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 26	
ABSTRACT  27	
 28	
Background: Postnatal development of the microbiota in early life influences immunity, 29	

metabolism, neurodevelopment and long-term infant health. Microbiome development occurs at 30	

multiple body sites, each with distinct community compositions and functions. Associations 31	

between microbiota at multiple sites represent an unexplored influence on the infant 32	

microbiome. Here, we examined co-occurrence patterns of gut and respiratory microbiota in 33	

pre- and full-term infants over the first year of life, a period critical to neonatal development and 34	

risk of respiratory diseases. 35	

Results:  Gut and respiratory microbiota collected as longitudinal rectal, throat and nasal 36	

samples from 38 pre-term and 44 full-term infants were first clustered into community state 37	

types (CSTs) on the basis of their composition. Multiple methods were used to relate the 38	

occurrence of CSTs to several measures of infant maturity, including gestational age (GA) at 39	

birth, week of life (WOL), and post menstrual age (PMA: equal to GA plus WOL). Manifestation 40	

of CSTs followed one of three patterns with respect to infant maturity. First, chronological: 41	

independent of infant maturity (GA) at birth, and strongly associated with post-natal age (WOL). 42	

Second, idiosyncratic: primarily dependent on maturity (GA) at birth, with persistent differences 43	

in CST occurrence between pre- and full-term infants through the first year of life. Third, 44	

convergent: CSTs appear earlier in infants with greater maturity (GA) at birth, but after a 45	

sufficient post-natal interval their occurrence in pre-term infants reaches parity with full-term 46	

infants. The composition of CSTs was highly dissimilar between different body sites, but the 47	

CST of any one body site was highly predictive of the CSTs at other body sites.  There were 48	

significant associations between the abundance of individual taxa at each body site and the 49	

CSTs of the other body sites, which persisted after stringent control for the non-linear effects of 50	
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infant maturity. Significant canonical correlations exist between the microbiota composition at 51	

each pair of body sites, with the strongest correlations between more proximal locations.  52	

Conclusion: Cross-body site associations of developing infant microbiota suggest the 53	

importance of research and clinical practices that focus on dynamic interactions between 54	

multiple microbial communities to elucidate and promote systemic microbiota development.	55	

BACKGROUND	56	

 Human life is dependent on a diverse community of symbiotic microbiota that have co-57	

evolved with their human hosts to modulate crucial aspects of normal physiology, metabolism, 58	

immunity  and neurologic function [1]. While our relationships with microbes may begin in utero, 59	

the limited microbial communities observed immediately after birth give way to densely 60	

colonized, diverse bacterial ecosystems within weeks, with early interactions between members 61	

of the microbial community and between the microbes and their human host responsible for 62	

features of postnatal development that influence future health [2-5]. The newborn infant 63	

microbiota is highly dynamic and undergoes rapid changes in composition through the first 64	

years of life towards a stable adult-like structure with distinct microbial communities of unique 65	

composition and functions at specific body sites [5-10]. Relatively little has been reported about 66	

longitudinal microbiota development or compositional differentiation across multiple body sites 67	

during this period. This is particularly true for high-risk pre-term infants, who because of 68	

immature mucosal and skin barriers, as well as underdeveloped immunity and suboptimal 69	

nutrition, are at increased risk for invasive infection and dysregulated inflammation of critical 70	

systems, namely the respiratory and gastrointestinal tracts.  Serious perinatal complications in 71	

these pre-term infants result in prolonged hospitalization, treatment with antibiotics and delays 72	

in enteral feeding that influence interactions with microbes and inhibit microbial colonization 73	

characteristic of full-term infants [11].  74	
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While numerous microbial communities within individual body sites have been described 75	

[3, 9, 11-14], associations between the microbiota across multiple body sites or systems are 76	

less well studied [11, 15, 16].  A better understanding of the microbiota landscape and 77	

interactions across multiple body sites is needed to assess the influence of perturbations in one 78	

system on the microbiota of other systems. Elucidating the direct and indirect interactions of 79	

microbiota across multiple body sites presents a formidable analytical challenge. Available 80	

statistical methods vary widely in sensitivity and precision, with no consensus on the best 81	

approach [17]. Community profile data from 16S rRNA amplicon surveys is compositional, high-82	

dimensional and generally observational, with ecological interactions between microbes often 83	

inferred rather than observed.  Limited validation of these interactions through independent 84	

experiments or modeling leaves researchers without the data needed to reconstruct authentic 85	

interaction networks and to make meaningful biological conclusions [18]. The limited body of 86	

literature reporting on cross body site interactions is a testament to these challenges [11, 15, 87	

16].  Our study leverages dimension reduction and longitudinal modeling techniques, allowing 88	

for the effects of within body site temporal development and cross-body site associations during 89	

early life to be distinguished and quantified for the first time. Furthermore, unlike previous 90	

studies that sampled the microbiome parsimoniously across body sites, our study sampled 91	

multiple body sites from a large cohort of pre- and full-term infants at frequent and regular 92	

intervals throughout their first year of life, within the crucial window of time when the microbial 93	

community maximally influences immune development and potential long-term health 94	

outcomes, including atopy, inflammatory bowel diseases and subtleties of neurodevelopment 95	

[19-22]. 96	

Here we describe and compare patterns of development of the microbiota of the nose, 97	

throat, and gut over the first year of life in 82 pre- and full-term infants (Table 1). Within the 98	

three body sites, we characterized development as a pattern of progression through microbiota 99	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/247122doi: bioRxiv preprint 

https://doi.org/10.1101/247122
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

community state types (CSTs), each differentiated by the abundance of specific taxa.  We 100	

compared full- and pre-term infants on the basis of their progression through these CSTs and 101	

assessed the associations between the manifestation of CSTs, gestational age (GA) at birth, 102	

post-natal age as measured by week of life (WOL) and developmental age as indicated by post-103	

menstrual age (PMA: equal to GA plus WOL).  Three patterns of CST manifestation were 104	

identified. First, a chronological pattern in which CST occurrence was independent of GA at 105	

birth but a function of WOL. Second, an idiosyncratic pattern, with CST occurrence frequency 106	

primarily dependent on GA at birth. Third, a convergent pattern whereby lower GA at birth 107	

imposed a delay in the manifestation of a CST, with CST occurrence frequency in pre-term 108	

infants reaching parity with full-term infants after a post-natal interval proportional to prematurity. 109	

We demonstrate that although community composition is dissimilar between distal body sites, 110	

the abundance of various taxa and the occurrence patterns of CSTs is highly correlated across 111	

body sites. These associations cannot be entirely accounted for by the common influence of 112	

developmental or post-natal age on all body sites or by the direct transmission of bacteria 113	

between body sites, which suggest the existence of relationships between infant development 114	

and the microbiota across body sites that have yet to be defined. 115	

Overall, our results illustrate fundamental interactions between the gut and respiratory 116	

microbiomes in pre-term and full-term infants. Thus, this study will inform establishment of 117	

clinical criteria for potential therapeutic approaches that promote acquisition and maturation of a 118	

homeostatic global infant microbiome and mitigation of dysbiotic microbiota perturbations.  119	

