest expressed and best-measured

transcript per gene in each dataset (in other words, we discarded information from more lowly

expressed and possibly noisy transcripts in that dataset).

Age test and age-related gene sets. Genes showing age-related changes in expression levels were

identified  using  the  Spearman  correlation  test.  We  used  the  R  “cor.test”  function  using

“method='Spearman'” for calculating the age-expression correlation coefficient  ρEA. The  p-values

were corrected for multiple testing using the “p.adjust” function with the “Benjamini-Hochberg

(BH)”  method  in  R,  yielding  q-values  as  a  measure  of  the  false  discovery  rate.  We used  the

nonparametric Spearman rank correlation test to overcome several problems related to conducting

meta-analysis (e.g., each dataset displays unique and sometimes non-normal distributions; outliers

can have large effects on data analysis). We used a q-value cutoff of q < 0.10, which is a commonly

used threshold (e.g. refs. 15,58). Among 58 datasets, 21 had a low number of age-related genes (n <

50), so to limit type II error we did not include these datasets in analyses of age-related gene sets.

Gene  set  sizes  for  age-related  genes  and  all  detected  genes  for  all  58  datasets  are  shown  in

Supplementary Table 2.  Unsurprisingly,  the number of age-related genes is partially affected by

sample size (at Spearman correlation test ρ = 0.35, p = 0.03), but this does not influence our ability

to observe ADICT (see below).

We  then  defined  two  further  categories  based  on  the  expression-age  Spearman  correlation

coefficient (ρEA): (a) genes that showed age-related increases, with ρEA > 0.1 and q < 0.1; (b) genes

that showed age-related decreases, with ρEA < -0.1 and q < 0.1. In addition to the q-value to define

our cutoffs, we also used the correlation coefficient (ρEA). Therefore genes with small effect size that

can  be identified  in  large  datasets  (i.e. with high power)  but  not  in  small  datasets  will  not  be

included in our analysis. Genes with q > 0.10 were considered to have no change in expression level

with age. Genes with q < 0.10 and |ρEA| < 0.1 were discarded from further analysis.

ADICT. The ADICT pattern was calculated as the Spearman rank correlation between age and ρEC

in each dataset, using all genes in each dataset, and using age-related genes, if detected in that

dataset. The Spearman p-values were corrected using the BH method as described above (across all

datasets  included  in  an  analysis).  Note  that  correlation  between |ρAρEC|  and  sample  size  across

datasets were negative (ρAρEC calculated for all genes: ρ = -0.48, p < 0.001; ρAρEC calculated for age-

related genes: ρ = -0.64, p < 0.001). This is simply because finding large correlation coefficients is

unlikely with large sample sizes. However, this pattern cannot explain why we observe a consistent
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trend for negative ρAρEC  values (i.e. ADICT) in some tissues:  e.g. in brain 27 / 28 datasets show a

negative ρAρEC whereas only 4 / 10 muscle datasets show a negative ρAρEC. 

Protein sequence conservation metrics.  We used several types of metrics to estimate negative

selection pressure on protein coding sequences. 

First, we used ω0, a statistic based on coding sequence alignments across mammalian species. ω0 is

estimated  for  the  Homininae  branch  for  human  and  the  Murinae  branch  for  mouse,  using  the

branch-site model22. In the branch-site model, the branch of interest (the "foreground branch") is

permitted  to  have  a  different  distribution  of  dN/dS  values  than  the  other  branches  in  the

phylogenetic tree (the “background” branches), which are constrained to have the same distribution

of  dN/dS  value among sites. The branch-site model thus estimates positive or negative selection

pressure on a protein coding gene sequence. Here,  we used the  dN/dS  ratio calculated for sites

determined to be under negative selection. Thus, ω0 is expected to be a measure of the strength of

negative selection on a gene. The values, calculated for each Ensembl gene, were downloaded from

the Selectome database59.

