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Abstract

More than 70,000 short-read RNA-sequencing samples are publicly available through the
recount2 project, a curated database of summary coverage data. However, no current meth-
ods can estimate transcript-level abundances using the reduced-representation information
stored in this database. Here we present a linear model utilizing coverage of junctions and
subdivided exons to generate transcript abundance estimates of comparable accuracy to
those obtained from methods requiring read-level data. Our approach flexibly models bias,
produces standard errors, and is easy to refresh given updated annotation. We illustrate
our method on simulated and real data and release transcript abundance estimates for the
samples in recount2.
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Background

RNA sequencing (RNA-seq) can be used to measure gene (and transcript) expression levels

genome-wide. Large-scale RNA-seq datasets have been produced by studies such as the GTEx

(Genotype-Tissue Expression) consortium [1], which comprises 9,662 samples from 551 individu-

als and 54 body sites (under version 6), and the Cancer Genome Atlas (TCGA) study [2], which

comprises 11,350 samples from 10,340 individuals and 33 cancer types. Furthermore, public data

repositories such as the Sequence Read Archive (SRA) host tens of thousands of human RNA-seq

samples [3]. These data collectively provide a rich resource which researchers can use for discovery,

validation, replication, or methods development.

These data are even more valuable when processed in a consistent manner and presented in an

accessible format. The recently published recount2 project [4] is the result of such an undertaking.

All raw data from the thousands of sequencing studies were aligned to a common reference genome

using a scalable and reproducible aligner Rail-RNA [5]. Summary measures (gene, exon, junction,

and base-pair level coverage) were derived from the Rail-RNA output and made available in a R

package and through a web portal (https://jhubiostatistics.shinyapps.io/recount/).

Currently, recount2 provides summary measures that directly allow for analyses like annotation-

agnostic base-pair level and annotation-specific gene/exon/junction differential expression. How-

ever, transcript-level abundance estimates are missing from recount2, preventing subsequent

transcript-level analyses. Despite the existence of many successful transcript quantification pro-

grams (such as Cufflinks [6], StringTie [7], Kallisto [8], Salmon [9], and RSEM [10]), this deficiency

persists because methods capable of estimating transcript abundances using the summarized out-

put collected in recount2 do not exist.

Inspired by previous linear models for transcript quantification (such as IsoformEx [11] and

MultiSplice [12]), we present our model recountNNLS, which does not require the raw sequencing

read data, but instead requires only the base-pair and junction level coverages stored in recount2.

Our approach is useful both for creating transcript abundances specifically for the recount2

project and as a general purpose method for estimating transcript abundances based on RNA-

seq summaries that are smaller and easier to distribute than raw alignment files. Our goal in

developing this method was not to be faster or more accurate than existing methods operating on

raw sequencing data, but to provide a way to more fully utilize the wealth of data in the recount2
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project by performing transcript-level abundance estimates.

Results

Overview of method

recount2 includes a repository of coverage summary measures, including coverage of exon-exon

splice junctions, produced by a uniform application of the aligner Rail-RNA to more than 70,000

publicly available RNA-seq samples. For a given read length and a reference transcriptome,

we determine a set of sufficient features comprised of subdivided exonic segments and exon-

exon junctions, such that the coverage of these features adequately summarizes the transcript

quantification encoded in the raw reads. Those counts of reads overlapping the features are the

sufficient statistics of our linear model, which we denote as feature counts (see Figure 1). By

storing and using only these summary coverages, recount2 can be viewed as a lossy compression

of the raw alignment files, which can achieve greater than 1000x compression for storage and

transfer (see Figure. 2).

Using these feature counts as the dependent variable, we fit a non-negative least squares re-

gression model to estimate the underlying transcript abundances. The independent variables in

our model are transcriptome annotation-specific, denoted as feature probabilities. A feature

probability encodes the chance that a random read from a transcript will contribute an observed

count to the corresponding feature. Our regression weights each feature by its uniqueness within

the set of transcripts at a specific locus, in order to emphasize features that distinguish transcripts.

Standard error estimates are also reported that reflect our model’s confidence in abundance assign-

ment. Lastly, updates to transcriptome annotations can be efficiently incorporated by our model

without requiring re-alignment. Further details about our methods are described in Methods and

are implemented in the R package recountNNLS.