RESULTS 120	

Overview of infant cohort 121	

To characterize development of the neonatal gut and respiratory tract microbiota, we 122	

collected rectal, nasal, and throat swabs from 82 pre- and full-term infants over the first year of 123	

life (Table 1).  From the 38 pre-term infants, weekly samples were collected while hospitalized 124	
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in the neonatal intensive care unit from birth until discharge, and monthly samples were 125	

collected from discharge through one year of gestationally corrected age.  From the 44 full-term 126	

infants in the cohort, monthly samples were collected through the first year of life, starting at 127	

birth.  Samples collected during monthly visits in which evidence of acute respiratory infection 128	

was observed were excluded from this analysis.  Microbiota from 1,079 gut, 1,013 nasal and 129	

538 throat samples were characterized by 16S rRNA amplicon sequencing. At the onset, it was 130	

unclear how much additional information would be gained from interrogating both the nasal and 131	

throat sites, as opposed to the nasal site only. Accordingly, we sequenced and analyzed throat 132	

samples from an unbiased random subset of 40 subjects distributed evenly between pre- and 133	

full-term infants from the larger cohort, retaining the samples from the remaining 42 subjects for 134	

future work. As described below, the variability of the nasal and throat microbiota is significant, 135	

suggesting that additional analysis of both sites will provide unique insights into gut-respiratory 136	

interactions.  137	

Microbiome community state types (CSTs) summarize transient states, and stable 138	
equilibria 139	
 140	
 The microbiota community composition of the rectal, nasal and throat samples was 141	

quantified by 16S rRNA amplicon sequencing. To synthesize within-site sources of variation, 142	

samples from each body site were independently clustered into community state types (CSTs) 143	

using Dirichlet Multinomial mixture (DMM) models [23].  The DMM model sought to explain the 144	

operational taxonomic unit (OTU) compositional vector as a sample from a mixture of different 145	

canonical Dirichlet components. For each sample, the DMM model posterior probabilities 146	

indicated which Dirichlet component the observed vector of OTU counts most likely 147	

represented. On the basis of these probabilities, samples were assigned to clusters 148	

corresponding to CSTs which collapse the variation in microbiota composition into commonly 149	

observed archetypal states that serve as summary representations of the microbiota 150	
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composition at each site. A robust resampling procedure (see Methods) identified 6 CSTs within 151	

the gut, 7 within the nose, and 6 within the throat, with each CST distinguished by the relative 152	

abundance of specific OTUs (Figure 1). The number assigned to each CST indicates the 153	

overall frequency of occurrence at each respective site, with CST 1 being the most frequent. 154	

Based on OTU abundance and the sequence of progression of CSTs over time observed in 155	

each subject (Figure 2), we concluded that the CSTs consistently exhibited three properties: 1) 156	

they had highly dissimilar composition between different body sites, 2) they were associated 157	

with post menstrual age (PMA), gestational age (GA) at birth, and/or week of life (WOL) and 3) 158	

they demonstrated non-random patterns of co-occurrence such that the observation of a 159	

specific CST at a given body site was highly predictive of CSTs at other body sites. 160	

Microbiota composition of community state types 161	

 The multiple CSTs at different sites displayed a range of diversity and abundance of 162	

specific OTUs (Figure 1). Notably, in all three body sites, the CST most frequently observed at 163	

the earliest time points had exceptionally high levels of Staphylococcus, which was much higher 164	

in samples of these earliest CST than in typical samples from any given body site. The throat 165	

CSTs were the least diverse, with types 1 through 5 dominated by Streptococcus (62%-85%) 166	

and type 6 by Staphylococcus (41%). With the exception of type 6, throat CSTs were 167	

differentiated from one another by lowly abundant but ubiquitous taxa, including Veillonella, 168	

Granulicatella, Gemellaceae, Prevotella, and a Bacilli that was not identifiable to the genus level 169	

by our methods.  Nasal CSTs were substantially more diverse, with Streptococcus and 170	

Corynebacterium ranging from 5% to greater than 50% abundance across all CSTs. 171	

Staphylococcus (40%) and Corynebacterium (33%) comprised the majority of the community in 172	

nasal CST 1. Nasal CSTs 2 through 6 contained significant levels of Streptococcus (22%-68%), 173	

with types 2-5 differentiated primarily by lowly abundant taxa and the abundance of 174	

Corynebacterium, and type 6 distinguished by highly elevated levels of Moraxella (38%).  Nasal 175	
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CST 7 was dominated by Staphylococcus (86%).  The community types of the gut were the 176	

most diverse of all three body sites and were consistently populated with Enterobacteriaceae, 177	

Veillonella, Ruminococcus, Streptococcus, Prevotella, Bacteroides, and Bifidobacterium at 178	

mean relative abundances greater than one percent.  Individual gut CSTs were differentiated by 179	

the abundance of Bifidobacterium in CST 1 (16%); high abundance of Staphylococcus (9%), 180	

Klebsiella (6%), Enterobacteriaceae (35%), and Enterococcus (9%) and the absence of 181	

Finegoldia in CST 2 and of Peptoniphilus in CSTs 2 and 6.  Type 6 was notable for elevated 182	

levels of Ruminococcus (13%). Gut CSTs 3, 4, and 5 were distinguished from one another 183	

primarily by lowly abundant taxa, but more prominent differentiating features included elevated 184	

abundance of Corynebacterium (4%), Megamonas (3%), and Faecalibacterium (3%) in CST 4; 185	

elevated levels of Veillonella (16%) and Bifidobacterium (9%) in CST 3; and elevated levels of 186	

Prevotella (16%), Peptoniphilus (10%), and Peptostreptococcus (3%) in CST 5. The average 187	

abundance of all genera in each CST from each body site is indicated in Figure 1 and listed in 188	

Supplemental Table 1.  189	

Community state type occurrence across chronological and developmental time  190	

  We next examined the association of CST occurrence with PMA in the 82 pre- and full-191	

term infants. Patterns of temporal progression appear to be generally shared across individuals, 192	

with a majority of infants manifesting most community state types in their first year, in a similar 193	

sequence and at similar ages.  These properties allow us to use CSTs to describe the 194	

ecological succession and summarize the development of the infant gut and respiratory 195	

microbiota in a conceptually and analytically tractable way.  As described below, the occurrence 196	

of all throat, nasal and gut CSTs were strongly associated with PMA in both pre- and full-term 197	

infants (Supplemental Figure 1). 198	

 Throat CST and PMA. Throat CST 6, being comprised in large part of Staphylococcus, is 199	

the only throat CST not dominated by Streptococcus and is typically the first CST to be 200	
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observed, especially in pre-term infants. CST 6 quickly gives way to CST 1, which makes up the 201	

majority of observations in the first 2-3 months of life and is achieved more quickly but sustained 202	

for less time in full-term subjects than pre-terms.  CST 2 is the next to emerge, reaching peak 203	

abundance in the first six months of life, manifesting earlier and with greater frequency in full-204	

term than pre-term subjects and being the most common full-term CST from 42-65 weeks PMA.  205	