This measure of ω0 can vary among genes due to multiple factors that are not the focus of this

study18. To disentangle the effects of such factors from  the effect of protein sequence conservation

per  se,  we  used  information  on  GC content,  CDS length,  intron  length,  intron  number,  mean

expression,  median  expression,  maximum  expression,  tissue  specificity,  network  connectivity,

phyletic age, and number of paralogs, which were directly obtained from the Supplemental Material

of Kryuchkova-Mostacci and Robinson-Rechavi (2015)18. To remove the effect of these variables

from ω0, we used the “lm” function in the R “stats” package to calculate the residuals (ω0
*) from a

multiple regression model with ω0 as the response variable and all other variables as predictors. The

ω0
* statistic was calculated separately for human and for mouse ω0 values. We used the human ω0

*

data  in  analyses  involving  primate  transcriptome datasets,  and  the  mouse  ω0
* data  in  analyses

involving rodent transcriptome datasets.

Second, we calculated conservation in protein coding regions between pairs of species separated by

different evolutionary distances, using dN (nonsynonymous substitution rate) and dS (synonymous

substitution rate) statistics downloaded from Ensembl Biomart (v.83)60. Here we used “one-to-one

orthologs” between human-mouse, human-elephant, and human-cow, in order to identify whether

evolutionary distance between species affects estimated levels of sequence conservation. Because

dN/dS  ratios  measure  both  the  strength  of  negative  and of  positive  selection,  we repeated  our

analysis only using genes with  dN/dS  < 1 (i.e., excluding the genes most likely to evolve under

positive selection). In addition, GO categories and subcategories related to immune system genes
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(“GO:0002376”), which are known to be fast-evolving, were selected using the R “get” function.

We then repeated the analysis after discarding these genes.

Finally,  we calculated  the  conservation of  protein coding sequences  using  the  PhastCons scores

(phastcons100way) downloaded from the UCSC database25. Phastcons100way scores each base of

the  human  genome  based  on  the  alignment  of  99  vertebrate  genomes  to  human.  To

find coding regions for  each  gene,  we  used  the  coding  start  and  end  positions  from  Ensembl

Biomart  (v.83),  combining  all  isoforms  per  gene. We  obtained  a  list  of  all  PhastCons  scores

(phastcons100way) for the coding bases of each human gene via BEDTools61 software, and then

calculated the mean PhastCons score value as a metric to represent conservation of that gene’s

coding region.

Regulatory region conservation metrics.  To calculate conservation for 3'-UTRs of mammalian

genes, we first retrieved start and end positions of human gene 3'-UTRs from Ensembl Biomart

(v.83). Due to alternative splicing, one gene may be transcribed into multiple isoforms, leading to

more than one 3’-UTR per gene (which may overlap). Thus, for each gene we selected all bases

annotated as part of any isoform’s 3’UTR. To calculate conservation levels of human gene promoter

regions, we defined promoters as the 2000 bp upstream and downstream of a gene transcription start

site  (TSS),  which  we  again  obtained  from  Ensembl  Biomart  (v.83).  For  genes  with  multiple

transcription start sites, we selected all bases that were located in promoter regions. To overcome

possible biases that may arise from the inclusion of conserved exon regions into the regulatory

region boundaries, we discarded exonic regions within the 2000 bp window around gene TSSs. 

Using  the  BEDTools61 software  package  we  obtained  a  list  of  all  PhastCons  scores

(phastcons100way)  for  the  defined  3’UTR  bases  or  promoter  bases  of  each  gene.  We  then

calculated the mean PhastCons score value as a metric to represent that gene’s 3’-UTR or promoter

region conservation.

Bootstrapping.  Bootstrapping  was  performed  using  the  “sample”  function  in  R,  with

“replacement=TRUE”. We used bootstrapping to calculate 95% confidence intervals for the mean

conservation metric among genes that showed (a) age-related increases in expression levels, (b)

age-related decreases in expression levels, and (c) no age-related changes in expression levels. For

each  case  we  resampled  genes  1000 times,  and calculated  the  mean.  To  visually  compare  the

conservation metric among datasets, we then subtracted the median for genes that showed no age-

related change, from genes that showed age-related increase or age-related decrease. The upper and

lower 2.5% quantiles are plotted in Fig. 3.
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Testing linear changes.  To determine whether  the relationship between individual  age and  ρEC

(calculated across age-related genes) was linear across adulthood, we compared linear regression

models and quadratic regression models for each dataset, with ρEC as the response variable and age

as the explanatory variable (using the R “lm” function).