Performance on simulated data

Using simulated data, we evaluated the performance of our model compared to the popular

pipelines HISAT2-Cufflinks [13]-[6], HISAT2-StringTie [7], Kallisto [8], Salmon [9], and RSEM

[10]. We simulated 10 scenarios of varying read-length and paired-end status using the polyester
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R package [14]. Our method was run on the reduced-representation output from applying the

aligner Rail-RNA [5] to the simulated FASTA files. All other methods extracted information from

the full simulated FASTA files. For our main metric of performance, we calculated the Root Mean

Squared Error (RMSE) of the estimated versus true number of reads on the transcript and gene

levels. Table 1 presents the RMSE of each simulated scenario with all 6 methods evaluated. Fig-

ure 3 is a collection of MA (mean-difference) plots of estimate vs truth for each of the 6 methods

in the 150bp single-end simulation. It is representative of the visualization of the other scenarios,

the rest of which are included in the supplement (Supplementary Figures 1-9).

Visual inspection reveals that all methods appear to have minimal errors in quantifying gene

level expression, while transcript abundance estimation appears to be more variable. Although

our linear model is not the best as judged by RMSE, we approximate other methods closely,

considering we do not use the raw reads/alignments as input but limit ourselves to a reduced-

representation summary as would be found in recount2. Furthermore, although the RMSEs of

the other methods remain relatively stable as read length of the simulation scenarios increases,

our linear model improves steadily with increasing read length. Our method’s RMSE decreased

by almost 30% as the read length of the scenarios increased from 37bp to 150bp. The likely driver

of these improvements is the increased identifiability of transcripts with increasing read length.

As read lengths increase, our method’s performance should continue to improve.

Performance on GEUVADIS Consortium data

Using recount2 feature counts of the 667 samples from the GEUVADIS dataset [15], we ran

recountNNLS to estimate transcript abundance levels. We also downloaded the FASTQ files for

the 667 samples and applied Kallisto [8], HISAT2-StringTie [7], HISAT2-Cufflinks [13]-[6], RSEM

[10], and Salmon [9] to estimate transcript abundances. Pair-wise comparisons of the estimates

were carried out, with the comparisons for sample ERR188412 of the consortium presented in

Table 2.

For sample ERR188412, the Spearman correlations between Salmon, Kallisto, and HISAT2-

Cufflinks are high at greater than 0.85. recountNNLS and HISAT2-StringTie both achieve corre-

lation of above 0.7 with other methods, but achieve only 0.62 correlation with each other. The

lower triangle of Table 2 presents the number of transcripts that the corresponding methods both
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assigned non-zero expression to. RSEM assigned non-zero expression to the lowest number of

transcripts at 68,084 transcripts while our method assigned it to the most at 81,733.

We were also able to indirectly compare our method to IsoformEx [11], as the authors of

IsoformEx had evaluated pair-wise correlations between IsoformEx, Cufflinks, RSEM, Kallisto,

and Salmon. Using the testing data in IsoformEx, the authors reported almost identical pairwise

correlations between RSEM, Salmon, and Cufflinks to the correlation we observe using the GEU-

VADIS dataset. IsoformEx achieved correlations of between 0.62 and 0.67 with Cufflinks, RSEM,

and Kallisto, while our method achieved correlations between 0.71 and 0.74 for the same set of

methods. The correlation of Salmon with the other methods tested in IsoformEx increased sub-

stantially in our evaluation compared to their publication [11]. This is likely due to the refinements

in the algorithm made to Salmon between 2011 and now.

Discussion

We have presented here the first method to provide transcript-level abundance estimates on the

reduced-representation expression data available in recount2. While our goal in developing this

method was not to produce one that is “better” than existing transcript quantification methods

that operate on raw data, our method produces results that are comparable, in terms of accuracy,

to the other leading methods. In addition, our method has some additional features that do

distinguish it from existing methods. Firstly, our model produces standard errors of our quantified

estimates. Secondly, we provide the transcript quantification for more than 70,000 samplefgys

processed in a uniform manner that is easily accessible for downstream analyses. Lastly, our

method’s estimates are easy to update in light of evolving transcriptome annotations.

Many loci have annotated transcripts that are structurally very similar. Unsurprisingly, ex-

pression levels for transcripts that are highly similar are difficult to tease apart. Our linear model’s

standard error estimates are able to systematically reflect the identifiability of the transcripts. In

Figure 4, we present the structure and estimates of 2 selected genes from sample ERR188412 of

the GEUVADIS dataset. For the gene KLHL17, all 5 transcripts have unique features that make

the transcripts highly distinct. Our method shows that the standard errors are well controlled

(see Figure 4 A). In the gene B4GALT2, there are strong structural similarities between some

of the 8 annotated transcripts. The difference in the identifiability of the transcripts is clearly
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reflected in our reported standard errors: transcripts that are difficult to distinguish from others

are assigned significantly higher standard errors (see Figure 4 B).