Pre-term subjects exhibit CST 5 more frequently and persistently than full-term subjects, which 206	

peaks in prevalence at ~25 weeks of life.  CST 3 appears shortly after birth, several months 207	

before CST 4; both at low frequency initially and increasing in prevalence for the duration of the 208	

sampling period, accounting for a majority of samples beyond 70 weeks PMA and 209	

distinguishable only by lowly abundant and rare taxa. 210	

 Nasal CST and PMA. Pre-term infants overwhelmingly begin life in nasal CST 1, which 211	

is characterized by a high abundance of Staphylococcus and Corynebacterium and observed in 212	

fewer than 50% of full-term infants.  The prevalence of CST 1 is reduced after 40 weeks and it is 213	

completely absent by 55 weeks PMA.  CST 4, which is dominated by Streptococcus, is 214	

observed in the majority of subjects and appears at nearly all time points, but is most prevalent 215	

at 37-60 weeks PMA in both pre- and full-term infants.  CSTs 2 and 3, which are dominated by 216	

Corynebacterium and Streptococcus, are common at all time points after 40 weeks PMA and 217	

comprise the majority of all samples beyond 60 weeks PMA. CST 5, which is characterized by a 218	

high abundance of Streptococcus, first appears at 50-60 weeks PMA and is observed more 219	

frequently in full-term subjects.  CSTs 6 and 7, which are rare and are distinguished by high 220	

levels of Moraxella and Staphylococcus, respectively, are sporadically observed after 42 weeks 221	

PMA with CST 7 being more common prior to 60 weeks PMA and CST 6 being more common 222	

for the remainder of the period of observation.  223	

Gut CST and PMA. Gut CST 2 comprised the majority of pre-term samples prior to 40 224	

weeks PMA and full-term samples prior to 42 weeks PMA, but quickly gives way to CST 1 in 225	
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most subjects.  CSTs 1 and 3 account for the majority of observations through 60 weeks PMA, 226	

with CST 3 being more common in pre-term infants and typically occurring after CST 1.   CSTs 227	

4 and 5 were prevalent beyond 42 weeks PMA and accounted for the majority of samples by 228	

one year in both pre- and full-term infants, with CST 4 being especially common later on.  229	

Community state type 6 is observed in a minority of pre- and full-term subjects after 42 weeks 230	

PMA and peaks in abundance around one year of post-natal age, with no significant association 231	

with GA at birth. 232	

Overall, a strong temporal structure and ordered progression of CSTs relative to PMA at 233	

all three body sites is apparent.  While no single CST is observed in all 82 infants, common 234	

patterns of sequential CST occurrence at each body site reveal canonical orderings, with the 235	

throat progressing through CSTs 6, 1, 2, 5, 4 and 3; nasal through CSTs 1, 7, 4, 2, 3, 6 and 5; 236	

and gut through CSTs 2, 1, 3, 6, 4 and 5. However, pre- and full-term infants are initially 237	

colonized by distinct CSTs, with CSTs 1, 2 and 6 overrepresented prior to 40 weeks PMA in the 238	

nose, gut and throat, respectively. Furthermore, individual infants matched by PMA transition 239	

through CSTs at different rates, which suggest factors other than age regulate microbiota 240	

progression.  241	

Correlations between community state type and PMA in pre- and full-term infants. 242	

 In order to elucidate the relationship between time and the progression of community 243	

types through each body site we further examined the associations between CSTs and time, 244	

which can be measured developmentally as PMA or postnatally with WOL.  We first fit 245	

smoothed curves of the probability of being in a given CST against WOL and GA at birth 246	

(Figure 3) and the probability of being in a given CST against PMA and GA at birth 247	

(Supplemental Figure 2) which revealed several canonical temporal trends in the occurrence 248	

of CSTs. The chronological CSTs, a minority of all CSTs identified, showed no substantive 249	

difference over the first year of life between pre- and full-term infants (e.g. throat CSTs 3 and 4), 250	
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indicating that the week of life, a proxy for environmental exposure, drives the occurrence of 251	

these community types.  In contrast, the idiosyncratic CSTs appear to be endemic markers of 252	

GA at birth, with persistent differences in the probability of occurrence between pre-term and 253	

full-term infants for the first year of life (e.g. nasal CSTs 1 and 5, throat CST 6). Lastly, the 254	

convergent CSTs showed increased probabilities of occurrence at earlier post-natal ages in full-255	

term infants, but CST occurrence probability in pre-term infants reached parity after a post-natal 256	

interval proportional to their prematurity (inversely proportional to their GA at birth).   257	

We then constructed a single index model of age for each CST, which fit the probability 258	

of observing the CST as a function of some combination of GA at birth and WOL 259	

(Supplemental Figure 3A).  These single index models confirmed the temporal trends 260	

characteristic of the three CST types described above and allowed us to quantify the differential 261	

effects of time spent pre- and postnatally, with respect to the probability of manifesting a given 262	

CST.  These models were consistent with the trends described above, with three basic patterns 263	

being observed: CSTs for which GA at birth was not significant, but week of life was 264	

(chronological); CSTs for which a single index could not be well fit, indicating that no amount of 265	

time since birth could make up for disparities in GA at birth (idiosyncratic); and CSTs for which 266	

GA at birth and week of life were both significant, such that pre-term infants could catch up to 267	

full-term infants after some period of time (convergent).  In this latter category of CSTs, the pre-268	

term infants typically catch up at a rate of one week of life per week pre-term (i.e. gut CST 2, 269	

throat CST 1, 2 and 5), implicating developmental age (PMA) as the primary temporal correlate 270	

(Supplemental Figure 3B).  271	

Associations between community types and composition across body sites 272	

The tendency for CSTs in each body site to depend on PMA and postnatal age 273	

suggested potential relationships between CSTs across body sites. As expected, the co-274	
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occurrence patterns of CSTs across body sites were significantly non-random, as assessed by 275	

a Chi-squared test (p-value << 0.001). To further explore these associations, we calculated the 276	

pairwise correlations between CSTs observed at each site (Figure 4). Again, co-occurrence 277	

patterns between sites was highly significant, suggesting that the observation of a given CST at 278	

one body site is highly predictive of the CST at other body sites.  The greatest degree of CST 279	

correlation between body sites was observed among nasal CST 1, gut CST 2, and throat CSTs 280	