Defining IELC and DEHC gene sets. We developed a non-parametric statistic, z, which captures

the relative correlation coefficient between gene expression and age, and relative conservation level

of a gene simultaneously: 

z = x 2 – y 2, 

where x is the rank of a correlation coefficient between gene’s expression level across all detected

genes in a dataset and age, and  y is the rank of that gene’s  conservation metric. Using squared

values gives additional weight to differences between higher ranks. High values of z indicate genes

that have relatively high expression and low conservation, whereas low values of z indicate genes

that have relatively low expression and high conservation. After sorting  z values, the top 10% of

genes were included in the increasing expression and low conservation (IELC) gene set and the

bottom 10% were included in the decreasing expression and high conservation (DEHC) gene set.

Gene Ontology analysis. Here we sought to find functional groups associated with either IELC or

DEHC patterns that were shared across datasets of a tissue, and across all datasets. We conducted

Gene Ontology (GO) analyses for 3 GO domains - Biological Process (BP), Cellular Component

(CC),  and  Molecular  Function  (MF).  For  this,  we  (I)  chose  GO  groups  showing  enrichment

tendencies  in each dataset,  using liberal  cutoffs,  (ii)  determined the overlap among chosen GO

groups  among  datasets,  (iii)  tested  significance  of  the  overlaps  using  random permutations  of

individual age in each dataset. Specifically, in each dataset, we chose GO groups with an odds ratio

>1, comparing either IELC or DEHC genes (10% tails of the z statistic described above) to the rest

(90%). We preferred not to use a p-value cutoff and to use liberal odds ratio cutoff (>1) in order to

avoid type II error and to ensure that datasets with different numbers of genes contributed equally to

downstream analysis. We then counted the number of overlapping GO groups that were thus chosen

(odds ratio > 1) across all 25 datasets, or among different datasets for the same tissues. Next, we

randomized  ages  of  individuals  in  each  dataset  by  conducting  1000  permutations,  calculated

expression correlations with age, and repeated the GO analysis using these correlation values. We

finally compared the number of GO groups that showed enrichment tendency (odds ratio > 1) in the

random permutations, with the observed values.
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Supplemental Information

Supplementary Tables

Supplementary Table 1: Information about the 58 datasets used in the analysis.

Supplementary Table 2:  Age-dependent changes in transcriptome conservation (ρAρEC) calculated

for different conservation metrics and gene sets.  (a)  The number of age-related and all expressed

genes calculated for the 58 datasets. Sheets B-F contain results (number of genes,  ρAρEC,  p-values)

calculated using (b) -ω0  as conservation metric;  (c) -ω0
* as conservation metric (the main result in

our analyses), (d) -ω (or dN/dS) for “one-to-one orthologs” between human-mouse as conservation

metric, (e) -ω for “one-to-one orthologs” between human-elephant as conservation metric, (f) -ω for

“one-to-one  orthologs”  between  human-cow as  conservation  metric.  Sheets  G-I  contain  results

(number  of  genes,  ρAρEC,  p-values)  calculated  using gene  sets  excluding  putatively  positively

selected genes (with ω > 1 in our data), immune system genes, and down-regulated genes in each

dataset (as indicated with the “WID” suffix). We repeated this analysis using (g) -ω (or dN/dS) for

“one-to-one  orthologs”  between  human-mouse  as  conservation  metric,  (h)  -ω for  “one-to-one

orthologs”  between  human-elephant  as  conservation  metric,  (i)  -ω for  “one-to-one  orthologs”

between human-cow as conservation metric. All results are calculated for all genes and age-related

genes in a dataset. 

