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Abstract	

Perception	 can	be	 cast	 as	 a	process	of	 inference,	 in	which	bottom-up	 signals	 are	 combined	with	 top-

down	 predictions	 in	 sensory	 systems.	 However,	 the	 source	 of	 these	 top-down	 predictions,	 especially	

when	complex	and	multisensory,	remains	largely	unknown.	We	hypothesised	that	the	hippocampus	—	

which	 rapidly	 learns	 arbitrary	 associations	 and	 has	 bidirectional	 connections	with	 sensory	 systems	—	

may	be	involved.	We	exposed	humans	to	auditory	cues	predicting	visual	shapes,	while	measuring	high-

resolution	fMRI	signals	in	visual	cortex	and	the	hippocampus.	Using	multivariate	reconstruction	methods,	

we	discovered	a	dissociation	between	these	regions:	representations	in	visual	cortex	were	dominated	by	

whichever	shape	was	presented,	whereas	representations	in	the	hippocampus	(CA3	and	subiculum,	but	

not	CA1)	reflected	only	which	shape	was	predicted	by	the	cue.	The	strength	of	hippocampal	predictions	

correlated	across	participants	with	the	amount	of	expectation-related	facilitation	in	visual	cortex.	These	

findings	are	consistent	with	the	possibility	that	the	hippocampus	supplies	predictions	to	sensory	systems.	
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Introduction	

Neural	activity	 in	sensory	cortex	can	be	strongly	modulated	by	prior	expectations	 (Summerfield	et	al.,	

2008;	 Den	 Ouden	 et	 al.,	 2009;	 Alink	 et	 al.,	 2010;	 Meyer	 and	 Olson,	 2011;	 Todorovic	 et	 al.,	 2011;	

Wacongne	et	al.,	 2011;	Kok	et	al.,	 2012,	2013;	Bell	 et	 al.,	 2016;	Kaposvari	 et	 al.,	 2016).	However,	 the	

source	of	such	top-down	predictions	remains	unknown.	Models	of	predictive	coding	emphasize	the	role	

of	downstream	areas	within	 local	brain	circuits	 (Rao	and	Ballard,	1999;	Spratling,	2010).	Although	this	

could	 account	 for	 basic,	 highly	 ingrained	 predictions,	 such	 as	 surround	 suppression	 or	 filling-in	 of	

contours	 (Lee	 and	 Nguyen,	 2001;	 Spratling,	 2010;	 Kok	 and	 De	Lange,	 2014),	 it	 is	 unclear	 how	 this	

mechanism	 applies	 to	 more	 complex,	 learned	 predictions.	 Consider	 cross-modal	 predictions,	 for	

example,	such	as	when	an	auditory	stimulus	 (e.g.,	a	bell	or	bark)	 leads	to	an	expectation	of	 the	visual	

appearance	 of	 the	 corresponding	 object	 (e.g.,	 a	 bicycle	 or	 dog).	 Such	 associations,	 especially	 when	

learned	 recently,	 cannot	 readily	 be	 encoded	 within	 sensory	 systems,	 as	 visual	 cortex	 does	 not	 have	

direct	 access	 to	 the	 features	 of	 auditory	 stimuli	 nor	 is	 it	 able	 to	 rapidly	 bind	 these	 features.	 Such	

predictions	may	instead	depend	on	a	higher-order	brain	region	that	can	learn	multisensory	associations	

in	 the	 world,	 retrieve	 them	 based	 on	 partial	 information	 (e.g.,	 a	 sound),	 and	 reinstate	 missing	

information	(e.g.,	the	associated	visual	object)	in	relevant	sensory	cortex.	