1 and 6, for which all cross-body site pairs were positively correlated. 281	

Given the strong associations at all body sites between CST occurrence and infant 282	

developmental and chronological age, correlations across body sites are expected.  In order to 283	

control for these factors and identify potential associations arising from direct or indirect 284	

interactions across sites, we further assessed the associations between the CST of each body 285	

site and the microbiota composition of the other body sites using a series of linear regression 286	

models.  As predictors for the abundance of each taxon in a given body site, we first used mode 287	

of delivery, GA at birth, and day of life (which was modeled with a natural spline to allow for non-288	

linear effects), as well as a per-subject random effect to account for repeated sampling of the 289	

same individuals. We then added additional predictive terms for the CSTs of the other body 290	

sites and refit the models.  Because we sought to identify the relationships across body sites 291	

that could not be explained by infant maturity alone, we called significant only those 292	

associations between taxon abundance and remote CST for which inclusion of the remote CSTs 293	

as terms in the model significantly improved its explanatory power (see methods). We identified 294	

significant associations across all pairs of body sites (Supplemental Tables 1 and 2), with the 295	

most significant associations identified between CSTs of the nose and gut and taxa in the 296	

throat. Fewer associations were significant between the gut and nose. Within each body site, 297	

certain taxa were uniquely associated with the CST of only one of the other body sites, while 298	

other taxa exhibited significant associations with the CST of both of the other two body sites.  299	
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A number of taxa had significant associations with CSTs of other body sites at which the 300	

taxa themselves were not observed, ruling out direct exchange of these bacteria as the sole 301	

explanation for the associations. These taxa included Bacteroides ovatus, Clostridium 302	

perfringens, Actinobaculum, Faecalibacterium sp. (Supplemental Table 2). Instead these 303	

associations were consistent with the presence of bacteria in one site impacting, or being 304	

impacted by, development of microbiota at another site through indirect physiological or 305	

metabolic mechanisms. In order to assess cases where taxa were present in both associated 306	

sites, including Viellonella, Prevotella and Dorea, we tested the OTU residuals for correlation 307	

after adjusting for PMA with a spline and each subject with a mixed effect.  There were 308	

approximately fifty shared OTUs between each pair of sites, which on average were positively 309	

correlated for each site pair.  The strongest correlation between shared OTUs was between the 310	

nose and throat, followed by the throat and gut, followed by the nose and gut (Supplemental 311	

Figure 4). 312	

The associations between each set of CSTs and specific taxa (Supplemental Tables 1 313	

and 2) was visualized in two ways. First, as a bipartite graph (Figure 5A-C) in which each site’s 314	

most taxonomically specific significant taxa were connected to the CSTs of the distal body sites 315	

to which they had significant associations at a FDR of 10%.  Edge color indicates the direction 316	

and significance of the association, either as a decrease or increase in abundance when the 317	

associated remote CST is observed. Second, as a volcano plot (Figure 5D), which indicates the 318	

significance (F-test p-value) and the magnitude of the increase in explanatory power (R2) when 319	

the CSTs of distal body sites are added to the regression models that include as covariates 320	

mode of delivery, GA at birth, day of life (as a natural spline), and a per subject random effect, 321	

and taxon abundance as the outcome.  We identified 140 unique taxa with significant cross-322	

body site associations; 59 in the gut, 61 in the nose, and 66 in the throat, with some taxa being 323	

significant in multiple body sites where they occurred. In the gut, 15 taxa were significantly 324	
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associated with CSTs in both the throat and nose, 11 taxa in the nose were associated with 325	

both gut and throat CSTs, and 23 taxa in the throat were associated with both nose and gut 326	

CSTs.  Among taxa present in the gut, the largest numbers of associations were identified with 327	

nasal CST 1 and throat CST 2, with 38 and 13 taxa respectively, and the single most significant 328	

association was between Bacteroides ovatus and throat CST 2 (Figures 5B and D).  Notably, 329	

B. ovatus was not identified in throat samples but was present in 1% of nasal samples at a low 330	

(<1%) abundance.  Among taxa present in the nose, the largest numbers of associations were 331	

identified with gut CST 1 and throat CST 2, with 26 and 29 taxa respectively, and the single 332	

most significant association was between an OTU of Prevotella and throat CST 2 (Figures 5A 333	

and D).  Among taxa present in the throat, the largest numbers of associations were identified 334	

with nasal CST 1 and gut CST 1, with 22 and 36 taxa respectively, and the single most 335	

significant association was between Prevotella pallens and nasal CST 6 (Figures 5C and D).  336	

In the gut, an OTU of Dorea exhibited the most significant associations, with six CSTs from the 337	

nose and throat found to be significant.  In the nose, an OTU of Veillonella had the most 338	

associations, with seven CSTs from the gut and the throat.  In the throat, the Lachnospiraceae 339	

family and an OTU of Veillonella had the most associations, each with six CSTs from the nose 340	

and gut.	341	

The microbiome is canonically correlated across body sites following time and space 342	

These observations prompted us to assess the extent to which the OTU composition of 343	

each body site over time can be explained as a function of the OTU composition of the other 344	

body sites, without the dimension reduction associated with using DMMs and CST classification.  345	

We again paired microbiome samples from different body sites that were acquired at the same 346	

visit for each participant, resulting in nasal-gut, nasal-throat and rectal-throat site pairs. We then 347	

assessed the correlation of taxa between body sites directly using canonical correlation analysis 348	

(CCA), which transforms two sets of multivariate observations into a series of canonical 349	
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correlates (weighted averages) that maximize the score cross-correlations, quantifying the 350	

extent to which two sets of multivariate observations are correlated. Using a cross-validation 351	

scheme that held out blocks of individuals, we found in validation data that the subspace cross-352	

correlations varied from 0.75 (nasal-throat) to 0.6 (gut-throat), for the first canonical coordinate 353	

(CC) (Supplemental Figure 5).  Since we previously established that many OTUs vary as a 354	

function of time, we anticipated that temporal variation was responsible for much of this 355	

correlation.  As expected, after adjusting for time by regressing out PMA in each site with a 14 356	

degree-of-freedom spline, the time-stabilized correlations were attenuated in all site pairs, but 357	

still significantly different from zero in the nasal-gut and nasal-throat pairs (Supplemental 358	

Figure 5).   359	

DISCUSSION 360	

Development of the infant microbiome landscape is a critical factor in overall infant 361	

development and long-term health. In this study, we examined the progression of and 362	

spatiotemporal interactions between the gut and respiratory microbiota in pre- and full-term 363	

infants. Knowledge of inter-site interactions between these anatomical niches forms the basis 364	

for understanding microbiota perturbations in sick infants and potential alterations in the 365	

microbiota of other sites. We combined a community state type framework with longitudinal 366	

modeling to identify significant associations between microbiota across the nose, throat, and gut 367	

during early life development in pre- and full-term infants.  We demonstrate that the abundance 368	

of specific taxa in one body site exhibited strong associations with the community types of the 369	

other body sites.  Using a natural spline function to control for time and linear regression to 370	

control for GA at birth, mode of delivery, and within subject correlation, we found that 371	

incorporating the community types of the other body sites significantly improved the explanatory 372	

power of our model for the abundances of 140 unique taxa, many of which were present in only 373	

one member of a pair of associated body sites, ruling out the possibility of direct transmission as 374	
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the mechanism of association.  We then performed canonical correlation analysis to validate the 375	

explanatory power of the composition of each body site for every other body site.  While the 376	

effect of time accounted for the majority of the canonical correlation between sites, a significant 377	

degree of correlation was observed even after controlling for temporal effects. These 378	

observations suggest a potential systemic coordination of microbial abundance and distribution 379	

across the infant microbiota landscape during early life development.   380	

 Early infant microbiota studies have focused on single anatomical sites, such as the gut 381	

and respiratory microbiota, with unique communities and distinct functions. Studies on pre- and 382	

full-term infant gut microbiota have shown that postnatal microbial colonization initiates 383	

maturation of infant intestinal structures and mediates development of the immune system 384	

through interactions with gut epithelial, immune effector and mucus producing cells [24-26]. 385	