Supplementary Table 3: Results of the comparison of the linear and quadratic regression models

in 25 datasets that show an ADICT trend. A significant  p-value indicates a better fit of the linear

model, estimated by the R “lm” function.

Supplementary Table 4: Results of REVIGO analyses.
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Supplementary Figures

Supplementary Figure 1.  Pairwise correlations of gene-level Spearman correlation coefficients

between gene expression and age (ρEA), across all 58 datasets used in the analysis. Row and column

names  of  the  correlation  matrix  show each  dataset,  with  the  order  determined  by  hierarchical

clustering.  Strong correlations  are  indicated with darker  squares,  red for  negative  and blue for

positive. The number of common genes between any pair of datasets ranges from 2,516 to 21,323.

The pairwise correlation coefficients across datasets range from -0.23 to 0.86. Overall there were

positive correlations were found in 72% of 1653 pairwise comparisons. Among tissues belonging to

the  same dataset,  94% of  pairwise comparisons  were  positively  correlated  among the  28 brain

datasets, and 67% among the 10 muscle datasets. Among datasets belonging to the same platform,

RNA  sequencing  and  microarray  datasets  show  77%  and  68%  positive  correlation  among

themselves,  respectively.  However,  there  is  no  major  difference  between  within-platform

comparisons and between-platform comparisons (Wilcoxon signed rank test p = 0.26).
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Supplementary Figure 2. Correlation between the conservation metric (-ω0
*) and expression level

of genes categorized by GO BP categories that include (a) at least 1000 genes, and (b) at least 1000

genes and without immune system-related genes. These 19 GO BP categories were the only ones

that had >1000 genes. Shared genes between categories were not excluded. Row and column names

show each dataset and GO BP category respectively. Magnitude of Spearman correlation coefficient

is indicated by the colour of the squares (darker colour shows stronger correlation): red for positive

and blue for negative. The asterisks indicate, (*): p ≤ 0.05. Only the 25 ADICT-associated data sets

are shown. 
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Supplementary  Figure  3.  Number  of  GO  groups  enriched  for  genes  that  show  increased

expression with age and low conservation (IELC), and for genes that show decreased expression

with  age  and  high  conservation  (DEHC)  across  different  tissues.  Panels  a-f  show  GO  group

enrichment results for the three GO domains. Enrichment was calculated for each tissue and for
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IELC or DEHC genes separately. If IELC (or DEHC) genes in a dataset showed overlap with a GO

group with odds ratio > 1 (relative to other genes and other GO groups) and this was observed for

all datasets of the same tissue (brain, n = 17; liver, n = 3; lung, n = 3; artery, n = 2 datasets showing

ADICT), we assumed enrichment of IELC (or DEHC) genes in that GO group for that tissue (see

Methods for an explanation of the rationale). The significance of the enrichment results was tested

by random permutations at two levels: (a) categories found in each of the four tissues, and (b) for

the categories shared between all four tissues (The asterisks indicate, (*): permutation test p ≤ 0.05).

In panels a-f,  if  a  tissue is  demarcated by a  dashed line (e.g.  artery and lung in panel  a),  this

indicates lack of significant GO enrichment in datasets of that tissue (p > 0.05).  (a) We found 24

GO Biological Process (BP) categories (expected = 0; permutation test p < 0.001) enriched for

IELC across all 25 datasets. Supplementary Fig. 4 contains a summary of these results as provided

by REVIGO (Supek et al. 2011). Among BP GO categories, n = 43 (expected = 2; permutation test

p < 0.001),  n = 475 (expected = 93; permutation test  p < 0.001),  and  n =279 (expected = 85;

permutation test  p  = 0.002) were enriched for IELC in brain,  liver,  and lung,  respectively.  For

artery, we did not find a common significant enrichment for IELC based on the permutation test. (b)

In the 17 brain datasets, 157 GO categories (expected = 112; p = 0.028) were enriched for DEHC.