Working with the transcript abundances produced by our method is very straightforward.

For a given SRA project id (x) currently curated in recount2, one can access the transcript

quantification stored as a RSE object by installing the recountNNLS R package and calling a single

function, getRseTx(x). We also include an example differential transcript expression analysis of

healthy versus cancer TCGA breast samples in the Supplementary Materials. We input our model

estimates into a popular differential expression pipeline with R packages limma [16] and edgeR [17]

to produce estimates of transcript-level differential expression between these groups of samples.

Our model is readily able to adjust for factors that might affect quantification (such as GC

content, mappability, and transcript location bias) by adjusting the feature probability matrices.

For example, to adjust for GC content, we could learn the GC content bias of the sample by

selecting for the subset of 1-transcript genes and assessing GC bias using their sequence compo-

sition and expression levels. The selected transcripts can be broken down into the set of features

and feature counts that they are comprised of. Using a loess smoother, one could model the

relationship between the GC content of those features and the feature counts. This relationship

could then be used on multi-transcript genes to up-weight or down-weight the feature probabil-

ity matrices. Substituting the adjusted matrices into NNLS estimation would yield GC-adjusted

estimates. Similar processes can be carried out for any kind of adjustment for which one could

attain feature-level characteristics, such as mappability, positional biases, etc.

Similarly, our model is able to rapidly and efficiently respond to the constant evolution of tran-

scriptome annotations. By modifying the set of features, feature counts, and feature probability

matrices to match the new annotation, our model simply reuses the annotation-agnostic Rail-

RNA alignment summaries in recount2 without requiring re-alignment. Furthermore, should a

new annotation affect only certain loci, only the summary measures pertaining to those loci need

to be re-quantified.

Conclusion

We have presented a method capable of estimating transcript-level abundances and their stan-

dard errors on a set of reduced representation data on more than 70,000 RNA-seq samples in
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recount2. Our method performs comparably to methods that access raw read data as input.

The benefits of our method are: (1) maximal availability of samples for analysis and comparison;

(2) re-computation in response to changing annotation without re-alignment; (3) standard errors

informing which transcripts are hard to distinguish; and (4) reduced storage and re-computation

burden. The quantified transcript abundances for the more than 70,000 samples of recount2 are

now available for direct access and download.

Methods

recount2 summary measures

recount2 includes a repository of coverage summary measures produced by a uniform application

of the aligner rail to more than 70,000 publicly available RNA-seq samples. In particular for each

sample, recount2 contains two primary files necessary for our linear modeling approach. First,

each sample has a BigWig-format file [18] containing the number of reads that overlapped each

genomic position of the entire GRCh38 assembly. Secondly, each sample has a file containing

the number of reads spanning observed exon-exon splice junctions. Other useful summarizations

are also available directly from recount2, like precomputed exon-level and gene-level coverages

based upon the GencodeV25 reference transcriptome using the above mentioned BigWig files. As

mentioned above, by storing only these summary coverages, recount2 achieves greater than 1000x

compression compared to raw FASTQ and aligned BAM files (see Figure 2).

Sufficient statistics for transcript quantification

Given the read length of a particular experiment and a reference transcriptome, we determine

a set of sufficient features such that the coverage of these features adequately summarizes the

transcript quantification encoded in the raw reads. For simplicity, we illustrate our definition of

features with an example gene containing two transcripts, and with an example data-generating

experiment with read lengths of 100 base pairs, but our method generalizes to arbitrary transcript

structure and different read lengths.

Consider the gene portrayed in Figure 1, which is composed of 2 transcripts, 3 distinct exons,

and 1 exon-exon junction, and suppose that the experiment produces reads of length 100bp.
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We first disjoin the annotation into unique, non-overlapping sub-exonic segments, similar to the

scheme that IsoformEx [11] employs. However, in a process unique to our model, any bins longer

than 200bp (twice the experiment read length) are then further evenly subdivided so that the

largest resulting piece is less than 100bp. This process further increases the identifiability of the

transcripts. For our example, the final product is a set of 7 features, of which 6 are sub-exonic

segments while 1 is an exon-exon splice junction.