Deficiency in colonization of pre-term infant gut microbiota has been associated with delays in 386	

immune development, alterations in host metabolism and inflammatory diseases such as 387	

necrotizing enterocolitis (NEC) [11, 27-31].  Longitudinal studies with pre-term infants have 388	

shown that the gut microbiota develops in a series of phases associated with postmenstrual age 389	

(PMA), more so than post-natal age, suggesting possible coordination between microbiota 390	

maturation and functional differentiation of the gut epithelium at defined stages of infant 391	

development [32]. Recent reports on neonatal respiratory microbiota have identified similar 392	

interactions of microbiota with mucosal epithelial and immune cells and an association with 393	

respiratory tract infections and chronic lung disease of prematurity [33-36]. However, most 394	

respiratory microbiome studies have focused on a limited number of samples from full-term 395	

infants. The influence of the respiratory microbiota on lung immunity and respiratory diseases in 396	

high risk pre-term infants underscores the need to better understand initial microbial 397	

colonization and temporal dynamics of respiratory microbiota through longitudinal studies as we 398	

describe here.  399	
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The gut and respiratory tracts in infants share the same embryonic origin, with mucosal 400	

surfaces composed of columnar epithelial cells that sense the commensal microbiota and in turn 401	

shape local and systemic immunity as infants mature and as a function of PMA [24-26, 35, 37]. 402	

Changes in infant gut and respiratory microbiota that occur as a result of diet, antibiotics, 403	

therapeutics and environmental exposures in the NICU are likely to influence the microbiota at 404	

both sites [32, 38, 39]. The effect of these changes can be illustrated by antibiotic induced 405	

alterations of neonatal gut microbiota during the crucial early postnatal period of immune 406	

competence, which increase the risk of developing allergic airway disease and other atopies in 407	

subsequent childhood [40-42]. In adults, common chronic lung diseases, such as asthma and 408	

chronic obstructive pulmonary disease (COPD) often coincide with inflammatory bowel disease 409	

(IBD) and other chronic gastrointestinal syndromes [37, 43, 44]. The occurrence of these 410	

chronic lung diseases is accompanied by functional and structural changes in the intestinal 411	

mucosa and increased intestinal permeability, suggesting that interactions between these two 412	

distal sites through the gut-respiratory axis impact adult health and disease [43, 45]. These gut-413	

respiratory interactions likely function on several levels, ranging from direct transfer of bacteria 414	

between these sites through reflux and aspiration to indirect effects from bacterial metabolic 415	

products or mucosal immune responses common to both the gut and respiratory tract [33, 35, 416	

37, 46]. Taken together, these observations of common developmental origins for the gut and 417	

respiratory tracts as well as inflammatory diseases that affect both sites, support potential 418	

systemic mechanisms that coordinate microbiota development at these distal sites in infants.   419	

The microbiota samples for our study were collected as gut, nasal and throat swabs from 420	

pre- and full-term infants. In a previous study, we established the taxonomic similarity of infant 421	

gut microbiota samples collected either as rectal swabs or from fecal material on a diaper [32]. 422	

When evaluating respiratory samples for this study and their relatedness to lung microbiota, we 423	

first considered potential acquisition routes for respiratory microbiota. The lung microbiota in 424	
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healthy individuals is acquired by direct mucosal dispersion and micro-aspiration from the upper 425	

respiratory tract (URT) [47, 48]. The microbiota in these sites are taxonomically similar, albeit 426	

with differences within the URT subcompartments (nasal cavity, nasopharynx, oropharynx and 427	

trachea) and lungs a result of cellular and physiological features, such as oxygen and carbon 428	

dioxide tension, pH, humidity and temperature that distinguish these environments and select 429	

for particular taxa [47-49]. The nasopharynx and oropharynx are the primary sources of lung 430	

microbiota in infants, likely due to the anatomy of the infant URT and increased production of 431	

nasal secretions, both of which enhance dispersal of microbiota to the lungs [50, 51]. With the 432	

infant nasopharynx and oropharynx, a primary source of colonizing infant lung microbiota, the 433	

nasal and throat samples used in our study as representative proxies of the neonate lung 434	

microbiota identified significant associations of taxa and CSTs within the gut-respiratory axis. 435	

The orthogonal variation of the nasal and throat microbiota is noteworthy, suggesting that 436	

additional analysis of both sites will provide unique insights into gut-respiratory interactions.  437	

In our initial observations of the CST microbiota content relative to PMA, we noted that 438	

Staphylococcus was the most abundant taxa in the first CST of all three body sites (Figure 1 439	

and Supplementary Figure 1). Subsequent CSTs in all three sites demonstrated a rapid 440	

decrease in Staphylococcus abundance, which was progressively replaced by site specific taxa 441	

with cellular and metabolic capabilities required for adaptation to the developing host site and 442	

interaction with the colonizing microbiota. Previous studies of infant gut microbiota identified 443	

Staphylococcus as an early microbiota colonizer, with abundance determined by nutrition and 444	

mode of delivery [8, 52]. With a metabolism biased towards carbohydrate metabolism, emerging 445	

data suggests the potential for a strong impact of Staphylococcus on disease programming and 446	

obesity in later life [53-55]. In vitro and in vivo animal experiments assessing transcriptomic and 447	

phenotypic responses of S. aureus to microbiota partners have revealed mechanisms that 448	

modulate metabolism, virulence and survival in a multi-species bacterial community [56-58]. 449	
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Similar experimental approaches to study interactions between members of the microbiota are 450	

needed to assess the mechanistic foundation of microbiota associations identified through 451	

computational means.  452	

Identification of taxa having significant associations with CSTs in other body sites, 453	

although not present in the site with which they were associated, suggested that underlying 454	

immune or metabolic mechanisms mediate microbiota development between the distal gut and 455	

respiratory sites. One hundred forty unique taxa were identified with significant cross-body site 456	

associations in the nose, throat and gut at a FDR of 10% (Figure 5, Supplementary Tables 1 457	

and 2).  A small number of taxa were significant in multiple body sites, with the most significant 458	

associations identified between B. ovatus in the gut and throat CST 2. A plausible basis for 459	

association with distal CSTs can be proposed for B. ovatus and other taxa. Evidence that B. 460	

ovatus, a gut symbiont, digests polysaccharides in the gut as a carbon source for other 461	

members of the Bacteroides genus, places it at the center of cooperative ecosystem that is 462	

likely a central factor for gut microbiota functions and potential interactions with microbiota at 463	

distal sites [59-62]. Production of small chain fatty acids (SCFA) produced by Bacteroides and 464	

other enteric bacteria have been shown to profoundly affect both mucosal and systemic 465	

antibody responses [63]. Furthermore, increased abundance of B. ovatus in the gut has been 466	

associated with systemic autoimmune diseases and IBD, a disorder linked to respiratory 467	

diseases as described above [64].  Overall, the identified taxa-CST associations have the 468	

potential to effect gut-respiratory crosstalk through production of bacterial metabolites and 469	

ligands. In turn, dysbiosis of the gut microbiota can be anticipated to affect dynamics of 470	

respiratory microbiota as well as systemic metabolic and immune responses [37].   471	