Based	 on	 these	 desiderata,	 we	 hypothesised	 that	 the	 hippocampus	 plays	 a	 role	 in	 such	

predictions.	First,	 the	hippocampus	 is	known	to	be	 involved	 in	 learning	associations	between	arbitrary	

stimuli	(Cohen	and	Eichenbaum,	1993;	Davachi,	2006;	Turk-Browne	et	al.,	2009;	Henke,	2010;	Hsieh	et	

al.,	 2014;	 Garvert	 et	 al.,	 2017),	 particularly	 when	 these	 stimuli	 are	 discontiguous	 in	 time	 or	 space	

(Wallenstein	et	al.,	1998;	Staresina	and	Davachi,	2009).	In	fact,	learning	of	such	relationships	is	strongly	

impaired	when	the	hippocampus	is	damaged	(Sutherland	et	al.,	1989;	Chun	and	Phelps,	1999;	Hannula	

et	 al.,	 2006;	 Konkel	 et	 al.,	 2008;	 Schapiro	 et	 al.,	 2014).	 Second,	 the	 hippocampus	 has	 bidirectional	

connections	with	sensory	cortices	of	all	modalities	(Lavenex	and	Amaral,	2000;	Eichenbaum	et	al.,	2007;	
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Henke,	2010),	 and	has	 for	 this	 reason	even	been	considered	 the	 top	of	 sensory	hierarchies	 (Felleman	

and	Van	Essen,	1991).	Third,	one	of	the	main	computational	functions	of	the	hippocampus	is	to	retrieve	

associated	 items	 from	memory	 based	on	partial	 information,	 a	 process	 known	 as	 pattern	 completion	

(Treves	and	Rolls,	1994;	McClelland	et	al.,	1995;	Henke,	2010).	This	function	has	been	mostly	considered	

in	the	context	of	recall	from	episodic	memory,	but	is	also	ideally	suited	for	retrieving	predictions	based	

on	contextual	cues	(McClelland	et	al.,	1995;	Eichenbaum	and	Fortin,	2009;	Schapiro	et	al.,	2012;	Davachi	

and	 DuBrow,	 2015;	 Hindy	 et	 al.,	 2016).	 Pattern	 completion	 is	 thought	 to	 be	 subserved	 by	 the	 CA3	

subfield	of	 the	hippocampus,	because	of	 its	strong	recurrent,	autoassociative	connections	 (Treves	and	

Rolls,	 1994;	 Henke,	 2010;	 Schapiro	 et	 al.,	 2017),	 from	 whence	 the	 retrieved	 pattern	 is	 sent	 to	 CA1,	

where	it	may	be	compared	to	actual	sensory	inputs	(Lisman	and	Grace,	2005;	Chen	et	al.,	2011;	Duncan	

et	al.,	2012).	Additionally,	this	information	can	be	fed	back	to	sensory	cortex,	including	via	the	subiculum,	

with	retrieved	memories	reinstated	 in	the	cortical	areas	that	 initially	encoded	them	during	perception	

(McClelland	 et	 al.,	 1995;	 Bosch	 et	 al.,	 2014;	 Gordon	 et	 al.,	 2014;	 Rothschild	 et	 al.,	 2017).	 Again,	 this	

cortical	reinstatement	has	been	mainly	considered	in	the	context	of	episodic	memory	retrieval	(Davachi	

and	Danker,	 2013),	 but	may	 also	 subserve	 prediction,	 especially	when	 a	 contextual	 cue	 precedes	 the	

associated	 item	 (McClelland	et	al.,	1995;	Eichenbaum	and	Fortin,	2009;	Kok	et	al.,	2014;	Reddy	et	al.,	

2015;	Hindy	et	al.,	2016;	Kok	et	al.,	2017).	

To	 investigate	 the	 involvement	 of	 the	 hippocampus	 in	 cross-modal	 predictions,	 we	 exposed	

human	participants	 to	auditory	 tones	preceding	 the	appearance	of	particular	 visual	 shapes	 (Figure	1),	

while	 measuring	 signals	 in	 both	 visual	 cortex	 and	 the	 hippocampus	 with	 high-resolution	 functional	

magnetic	 resonance	 imaging	 (fMRI).	 Using	 multivariate	 pattern	 analysis	 to	 reconstruct	 shapes	 from	

BOLD	activity	(Figure	2),	we	explored	what	visual	information	was	represented	in	these	brain	systems	on	

trials	in	which	the	tones	validly	vs.	invalidly	predicted	which	shape	would	appear.	We	hypothesised	that	

the	hippocampus	would	represent	the	expected	shape	regardless	of	what	appeared.	In	contrast,	visual	
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cortex	may	be	modulated	by	expectation,	but	its	representation	should	be	dominated	by	the	shape	that	

was	 presented	 on	 screen.	 Finally,	 we	 hypothesised	 that	 there	 would	 be	 a	 relationship	 between	

hippocampal	 predictions	 and	effects	 of	 prediction	on	 visual	 cortex,	which	would	be	 consistent	with	 a	

role	for	the	hippocampus	in	supplying	sensory	expectations.	