For  other  tissues,  we  did  not  find  a  common  significant  enrichment  for  DEHC based  on  the

permutation  test.  (c)  We found four  GO Cellular  Component  (CC)  categories  (“lytic  vacuole”,

“lysosome”, “vacuole”, “extracellular space”) enriched for IELC across all 25 datasets (expected =

0; permutation test p < 0.001). Among CC GO categories, n = 6 (expected = 0; permutation test p =

0.005) and n = 47 (expected = 20; permutation test p = 0.01) were enriched for IELC in brain and

lung, respectively. For artery and lung, we did not find a common significant enrichment for IELC

based on the permutation test. (d) We found n = 12 GO Cellular Component categories enriched for

DEHC across all  25 datasets (expected = 6; permutation test  p = 0.043).  Supplementary Fig. 4

contains a summary of these results. In the brain datasets, 33 GO categories (expected = 9;  p <

0.001)  were  enriched  for  DEHC.  For  other  tissues,  we  did  not  find  a  common  significant

enrichment for DEHC based on the permutation test.  (e) We found n = 1 GO Molecular Function

(MF)  category  (“protein  homodimerization  activity”)  enriched  for  IELC across  all  25  datasets

(expected = 0; permutation test p = 0.022). In the brain datasets, n = 2 GO categories (expected = 0;

p =  0.05)  were  enriched  for  IELC.  For  other  tissues,  we  did  not  find  a  common  significant

enrichment for IELC based on the permutation test.  (f)  We found n = 14 GO Molecular Function

(MF) categories enriched for DEHC across all  25 datasets  (expected = 5; permutation test  p =

0.006). Supplementary Fig. 4 contains a summary of these results. In the brain datasets, n = 29 GO

categories (expected = 8; p < 0.001) were enriched for DEHC. For other tissues, we did not find a

common significant enrichment for DEHC based on the permutation test.
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Supplementary Figure 4. Summary of  GO groups  shared  in  all  25 datasets  showing ADICT,

produced using the REVIGO software (Supek et al. 2011). GO categories were selected as enriched

for IELH and DEHC genes, if they showed an odds ratio > 1 in each of the 25 datasets (relative to
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other genes in that dataset and genes in other GO categories). Clusters are shown by rectangles and

superclusters  are  separated  by colour.  (a) The  24  GO BP categories  enriched for  IELC across

datasets.  (b)  The 12 GO CC categories enriched for DEHC across datasets.  (c)  The 14 GO MF

categories enriched for DEHC across datasets (Supplementary Table 4).
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Supplementary  Figure  5. Changes  in  the  transcription  start  site  (TSS)  region  (+/-  2000  bp)

conservation (PhastCons) during ageing.  (a) The x-axis shows age-dependent change in expression

level–regulatory region conservation correlation, measured by the Spearman correlation coefficient
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ρ. The results were calculated separately for each dataset, and for significant age-related genes in

that dataset (light bars), as well as for all expressed genes (dark bars). Note that in 21 of 58 datasets

(cases where the light bar is missing), no significant age-related gene set could be identified at q <

0.10. The asterisks indicate, (*): p ≤ 0.05, (**): p ≤ 0.01, (***): p ≤ 0.001.  (b) Comparison of the

conservation  metric  among  gene  sets  showing  different  age-related  expression  level  change

patterns. The plots show mean conservation metric for genes showing age-related increase (left) and

age-related  decrease  (right)  in  expression  level,  compared  to  mean  conservation  metric  among

genes showing no significant age-related change in expression level. The error bars indicate 95%

confidence intervals calculated by 1,000 bootstraps. In 14 datasets (bootstrap support >95%), genes

that show an increase in expression with age had lower regulatory region conservation, on average,

than genes with no change. In 18 datasets (bootstrap support >95%) genes that show a decrease in

expression with age also had higher conservation levels, on average, than genes with no change.
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Supplementary Figure 6. Changes in 3’ untranslated region (3’-UTR) conservation (PhastCons)

during ageing.  (a) The x-axis shows age-dependent change in expression level–regulatory region

conservation correlation,  measured  by the Spearman correlation coefficient  ρ.  The results  were
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calculated separately for each dataset, and for significant age-related genes in that dataset (light

bars), as well as for all expressed genes (dark bars). Note that in 21 of 58 datasets (cases where the

light bar is missing), no significant age-related gene set could be identified at q < 0.10. The asterisks

indicate, (*): p ≤ 0.05, (**): p ≤ 0.01, (***): p ≤ 0.001.  (b) Comparison of the conservation metric

among gene sets showing different age-related expression level change patterns. The plots show

mean conservation metric for genes showing age-related increase (left) and age-related decrease