In our examination of the associations between CSTs at each body site and time as 472	

measured developmentally by PMA or chronologically by WOL, we identified several canonical 473	

temporal trends in the occurrence of CSTs that were confirmed using single index models 474	
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(Supplemental Figure 3). Three groups of CST patterns were identified: 1) chronological, for 475	

which the only factor associated with manifestation of the community type was WOL, 2) 476	

idiosyncratic, for which there was a persistent disparity in occurrence patterns associated with 477	

GA at birth and 3) convergent, for which there is a temporal off-set between pre-term and full-478	

term infants initially, but an eventual convergence. These results suggested that the assembly 479	

of infant microbiota has complex relationships with time and development, with the 480	

manifestation of certain community structures depending on developmental/gestational age, 481	

exposure/day of life or a combination of both, while others being permanently and persistently 482	

influenced by pre-term birth. Following observations made by other groups, we find that the 483	

strength of associations between microbial habitats is proportional to their proximity within the 484	

host [16]. The sites that are nearest to one another, such as the nose and throat, have the 485	

highest time-stabilized correlation, and are more likely to share species in the canonical 486	

coordinate (CCA) site loadings.  Distal pairs, such as the nose and gut have lower canonical 487	

correlations, with greater heterogeneity in the CCA loadings.  In other words, body sites that are 488	

closer together have more microbial taxa in common and exhibit stronger associations between 489	

their microbiota composition than sites that are farther apart.  These findings demonstrate that 490	

significant canonical correlations exist between the composition of microbial communities 491	

across body sites which cannot be entirely attributed to each body site’s independent temporal 492	

progression or to the repeated sampling of the same individuals. 493	

Conclusion  494	

Understanding the variation between and within subjects, conditions, and over time as 495	

the manifestation of distinct community types provides an attractive conceptual and analytical 496	

framework for studying the microbiome [65].   While the extent to which community types are 497	

discrete or simply represent dense locations on a continuous gradient appears to vary 498	

depending on the conditions being sampled and the definition of “community type”, both the 499	
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theoretical basis for community types and the utility of a community type-based framework has 500	

been established [65-73]. Significantly, the underlying network structure observed in microbiota 501	

gives rise to stable community types and a community type-based model is appealing in that it 502	

is analytically tractable and circumvents many of the complications associated with high 503	

dimensional compositional data. Furthermore, the utility of community types can be extended to 504	

the identification of associations across body sites.  Ding and Schloss used Dirichlet multinomial 505	

mixture modeling to define canonical community types within 18 adult body sites independently 506	

and then demonstrated that while the community types across different body sites were 507	

dissimilar in composition, they were predictive of one another [66]. The occurrence of 508	

community types simultaneously in different body sites was highly non-random, suggesting an 509	

unknown mechanism of coordination or interaction acting at a distance. However, the 510	

community type framework may mask important biological variability and lack power to detect 511	

specific taxa that serve as superior phenotypic biomarkers [65].  The approaches taken in our 512	

work reported here largely mitigate these shortcomings, by employing a sampling scheme that 513	

was dense and evenly distributed over gestational ages at birth, week of life, and modes of 514	

delivery, thereby making it unlikely that apparent community clusters are the result of a failure to 515	

observe intermediate points along a gradient. Our subsampling procedure to determine the 516	

number of clusters yielded a robust and parsimonious description of the data. Community types 517	

were not confounded within individuals, but shifted in type over the period of observation for 518	

each individual and were seen across a plurality of individuals.  In this setting, where we sought 519	

to characterize the development of respiratory and gastrointestinal microbiota over the first year 520	

of life, community types have provided a high-level description of the state and progression 521	

which facilitated the interrogation of associations of CSTs with developmental age (PMA) and 522	

post-natal chronological age (WOL). 523	
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In summary, new clinical strategies for establishing and maintaining a homeostatic 524	

microbiota are needed for neonates at risk for gut and respiratory dysfunction and immune 525	

deficiencies. A greater understanding of infant respiratory microbiota colonization, interactions 526	

between the respiratory and gut microbiota and possible developmental coordination between 527	

the two body sites are crucial steps in that direction. Our results demonstrate the existence of a 528	

host-wide network of associations between microbiota.  The fact that these associations cannot 529	

be entirely explained by time, subject, or direct exchange of bacteria suggest unobserved 530	

factors mediating microbial dynamics and associations between microbiota across 531	

environments and at substantial distances.  To our knowledge, these observations directly 532	

implicate, for the first time, a body-wide systemic mechanism coordinating the abundance and 533	

distribution of microbiota during early life development.  The methods employed here may 534	

facilitate future efforts to evaluate disease, developmental maturity, therapeutic interventions, 535	

and dynamic interactions between multiple microbial communities and host systems. 536	

METHODS	537	

Clinical methods 538	

All study procedures were approved by the University of Rochester Medical Center 539	

(URMC) Internal Review Board (IRB) (Protocol # RPRC00045470) and all subject’s caregivers 540	

provided informed consent. We sampled 1,079 gut (279 from NICU and 800 post-discharge), 541	

1,013 nasal and (262 from NICU and 751 post-discharge) and 538 throat (172 from NICU and 542	

366 post-discharge) microbiota samples longitudinally from 38 pre-term and 44 full-term infants.  543	

The Infants included in the study were from the University of Rochester Respiratory Pathogens 544	

Research Center PRISM study and cared for in the URMC Golisano Children’s Hospital Gosnell 545	

Family Neonatal Intensive Care Unit (NICU) or in the normal newborn nurseries and birthing 546	

centers. Fecal (rectal), nasal, and throat material was collected from pre-term infants from 23 to 547	

37 weeks GA at birth (GAB) weekly until hospital discharge and then monthly through one year 548	
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of age, adjusted for prematurity. Rectal, nasal and throat samples were collected from full-term 549	

infants at enrollment and monthly through one year. Each fecal sample was collected by 550	

inserting a sterile, normal saline moistened, CopanÒ flocked nylon swab (Copan Diagnostics, 551	

Murrieta, CA) beyond the sphincter into the rectum and twirling prior to removal. Nasal and 552	

throat samples were similarly collected by inserting and twirling a sterile, moistened swab into 553	

the throat or anterior nostril. Each swab was then immediately placed into sterile buffered saline 554	

and stored at 4o C for no more than 4 hours. Samples were processed daily, which involved 555	

extraction of the fecal, nasal and throat material from the swabs in a sterile environment and 556	

immediately frozen at -80o C until DNA extraction. All sampling swabs, plasticware, buffers and 557	

reagents used for sample collection and extraction of nucleic acids were sterile and UV-558	

irradiated to insure no contamination from sources outside of the infant.  559	

Genomic DNA extraction 560	

Total genomic DNA was extracted from the nose, throat and rectal samples using a 561	

modification of the ZymoBIOMICSTM DNA Miniprep Kit (Zymo Research, Irvine, CA) and 562	

FastPrep mechanical lysis (MPBio, Solon, OH).  16S ribosomal DNA (rRNA) was amplified with 563	