	

	
Figure	1.	Experimental	paradigm.	(A)	During	prediction	runs,	an	auditory	cue	preceded	the	presentation	

of	 two	 consecutive	 shape	 stimuli.	On	 each	 trial,	 the	 second	 shape	was	 either	 identical	 to	 the	 first	 or	

slightly	warped	with	 respect	 to	 the	 first	along	an	orthogonal	dimension,	and	participants’	 task	was	 to	

report	 whether	 the	 two	 shapes	 were	 the	 same	 or	 different.	 (B)	 The	 auditory	 cue	 (ascending	 vs.	

descending	tones)	predicted	whether	the	first	shape	on	that	trial	would	be	shape	2	or	shape	4	(out	of	

five	shapes).	The	cue	was	valid	on	75%	of	trials,	while	in	the	other	25%	of	(invalid)	trials	the	unpredicted	

shape	was	presented.	 (C)	During	 localiser	 runs,	no	auditory	cues	were	presented.	As	 in	 the	prediction	

runs,	two	shapes	were	presented	on	each	trial,	and	participants’	task	was	to	report	same	or	different.	(D)	

All	five	shapes	appeared	with	equal	(20%)	likelihood	on	trials	of	the	localiser	runs.	

	

Results	

Participants	 were	 exposed	 to	 auditory	 tones	 that	 validly	 or	 invalidly	 predicted	 the	 upcoming	 shape	

stimulus	(Figure	1A-B).	This	first	shape	was	followed	by	a	second	shape	that	was	either	identical	to	the	

first,	or	slightly	warped.	Participants	performed	a	shape	discrimination	task,	reporting	whether	the	two	

shapes	on	a	given	trial	were	the	same	or	different.	
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Behaviour.	Participants	were	able	 to	discriminate	small	differences	 in	 the	complex	shapes,	during	 the	

localiser	runs	(36.9%	±	2.3%	modulation	of	the	3.18	Hz	radial	frequency	component,	mean	±	SEM)	and	

during	 the	 prediction	 runs	 (valid	 trials:	 31.6%	 ±	 2.5%;	 invalid	 trials:	 33.2%	 ±	 2.9%	 modulation).	 The	

discrimination	thresholds	for	valid	and	invalid	trials	were	not	reliably	different	(t23	=	1.00,	p	=	0.32).	This	

is	 not	 surprising,	 as	 the	 discrimination	 task	 was	 independent	 of	 the	 prediction	 manipulation:	 the	

auditory	cue	provided	no	 information	about	which	choice	was	correct	and	the	shape	manipulation	on	

different	 trials	 was	 orthogonal	 to	 the	 feature	 dimensions	 defining	 the	 shape	 space.	 Accuracy	 and	

reaction	times	also	did	not	differ	significantly	between	valid	(accuracy:	70.6%	±	1.2%;	RT:	575	ms	±	16	

ms)	and	invalid	trials	(accuracy:	68.8%	±	1.5%;	RT:	573	ms	±	18	ms;	both	ps	>	0.20),	which	was	expected	

because	these	conditions	were	staircased	separately	to	the	same	performance	level.	

	

	
Figure	2.	Illustration	of	the	decoding	method.	(A)	We	used	a	forward	modelling	approach	to	reconstruct	

shapes	 from	 the	 pattern	 of	 BOLD	 activity.	 Shape	 selectivity	 was	 characterised	 by	 five	 hypothetical	

channels,	 each	with	 an	 idealised	 shape	 tuning	 curve.	 BOLD	 patterns	 obtained	 from	 the	 localiser	 runs	

were	used	 to	estimate	 the	weights	on	 the	 five	hypothetical	 channels	 separately	 for	 each	 voxel,	 using	

linear	 regression.	 (B)	Using	 these	weights,	 the	second	stage	of	 the	analysis	 reconstructed	 the	channel	

outputs	associated	with	the	pattern	of	activity	across	voxels	evoked	by	the	prediction	runs	(only	shapes	