(right)  in  expression  level,  compared  to  mean  conservation  metric  among  genes  showing  no

significant age-related change in expression level. The error bars indicate 95% confidence intervals

calculated  by  1,000  bootstraps.  In  14  datasets  (bootstrap  support  >95%),  genes  that  show  an

increase in expression with age had lower regulatory region conservation, on average, than genes

with no change. In 15 datasets (bootstrap support >95%) genes that show a decrease in expression

with age also had higher conservation levels, on average, than genes with no change.
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Supplementary Figure 7. Age-related changes in conservation of coding regions measured using

the PhastCons metric. (a) The x-axis shows age-dependent change in expression level–regulatory

region conservation correlation, measured by the Spearman correlation coefficient  ρ. The results
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were calculated separately for each dataset, and for significant age-related genes in that dataset

(light bars), as well as for all expressed genes (dark bars). Note that in 21 of 58 datasets (cases

where the light bar is missing), no significant age-related gene set could be identified at q < 0.10.

The asterisks indicate,  (*):  p ≤ 0.05, (**):  p ≤ 0.01,  (***):  p ≤ 0.001.  (b) Comparison of the

conservation  metric  among  gene  sets  showing  different  age-related  expression  level  change

patterns. The plots show mean conservation metric for genes showing age-related increase (left) and

age-related  decrease  (right)  in  expression  level,  compared  to  mean  conservation  metric  among

genes showing no significant age-related change in expression level. The error bars indicate 95%

confidence intervals calculated by 1,000 bootstraps. In 15 datasets (bootstrap support >95%), genes

that show an increase in expression with age had lower regulatory region conservation, on average,

than genes with no change. In 17 datasets (bootstrap support >95%) genes that show a decrease in

expression with age also had higher conservation levels, on average, than genes with no change.
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Supplementary Figure 8. Correlation between gene protein sequence conservation metrics and the

frequency of datasets where the same gene shows increase in expression with age. The x-axes and

y-axes show conservation (-ω0
*) and number of datasets in which a gene shows ρAE > 0 among (a)

the  25 ADICT-associated  datasets  and  (b)  all  58 datasets,  respectively.  Darker  colour  indicates

higher rates of gene sharing between datasets.  Spearman correlation coefficient rho is -0.17 (p  <

0.001) for panel (a) and -0.24 (p < 0.001) for panel (b). Note that genes in panel (a) will not be

represented in panel (b) if they are not detected in some of the 33 datasets not showing ADICT.
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Supplementary Figure 9. Changes in the correlation between expression and conservation metric

(-ω0
*) with age across all 25 datasets showing ADICT. The correlations are those represented in Fig.

2 and in Supplementary Table 2. Note that a linear model was found to fit the data better (p < 0.05)

than an alternative quadratic model in 76% of cases, using the R function “lm”.
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Supplementary Figure 10. Comparison of conservation metric among gene sets that show different

age-related changes in expression, after removing immune system related genes. The plots show

mean conservation metric for genes showing age-related increase (left) and age-related decrease

(right)  in  expression  level,  compared  to  mean  conservation  metric  among  genes  showing  no

significant age-related change in expression level. The error bars indicate 95% confidence intervals

calculated by 1,000 bootstraps. In 12 datasets (bootstrap support >95%), genes that show increases

in expression with age had on average lower regulatory region conservation, and in 15 (bootstrap

support >95%) of these datasets, genes that show decreases in expression with age also had on

average higher conservation than genes with no change.
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