Phusion High-Fidelity polymerase (Thermo Scientific, Waltham, MA) and dual indexed primers 564	

specific to the V3-V4 (319F: 5’ ACTCCTACGGGAGGCAGCAG 3’; 806R: 3’ 565	

ACTCCTACGGGAGGCAGCAG 5’) and V1-V3 (8F: 5’ AGAGTTTGATCCTGGCTCAG 3’;  566	

534R: 3’ ATTACCGCGGCTGCTGG 5’) hypervariable regions [74]. Amplicons were pooled and 567	

paired-end sequenced on an Illumina MiSeq (Illumina, San Diego, CA) in the University of 568	

Rochester Genomics Research Center. Each sequencing run included: (1) positive controls 569	

consisting of a 1:5 mixture of Staphylococcus aureus, Lactococcus lactis, Porphyromonas 570	

gingivalis, Streptococcus mutans, and Escherichia coli; and (2) negative controls consisting of 571	

sterile saline. 572	

 573	
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16S rRNA sequence processing 574	

Raw data from the Illumina MiSeq was first converted into FASTQ format 2x300 paired 575	

end sequence files using the bcl2fastq program, version 1.8.4, provided by Illumina.  Format 576	

conversion was performed without de-multiplexing and the EAMMS algorithm was disabled.  All 577	

other settings were default.  Sequence processing and initial microbial composition analysis 578	

were performed with the Quantitative Insights into Microbial Ecology (QIIME) software package 579	

[75], version 1.9.1.  Reads were multiplexed using a configuration described previously [74].  580	

Briefly, for both reads in a pair, the first 12 bases were a barcode, which was followed by a 581	

primer, then a heterogeneity spacer, and then the target 16S rRNA sequence.  Using a custom 582	

Python script, the barcodes from each read pair were removed, concatenated together, and 583	

stored in a separate file.  Read pairs were assembled using fastq-join from the ea-utils package, 584	

requiring at least 40 bases of overlap for V3V4 sequences and 20 bases of overlap for V1V3 585	

sequence, while allowing a maximum of 10% mismatched bases.  Read pairs that could not be 586	

assembled were discarded.  The concatenated barcode sequences were prepended to the 587	

corresponding assembled reads, and the resulting sequences were converted from FASTQ to 588	

FASTA and QUAL files for QIIME analysis.  Barcodes, forward primer, spacer, and reverse 589	

primer sequences were removed during de-multiplexing.   Reads containing more than four 590	

mismatches to the known primer sequences or more than three mismatches to all barcode 591	

sequences were excluded from subsequent processing and analysis.  Assembled reads were 592	

truncated at the beginning of the first 30 base window with a mean Phred quality score of less 593	

than 20 or at the first ambiguous base, whichever came first.  Resulting sequences shorter than 594	

300 bases or containing a homopolymer longer than six bases were discarded.  Operational 595	

taxonomic units (OTU) were picked using the reference-based USEARCH (version 5.2) [76] 596	

pipeline in QIIME, using the May 2013 release of the GreenGenes 99% OTU database as a 597	

closed reference [77, 78].  An indexed word length of 128 and otherwise default parameters 598	
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were used with USEARCH.  Chimera detection was performed de novo with UCHIME, using 599	

default parameters [76].  OTU clusters with less than four sequences were removed, and 600	

representative sequences used to make taxonomic assignments for each cluster were selected 601	

on the basis of abundance.  The RDP Naïve Bayesian Classifier was used for taxonomic 602	

classification with the GreenGenes reference database, using a minimum confidence threshold 603	

of .85 and otherwise default parameters [79].  	604	

CST inference with Dirichlet Multinomial Modeling (DMM). 605	

The DMM model was fit using the R package DirichletMultinomial version 1.16.0, R 606	

version 3.3.3. Sample composition was represented using normalized counts for each of the 607	

most specific operational taxonomic units (OTUs) present in at least 5% of the samples from a 608	

given body site. Normalization was performed on a per sample basis by taking the relative 609	

abundance of each OTU (after removing OTUs present in less than 5% of samples) and 610	

multiplying by 5,000. Resulting non-integer counts were rounded down.  In the DMM model, the 611	

number of Dirichlet components is a tuning parameter. For each body site, we used 10-fold 612	

random subsampling of 80% of the samples to assess uncertainty in model fit for one through 613	

ten components, with model fit being assessed as the Laplace approximation of the negative-614	

log model evidence. We selected the number of components at each body site corresponding to 615	

the lower bound on the standard error of the model fit.  We then fit complete models for each 616	

body site using all samples and the number of components selected, and used the resulting 617	

posterior probabilities to assign each sample to a community state type (CST) corresponding to 618	

a Dirichlet component.  The CSTs observed in each subject and at each body site over time are 619	

represented in Figure 2, which was plotted using the TraMineR package, version 2.0-7.  Color 620	

changes occur midway between consecutive samples of differing CSTs.  Observation time 621	

points were quantized for plotting purposes only, and this was done by rounding down to the 622	

nearest whole week of post menstrual age. 623	
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Generalized Additive modeling of CST 624	

Generalized additive models (GAMs) were fit using R package mgcv for each CST and 625	

site.  The probability of being in a CST was modeled (on the linear probability scale) as a 626	

smooth function of week-of-life and GA at birth, and a random effect for each individual.  627	

Formally, for each CST, for individual i at time t, we fit 628	

𝑃 CST%& = 	𝑓 WOL%&, gaBirth%& + 	participant% 	+ 	error%&,				(1)	629	

where 𝑓 WOL%&, gaBirth%&  is a smooth function of week of life and GA at birth, participant% is a 630	

random intercept for each participant and error%& represents independent, homoscedastic noise.  631	

We plotted the fitted CST probability, under model (1) over a range of weeks-of-life for several 632	

representative gestational ages, and then compared this estimate to a single index model. 633	

 The single index model restricts the smooth function f in model (1) to seek a common 634	

“time” variable that accounts for both time spent inside, and outside the womb.  Symbolically, 635	

we require 𝑓 WOL%&, gaBirth%& = 𝑓 𝑎 ∙ WOL%& + 	𝑏 ∙ gaBirth%& ).   For instance, if a=1 and b=0 636	

then GA has no effect on the CST trajectory, and when a=b then time spent inside the womb 637	

has the same effect on the probability of belonging to a CST as time spent outside the womb. 638	

CST and Taxa regression 639	

We paired microbiome samples from different body sites that were acquired at the same 640	

visit for each participant.  This generated 3 pairs of sites. The Nasal-Rectal sites had the 641	

greatest number of matched sample pairs, with 82 participants having 951 pairs of samples, 642	

while the Nasal-Throat sites had the fewest, with 40 participants having 483 sample pairs.  The 643	