The sufficient statistics for our linear model are the counts of reads that overlap each feature,

which we will denote as feature counts. To extract the feature counts given a set of features, we

query the BigWig files for the coverage of sub-exonic sections, and the junction file for the junction

equivalent. The values in the BigWig files are stored as the number of overlapping base pairs and

must be divided by the read-length of the experiment to determine the equivalent number of reads.

No such normalization is necessary for the values from the junction coverage file.

Deriving model inputs

Our goal is to derive transcript abundances given the known gene structure and feature counts

summarized above. Continuing with the example gene from Figure 1, Transcript 1 is composed

of all 7 features, while Transcript 2 is composed of features 1 and 2 only. Based on this structure,

reads aligning to features 3-7 should have originated from Transcript 1 and not Transcript 2. We

use this structure to set up the design matrix for our linear model.

We name our independent variables feature probability vectors, and denote them as X1

and X2 respectively for each transcript. Each vector is of length 7, corresponding to the number

of features. Each element Xk
j encodes the probability a random read from transcript k overlaps

feature j of our gene, where k = 1 . . . 2 and j = 1 . . . 7. The column-wise collection of feature

probability vectors for our example gene is denoted as X with dimension [7x2] and is referred to

as the feature probability matrix for this gene. Note that the values in this matrix depend on

both the calculated features and the length of the reads of the sequencing experiment (100bp in

this example).

The true X is not known, but it can be estimated based on sequence content of the transcripts

and the read length of the experiment. To estimate X1, sliding segments of 100bp from Transcript

1 are aligned to the GRCh38 reference using the aligner HISAT2 [13]. The number of aligned
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segments overlapping each feature is summed and divided by the number of total 100bp segments

to produce the estimate of X1, denoted by X̂1. The estimated feature probability matrix X̂ is

the column-wise collection of such estimated feature probability vectors for all transcripts in the

gene. More complex implementations can readily include adjustments for GC content, 5’ bias,

and mappability differences by weighting each row of X̂ appropriately.

Non-negative linear model

For our gene, we denote the observed feature counts vector Y . The underlying assumed data

generation process is illustrated in Figure 5. We are interested in estimating the true transcript

abundances β using our estimated X̂ by solving for:

arg min
β̂≥0

∥∥∥P(Y − X̂β̂′)
∥∥∥
2

subject to the constraint that each element of β̂ is non-negative. P is a diagonal weight matrix

where the (k, k)-th element is the inverse of the number of entries of the k-th row of X̂ that

are non-zero. P helps weight each feature’s contribution to the norm by its uniqueness amongst

the transcripts. A feature that has non-zero feature probabilities from many transcripts is down-

weighted in comparison to a feature that has only 1 transcript with a non-zero feature probability

entry.

Existing non-negative least squares (NNLS) algorithms can quickly optimize the solution using

PY as the dependent variable and PX̂ as the independent variables:

β̂ = NLLS(PY,PX̂)

In particular for recountNNLS, we used the function found in the R package nnls [19]

Standard error calculation

Our model also produces an estimate of the standard error of quantification based upon previous

work in constrained least-squares estimation by Liew [20]. NNLS is a special case of the generalized

framework presented by Liew. Adapting Liew’s results to our annotation for a given gene yields:
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PY = PX̂β̂ + ε

subject to the constraint:

Af β̂ ≥ 0

where Af is an fxf identity matrix where f is the number of the features of the gene.

Let β̃ = (X̂′X̂)−1X̂′Y , the ordinary least-squares solution to the same input. Liew’s results

show:

V (β̂) = MV (β̃)M′

where M simplifies to the following under our Af :

M = (I + (β̂ − β̃)Af )

and yields for each transcript k of our gene:

V (β̂k) = (1 + (β̂k − β̃k))
2V (β̃k)

Quantification compilation for recount2

To quantify the entire transcriptome for a given sample, we execute the feature probability matrix

estimation and linear modeling one locus at a time. We define a locus as all genes that are

overlapping, irrespective of the strandedness in the annotation. As an addition to the recountNNLS

package, we offer precomputed features and feature probability matrices reflecting read lengths of

37, 50, 75, 100, and 150bp in the package recountNNLSdata.

Our method produces a Ranged Summarized Experiment (RSE) object per project - mirroring

the structure of recount2. For each sample of a project, we utilize the set of feature probability

matrices that match the read length of the sample most closely. If the match is not exact, we

adjust the estimated abundances and standard errors by the ratio of feature probability matrix

read length over actual sample read length.