2	and	4	were	used	 in	 these	 runs).	Channel	outputs	were	converted	 to	a	weighted	average	of	 the	 five	

basis	 functions,	 resulting	 in	 neural	 shape	 tuning	 curves.	 Decoding	 performance	 was	 quantified	 by	

subtracting	 the	 amplitude	 of	 the	 shape	 tuning	 curve	 at	 the	 presented	 shape	 (e.g.,	 shape	 2)	 from	 the	

amplitude	 at	 the	 non-presented	 shape	 (e.g.,	 shape	 4).	 (C)	 Finally,	 we	 collapsed	 across	 the	 presented	
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shapes	by	subtracting	the	shape	tuning	curve	for	shape	4	from	that	for	shape	2,	thereby	removing	any	

non-shape-specific	BOLD	signals.	Shaded	regions	in	B	and	C	indicate	SEM.	

	
Shape	reconstruction.	The	decoder	successfully	reconstructed	the	presented	shapes	from	the	pattern	of	

activity	in	visual	cortex	(V1:	t23	=	14.72,	p	=	3.4	×	10-13;	V2:	t23	=	14.23,	p	=	6.8	×	10-13;	LO:	t23	=	7.04,	p	=	

3.5	×	10-7),	with	a	modest	but	significant	modulation	by	the	predictive	cues	in	V1	(t23	=	2.58,	p	=	0.017;	

Figure	 3A)	 but	 not	 in	 V2	 (t23	 =	 1.42,	 p	 =	 0.17)	 or	 LO	 (t23	 =	 0.17,	 p	 =	 0.87).	 In	 other	 words,	 shape	

representations	in	visual	cortex	were	dominated	by	what	was	presented	to	the	eyes.	

The	results	were	strikingly	different	in	the	hippocampus.	Here,	the	pattern	of	activity	contained	

a	 representation	 of	 the	 predicted	 shape	 (t23	 =	 2.86,	p	 =	 0.0089),	 while	 the	 presented	 shape	was	 not	

significantly	represented	(t23	=	0.54,	p	=	0.59).	That	is,	shape	representations	in	the	hippocampus	were	

fully	determined	by	the	auditory	cue	and	the	expectation	it	established	(Figure	3B).	

This	dissociation	was	confirmed	by	a	searchlight	analysis,	which	revealed	significant	evidence	for	

the	 presented	 shape	 in	 the	 occipital	 lobe	 and	 for	 the	 predicted	 (but	 not	 presented)	 shape	 in	 the	

hippocampus	(Figure	3C).	This	analysis	also	revealed	evidence	for	the	predicted	shape	in	more	anterior	

occipital	cortex	and	a	few	smaller	clusters	elsewhere	(Table	1).	

Note	that	the	hippocampal	cluster	in	the	searchlight	analysis	was	in	the	right	hemisphere	only,	

whereas	we	collapsed	over	hemisphere	in	the	ROI	analysis.	This	apparent	laterality	may	be	an	artefact	of	

statistical	thresholding	or	may	indicate	a	genuine	hemispheric	difference.	We	did	not	have	hypotheses	

about	 left	 vs.	 right	 or	 anterior	 vs.	 posterior	 hippocampus,	 but	 investigated	 these	 divisions	 post	 hoc	

because	 of	 the	 searchlight	 results	 by	 subdividing	 the	 hippocampal	 ROI.	 There	 were	 no	 reliable	

differences	 in	evidence	for	the	predicted	shape	 in	 left	vs.	right	(p	=	0.72)	or	anterior	vs.	posterior	(p	=	

0.93)	hippocampus.	 In	 fact,	decoding	of	 the	predicted	shape	was	significant	within	each	of	 these	 four	

subdivisions	of	the	hippocampus	individually	(all	ps	<	0.05).	
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Figure	 3.	 Shape	 representations	 in	 visual	 cortex	 and	 hippocampus.	 (A)	 Shape	 reconstructions	 from	

patterns	 of	 activity	 in	 V1,	 separately	 for	 validly	 (green)	 and	 invalidly	 (red)	 predicted	 shapes.	