Rectal-Throat sites had 491 sample pairs. We	applied	arcsin	sqrt-tranformation	to	stabilize	the	644	

variance	of	relative	abundance	and	then	fit	linear	mixed	effects	models	to	the	abundance	using	the CST 645	

of the other two sites as the primary variables of interest.  We adjusted as potential confounders 646	

the mode of delivery, GA at birth and 14 degree-of-freedom spline for WOL. The subject ID 647	

served as a random intercept. Associations with the primary variables of interest were tested for 648	
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all taxonomic levels and reported on the most specific taxon (or equally specific taxa) within a 649	

phylogenetic lineage.  We report a Wald test for equality between the abundance in each CST 650	

and its grand mean abundance.  Associations significant at 10% FDR, calculated per site, are 651	

shown as edges in Figure 5, which itself was generated using R packages GGally version 1.3.2 652	

and network version 1.13.0. An overall test for association between a site and a taxon was 653	

derived by conducting an F-test of the model that dropped the CST of that site as predictors and 654	

the full model.  The change in pseudo R2 reports the change in variance explained by the fixed 655	

effects in the null and full models [80]. 656	

Canonical correlation analysis 657	

The CCA function implemented in R base was used for canonical correlation analyses. 658	

We employed 10-fold cross validation in which we fit the CCA on each pair of sites on 9/10ths of 659	

the subjects, then calculated the subspace correlations on the 10% of withheld subjects.  Two 660	

times the standard deviation of the held-out subspace correlation is shown in the shaded region 661	

of Supplemental Figure 5.	662	

 663	

LIST OF ABBREVIATIONS 664	

GA: gestational age, PMA: premenstrual age, WOL: week of life, CST: community state type, 665	

OTU: operational taxonomic units, FDR: false discovery rate, NICU: neonatal intensive care unit 666	
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 702	
	703	
	704	
Figure Legends 705	
 706	
Figure 1. Composition of community state types (CSTs) of the nose (A), throat (B) and 707	
gut (C). Average composition of each CST was identified by Dirichlet Multinomial mixture 708	
(DMM) model-based clustering. Samples are grouped by the Dirichlet component that they 709	
represent, with each component corresponding to a CST, and the average composition of all 710	
samples in each CST group is represented. The height of each bar is equal, indicating that all 711	
total abundances are normalized to a constant sum.  Within each bar, different colored bands 712	
correspond to different taxa, and the height of a given band is proportional to the average 713	
relative abundance of the corresponding taxon in the given CST.  The top ten most abundant 714	
taxa within each body site are identified, with the closed circle flanking each taxa name 715	
positioned in the corresponding taxa in each bar.  The composition of all samples is listed in 716	
Supplemental Table 1. 717	
 718	
Figure 2. Sequence index plots indicate progression of community state types (CSTs) 719	
over time for each subject. Subjects are stratified along the y-axis and sorted in descending 720	
order by gestational age at birth.  Post menstrual age (PMA) in weeks is indicated along the x-721	
axis.  The period of sampling for each individual is colored, with colors indicating the observed 722	
CST in a given time period.  The time point of each observation is rounded down to the week in 723	
which the sample was taken and the surrounding period of time is colored according to the CST 724	
of the sample, with color changes occurring at the midpoint between consecutive samples in 725	
which different CSTs were observed.  For each subject, the black region on the left indicates the 726	
period prior to birth and the white region on the right indicates the period after the last sample 727	
was taken. In all three body sites, strong temporal structure and ordered patterns of CST 728	
progression are evident.  For example, CSTs 1, 2, and 6 are overrepresented during the period 729	
prior to 40 weeks PMA in the nose, gut, and throat, respectively.   730	
 731	
Figure 3.  Associations between community state type membership and time. The 732	
posterior probability of membership to each CST (y-axis) is plotted over weeks of life (x-axis), 733	
estimated as a non-parametric function of week of life and gestational age at birth. The CSTs 734	
are sorted by post-menstrual age at which they achieve maximal probability of occurrence.  735	
	736	
Figure 4.  Pairwise correlations between community state types (CSTs) at different body 737	
sites.  CSTs on the x- and y-axes are identified by body site (NAS: nasal, THR: throat, GUT: 738	
gut) and type. Each cell represents the Pearson sample correlation of CST membership 739	
probability across body sites in the same individual. Red hued cells correspond to positive 740	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/247122doi: bioRxiv preprint 

https://doi.org/10.1101/247122
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 30	

correlation coefficients.  CST co-occurrence is non-random with the CST of one body site highly 741	
predictive of the CSTs of the other two body sites. 742	
 743	
Figure 5.  Significant associations between taxa abundance and community state type 744	
(CST) across body sites. A bipartite graph was used to visualize the associations between 745	
CSTs and taxa at a distal body site [(A): nasal, (B): gut, (C): throat], with significant associations 746	
at a false discovery rate (FDR) of 10%. Edges indicate significant associations with color 747	
marking the direction of the effect (red: increase in abundance, blue: decrease in abundance). 748	
Color shade corresponds to level of significance, with lighter colors being less significant. Nodes 749	
are positioned using a force-directed layout, which places taxa or CSTs with similar patterns of 750	
significant associations near each other while attempting to optimize readability and limit 751	
overlap. (D) Relationships between taxa abundance and CSTs was also visualized using a 752	
volcano plot, with improvement in explanatory power (R2) conferred by the inclusion of CSTs in 753	
the model on the x-axis and –log10 p-values of the model improvement on the y-axis. With 754	
individual taxa in each body site as the outcome (subplots NAS, GUT and THR), a linear 755	
regression model was fit using the with and without CSTs of the other body sites as covariates, 756	
controlling for gestational age at birth, day of life, mode of delivery, and subject-level random 757	
effects.  Full models (including all CSTs) were tested against null models (excluding the CSTs of 758	
the other body sites in turn) with a series of F-tests.  759	
 760	
  761	
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Table 1. Demographics and Clinical Variables 

Variables (N = 82) 
Pre-Term  
(Mean ± SD, N) 

Full-Term  
(Mean ± SD, N) 

Gestational Age at Birth (weeks) 29.56 ± 5.38 39.61 ± 4.65 

Gestational Age at Birth 
  

23-25 wks 8 - 
26-27 wks 6 - 
28-29 wks 5 - 
30-31 wks 9 - 
32-33 wks 6 - 
34-35 wks 4 - 
Full term - 44 
Birth Weight (kg) 1.38 ± 1.09 3.53 ± 1.1 
Sex (Male/Female) 21 / 17 27 / 17 
Race (Caucasian/AA/Other*) 22 / 10 / 6 30 / 5 / 9 
Ethnicity (Hispanic or Latino Y/N/Unknown) 4 / 34/ 0 8 / 32/ 4 
Delivery method (C-section/Vaginal) 24 / 14 21 / 23 

Hospital samples, Collected (Analyzed) 
  

Rectal 294 (252) 43 (27) 
Nasal 288 (243) 44 (19) 
Throat 174 (159) 26 (13) 

Post-discharge samples, Collected (Analyzed) 
  

Rectal 346 (331) 479 (469) 
Nasal 350 (318) 483 (433) 
Throat 202 (184) 206 (182) 

 
Total acute respiratory visits** 51 51 
Number of infants had acute respiratory visit** 20 24 

*Race group 'Other' includes those not reported race. 

** Samples collected during monthly visits where evidence of acute respiratory infection was observed                                  
were excluded in this analysis.   
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