For each project, the RSE contains the estimated quantification and the standard errors under

the accessor function assays as counts and se respectively. Each row of the counts and se ma-

trices represents a transcript, and each column represents a sample. The corresponding transcripts

are stored as a GRangesList accessible via the rowRanges function. Transcripts that introduce
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colinearity (either perfect or computational) in the model matrix X̂ are reported as NA in both

counts and se.

Performance Evaluation

Using our linear model on real and simulated data, we compare our estimates to those from the

established methods Kallisto [8], StringTie [7], Cufflinks [13], RSEM [10], and Salmon [9].

Simulation scenarios

We simulated RNA-seq data using the R package polyester [14] under 10 scenarios: read lengths

of 37, 50, 75, 100 and 150bp with either single-end or paired-end FASTA reads. For the sake

of simulation expediency, we selected all coding transcripts from chr1 and chr14 from the Gen-

codeV25 transcriptome annotation, which comprises 12.5% of the entire annotation. The number

of simulated reads for the same transcript across scenarios is identical and generated via polyester

[14] with fragment length distribution Gaussian with mean 250 and standard deviation 25. The

number of reads to simulate was determined on a gene-by-gene basis, with most genes having a

dominant transcript that produces over 50% of the sequencing reads. The relative abundances of

the transcripts are chosen via a Dirichlet distribution with α = 1/f , where f is the number of

transcripts in the gene. The total number of reads at a gene is chosen as a Negative Binomial

with size=4 and p=0.01. The number of reads of each transcript is the product of the outcomes

of the Dirichlet and the Negative Binomial.

We created alignment indices for our subset of the transcriptome for use with Kallisto [8],

HISAT2 [13], and Salmon [9] using default recommended procedures. Subsequently, the simulated

FASTA files were fed to Kallisto [8], HISAT2-StringTie [7], HISAT2-Cufflinks [13]-[6], RSEM [10],

and Salmon [9] with default parameters where applicable. Methods were only asked to quantify

the abundances of the selected set of transcripts. For single end simulations, Cufflinks [6] and

Kallisto [8] require input of the fragment length distribution, for which the true parameters of

(250, 25) were used. For our linear model, we utilized Rail-RNA [5] to process the FASTA files

in the same manner as in recount2 [4]. For evaluation, each method’s abundance estimates were

compared to the true number of reads on the log2 scale at both the transcript and the gene-level

using Root Mean Squared Error (RMSE). The output of StringTie was transformed from the
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FPKM to the log2 read count scale.

GEUVADIS Consortium

For 667 experiments of the GEUVADIS consortium sequencing project, we downloaded the raw

paired-end FASTQ files of each of the experiments. The FASTQ files were used directly as input

for Kallisto [8], HISAT2-StringTie [7], HISAT2-Cufflinks [13]-[6], RSEM [10], and Salmon [9] using

default parameters. The recount2 summary measures for the GEUVADIS project samples were

used as inputs for our linear model. We were only interested in estimating the abundances of the

coding transcripts of the GencodeV25 annotation.

Abundance estimations on the transcript and gene-level were compared pair-wise between

methods using Spearman’s correlation. We also examine pair-wise the number of transcripts that

were assigned non-zero expression by both methods.
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Figure 1: Given the read length of a particular experiment and a reference transcriptome, we

determine a set of sufficient features such that the coverage of these features adequately summa-

rizes the transcript quantification encoded in the raw reads. This figure illustrates the process to

determine the set of features for a mock gene with 2 transcripts and 100bp reads. We first disjoin

the annotated exons into non-overlapping bins. Any remaining exonic segments longer than twice

the read length are further evenly subdivided to be below 100bp. Each unique splice junction

is included without modification as a feature. The number of reads overlapping the final set of

features are the sufficient statistics for our linear model and serve as a compression of the raw

read-level data.
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Figure 2: A flowchart illustrating the transcript quantification process of the 667 samples from the

GEUVADIS Consortium dataset we used to evaluate the methods in this analysis. Methods are

highlighted in green, and the final product in red. Data formats are highlighted in blue, with size

statistics. The raw FASTQ files require 2.5Tb of storage and are used directly by k-mer counting

methods like Salmon and Kallisto. Cufflinks, StringTie, and RSEM utilize output from splice-read

aligners requiring roughly 2.2Tb of space in the BAM format. Our linear model uses the feature

counts refined from the Rail-RNA aligner outputs and require only 1.9Gb of space.
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Figure 3: A representative figure of the performance of our method compared to Kallisto, HISAT2-