Representations	 in	 visual	 cortex	 (V1,	V2,	 LO;	V1	plotted	as	 representative	 region)	were	dominated	by	

the	 presented	 shape,	 with	modest	modulation	 by	 the	 predictive	 cues	 in	 V1.	 Inset	 depicts	 quantified	

evidence	 for	 presented	 (blue)	 and	 predicted	 (yellow)	 shapes.	 (B)	 Shape	 reconstructions	 in	 the	

hippocampus	were	 fully	determined	by	 the	 cued	 (predicted)	 shape,	 rather	 than	 the	presented	shape.	

Inset	depicts	quantified	evidence	 for	presented	 (blue)	and	predicted	 (yellow)	shapes.	 (C)	A	searchlight	

analysis	revealed	evidence	for	the	presented	shape	in	the	occipital	 lobe	and	for	the	predicted	(but	not	

presented)	shape	in	the	hippocampus.	See	Table	1	for	full	results.	(D)	Decoding	of	the	predicted	shapes	

across	hippocampal	subfields.	*p	<	0.05,	**p	<	0.01.	Shaded	regions	and	error	bars	indicate	SEM.	

	
To	 investigate	 the	 circuitry	 underlying	 these	 predictions	 further,	 we	 applied	 an	 automated	

anatomical	segmentation	method	to	distinguish	the	subfields	of	the	hippocampus.	This	analysis	revealed	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246843doi: bioRxiv preprint 

https://doi.org/10.1101/246843
http://creativecommons.org/licenses/by-nc/4.0/


that	hippocampal	subfields	encoded	the	predicted	shapes	to	different	extents	(F2,46	=	6.45,	p	=	0.0034;	

Figure	 3D).	 The	 CA3	 subfield	 is	 thought	 to	 be	 most	 strongly	 involved	 in	 pattern	 completion	 —	 i.e.,	

retrieving	 previously	 encoded	 memories	 from	 partial	 cues	—	 whereas	 CA1	 compares	 such	 retrieved	

memories	 to	 incoming	sensory	 input	supplied	by	entorhinal	cortex	 (EC).	Accordingly,	we	hypothesised	

that	CA3	would	have	a	purer	representation	of	the	predicted	shape	than	CA1,	since	the	latter	would	also	

be	 affected	 by	 the	 presented	 shape.	 In	 line	 with	 this	 hypothesis,	 predicted	 shapes	 could	 be	

reconstructed	in	CA3	(combined	with	CA2	and	dentate	gyrus;	t23	=	2.04,	p	=	0.053),	and	better	than	in	

CA1	(t23	=	-1.08,	p	=	0.29;	difference	between	ROIs:	t23	=	2.31,	p	=	0.031).	Surprisingly,	predicted	shapes	

were	also	strongly	represented	in	the	subiculum	(t23	=	2.97,	p	=	0.0069),	which	could	perhaps	be	related	

to	its	known	role	in	relaying	hippocampal	signals	back	to	sensory	cortex.	

We	 interpret	 the	 presence	 of	 shape	 expectations	 in	 the	 hippocampus	 as	 reflecting	 relational	

memory	(Cohen	and	Eichenbaum,	1993):	item	memories	of	the	tones	and	shapes	are	bound	together	in	

a	temporal	relation	during	the	practice	phase	and	then	further	during	valid	trials;	when	a	particular	tone	

cue	 is	 encountered,	 its	 item	memory	 retrieves	 this	 relation	 and	 reactivates	 the	 item	memory	 for	 the	

associated	shape.	This	 framework	 suggests	 that	 the	 success	of	our	decoder	depends	on	 the	extent	 to	

which	 it	 has	 learned	 about	 the	 item	memories	 for	 different	 shapes.	We	 examined	 this	 hypothesis	 by	

breaking	down	our	training	examples	based	on	familiarity	with	the	shapes,	separating	the	two	localiser	

runs	 rather	 than	collapsing,	as	was	done	 in	all	of	 the	analyses	above.	Specifically,	we	anticipated	 that	

training	the	decoder	on	the	second	localiser	run	at	the	end	of	the	session	(run	6),	after	participants	had	

the	 opportunity	 to	 repeatedly	 encode	 the	 shapes,	would	 be	more	 effective	 than	 training	 on	 the	 first	

localiser	 run	 at	 the	 beginning	 of	 the	 session	 (run	 1),	 when	 the	 shapes	were	more	 novel.	 Indeed,	we	

found	a	significantly	stronger	representation	of	the	predicted	shape	when	the	reconstruction	model	was	

trained	on	the	last	vs.	first	localiser	run	in	CA2-CA3-DG	(t23	=	3.09,	p	=	0.0052),	but	not	in	CA1	(t23	=	-0.23,	

p	=	0.82)	or	the	subiculum	(t23	=	0.89,	p	=	0.38).	In	visual	cortex,	on	the	other	hand,	training	on	the	last	vs.	
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first	localiser	run	did	not	affect	the	representation	of	the	predicted	shape	(V1:	t23	=	-0.88,	p	=	0.39;	V2:	

t23	=	0.17,	p	=	0.87;	LO:	t23	=	0.004,	p	=	0.997).	

	
Table	1.	Searchlight	results	

Anatomical	region	 Hemisphere	 Cluster	size	 Peak	p	 Coordinates	(x	y	z)	

Presented	shape	decoding	

Posterior	occipital	cortex	 Bilateral	 8964	 <	0.001	 -22	 -88	 -22	
	

Predicted	shape	decoding	

Calcarine	sulcus	 Right	 180	 0.016	 14	 -70	 20	

Hippocampus	 Right	 63	 0.026	 24	 -18	 16	

Middle	cingulate	 Right	 27	 0.028	 2	 8	 40	

Caudate	 Left	 7	 0.028	 -16	 4	 8	

Cerebellum	 Left	 5	 0.044	 -26	 -62	 22	

All	p-values	are	corrected	for	multiple	comparisons.	Coordinates	reflect	local	maxima	of	significant	
clusters	in	Montreal	Neurological	Institute	(MNI)	space.	
	

Visual	 facilitation.	As	 reported	 above,	 shape	 representations	 in	 visual	 cortex	were	 dominated	 by	 the	

shapes	presented	to	the	eyes.	However,	the	temporal	evolution	of	these	representations	was	strongly	

affected	 by	 the	 auditory	 prediction	 cues.	We	 characterised	 the	 timecourses	 of	 both	 the	mean	 BOLD	

response	and	the	shape	decoding	signal	by	fitting	a	canonical	(double-gamma)	hemodynamic	response	

function	(HRF)	and	 its	temporal	derivative.	The	parameter	estimate	of	the	canonical	HRF	 indicates	the	

peak	amplitude	of	the	signal,	whereas	the	temporal	derivative	parameter	estimate	reflects	the	latency	

of	the	signal	(Friston	et	al.,	1998;	Henson	et	al.,	2002).	

This	approach	revealed	that	there	was	a	modest	but	highly	reliable	difference	in	the	latency	of	

the	 BOLD	 response	 evoked	 by	 validly	 and	 invalidly	 predicted	 shapes,	 as	 measured	 by	 the	 temporal	

derivative	(V1:	t23	=	6.33,	p	=	1.9	×	10-6;	V2:	t23	=	7.31,	p	=	1.9	×	10-7;	LO:	t23	=	7.48,	p	=	1.32	×	10-7;	Figure	

4A).	In	other	words,	the	BOLD	response	in	visual	cortex	was	significantly	delayed	by	invalid	auditory	cues.	

Note	 that	 this	was	 not	 caused	 by	 the	 stimuli	per	 se,	 as	 the	 tone-shape	mappings	were	 arbitrary	 and	
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reversed	halfway	through	the	study.	There	was	no	significant	difference	 in	the	amplitude	of	the	BOLD	

response	between	conditions,	as	measured	by	the	canonical	HRF	(V1:	t23	=	0.84,	p	=	0.41;	V2:	t23	=	1.64,	

p	=	0.12;	LO:	t23	=	1.96,	p	=	0.063).	