StringTie, HISAT2-Cufflinks, RSEM and Salmon. The left column shows MA plots of the tran-

script (Tx) level quantification under the scenario of 150bp single end simulated reads. The Y axis

represents the difference between estimated and true counts on the log2 reads scale, while the X

axis represents the average of the estimated and true counts on the same scale. The right column

shows MA plots of the same at the gene level.
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Figure 4: The gene on top (KLHL17) is comprised of 5 transcripts, while the gene on the bottom

(B4GALT2) consists of 8 transcripts. For each panel, the transcript structure is shown on the

left, with unique features highlighted in red. On the right side of each subplot are the estimated

abundances in black and the standard errors of these estimates in red, on the scale of number of

reads. The transcripts are ordered by decreasing standard error from top to bottom. The higher

estimated standard errors for B4GALT2 reflect how much similar sequence its transcript variants

have.
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Figure 5: For one example gene, an illustration of our model formulation of the relationship be-

tween transcript abundances and the observed feature counts. A column of the feature probability

matrix represents the expected contribution to the observed feature counts by a random read from

the corresponding transcript. Our model estimates β using a weighted non-negative linear model.

Furthermore, since the true feature probability matrix is unknown, we estimate it by applying the

aligner HISAT2 to possible reads from each matrix.
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Scenario
recount2

NNLS
Kallisto

HISAT2

StringTie

HISAT2

Cufflinks
RSEM Salmon

37bp Single End 85.2 (205) 55 (112) 70.5 (123) 54 (110) 54.2 (109) 58 (112)

37bp Paired End 86.5 (217) 52.6 (107) 68.8 (121) 53.3 (111) 52.5 (108) 52.5 (107)

50bp Single End 81.7 (200) 53.9 (107) 68.1 (119) 53.8 (110) 53.6 (108) 55.8 (107)

50bp Paired End 82.2 (203) 52.9 (107) 66.8 (119) 52.7 (110) 52.5 (108) 52.9 (108)

75bp Single End 72.2 (167) 54.6 (108) 67.4 (119) 53.7 (108) 54.5 (111) 56.4 (112)

75bp Paired End 71.8 (167) 52.7 (107) 65.2 (117) 52.9 (110) 52.9 (109) 52.7 (108)

100bp Single End 77.6 (175) 54 (110) 67 (115) 53.6 (109) 53.6 (107) 54.8 (109)

100bp Paired End 76.2 (172) 52.4 (108) 63.9 (116) 52.6 (109) 52.8 (109) 52.3 (107)

150bp Single End 65.3 (140) 54 (110) 66.6 (116) 53.3 (109) 52.9 (108) 53.5 (109)

150bp Paired End 64.2 (140) 52.3 (106) 65.2 (116) 52.5 (107) 52.9 (107) 52.3 (106)

Table 1: Summary of the Root Mean Squared Error (RMSE) of each method’s transcript quantifi-

cation against the known truth for 10 different simulation scenarios, for transcripts and (genes).

Simulations were carried out via polyester, with fragment lengths generated from a Gaussian

distribution with mean 250 and standard deviation 25. All coding transcripts on chr1 and chr14

from GencodeV25 annotation were considered. Reads were simulated on a gene-by-gene basis.

The total number of reads at a gene is simulated by Negative Binomial with size=4 and p=0.01.

The distribution of reads to each transcript at a gene is by Dirichlet(1/k), where k is the number

of transcripts in a gene.
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Quantifier
recount2

NNLS
Kallisto

HISAT2

StringTie

HISAT2

Cufflinks
RSEM Salmon

recount2

NNLS
81,733 0.73 0.62 0.74 0.71 0.73

Kallisto 62,429 76,778 0.72 0.86 0.91 0.99

HISAT2

StringTie
61,818 64,264 83,638 0.76 0.71 0.73

HISAT2

Cufflinks
64,738 67,529 66,861 80,846 0.90 0.87

RSEM 56,931 65,158 58,459 65,095 68,084 0.91

Salmon 63,010 76,228 64,761 68,364 65,782 77,683

Table 2: Pair-wise comparison of the evaluated methods on example ERR188412 of the GEU-

VADIS consortium samples. The upper half shows pair-wise Pearson’s correlation. The lower half

consists of the number of transcripts that both methods assigned non-zero expression to. The

diagonal consists of the number of transcripts that the corresponding method assigned non-zero

expression to.
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