	

Figure	 4.	 Time-resolved	 activity	 and	 decoding	 in	 visual	 cortex.	 (A)	 Timecourse	 of	 the	 mean	 BOLD	

response,	 separately	 for	 validly	 (green)	 and	 invalidly	 (red)	 predicted	 shapes,	 in	 visual	 cortex.	 These	

timecourses	 reflect	 the	 fit	 of	 the	 canonical	HRF	and	 its	 temporal	derivative	 to	 the	preprocessed	 fMRI	
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data	 by	 condition.	 (B)	 Timecourse	 of	 the	 shape	 decoding	 signal,	 separately	 for	 validly	 (green)	 and	

invalidly	(red)	predicted	shapes.	Here,	the	canonical	HRF	and	its	derivative	were	not	fit	to	the	fMRI	data	

directly,	 but	 rather	 to	 a	 continuous	decoding	 signal	 obtained	by	 reconstructing	 shape	 information	 for	

each	timepoint	from	FIR	parameter	estimates.	Shaded	regions	and	error	bars	indicate	SEM.	

	

The	 delay	 for	 invalidly	 predicted	 shapes	 was	 also	 apparent	 in	 the	 temporal	 evolution	 of	 the	

reconstructed	 shape	 representations	 (Figure	 4B).	 There	 was	 a	 reliable	 difference	 in	 the	 temporal	

derivative	 of	 the	 time-resolved	 decoding	 signal	 in	 V1	 (t23	 =	 3.40,	p	 =	 0.0024)	 and	 V2	 (t23	 =	 3.06,	p	 =	

0.0056),	with	a	marginal	effect	in	LO	(t23	=	1.96,	p	=	0.062).	In	V1,	the	peak	of	the	decoding	signal	was	

significantly	lower	for	invalidly	predicted	shapes	than	for	validly	predicted	shapes	(t23	=	2.73,	p	=	0.012),	

while	there	was	no	such	effect	in	V2	(t23	=	1.11,	p	=	0.27)	or	LO	(t23	=	0.15,	p	=	0.87).	

In	 sum,	 although	 there	 was	 a	 modest	 effect	 of	 prediction	 on	 the	 amplitude	 of	 the	 shape	

decoding	signal	in	V1,	the	most	striking	effects	of	prediction	in	visual	cortex	were	on	the	latency	of	the	

BOLD	response	and	decoding	signal.	

	

Hippocampal-cortical	relationships.	It	is	impossible	with	fMRI	to	establish	that	hippocampal	prediction	

causes	visual	facilitation,	but	a	precondition	for	such	a	mechanism	is	that	these	two	measures	should	be	

related.	 Testing	 this	 relationship	 within	 participants	 was	 not	 possible	 in	 the	 current	 study	 because	

single-trial	reconstruction	and	decoding	of	predictions	was	too	noisy,	especially	in	the	hippocampus.	We	

thus	adopted	an	across-participant	approach:	We	hypothesised	that	participants	with	greater	decoding	

of	 the	 predicted	 shape	 in	 the	 hippocampus	 should	 have	 a	 greater	 latency	 shift	 in	 the	 decoding	 of	

invalidly	vs.	validly	cued	shapes	in	visual	cortex.	We	found	such	a	relationship	between	the	hippocampus	

and	LO	(r	=	0.42,	p	=	0.040;	Figure	5),	but	not	with	V1	(r	=	-0.29,	p	=	0.17)	or	V2	(r	=	-0.05,	p	=	0.81).	

Strikingly,	 the	 hippocampal-LO	 relationship	 differed	 strongly	 across	 hippocampal	 subfields	

(Figure	5).	In	CA2-CA3-DG,	as	for	the	hippocampus	as	a	whole,	there	was	a	reliable	positive	relationship	
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(r	=	0.59,	p	=	0.0022),	with	more	hippocampal	prediction	associated	with	more	LO	facilitation.	 In	CA1,	

however,	the	relationship	was	reliably	negative	(r	=	-0.44,	p	=	0.032),	with	more	hippocampal	prediction	

associated	with	 less	LO	facilitation.	There	was	no	reliable	relationship	in	subiculum	(r	=	0.09,	p	=	0.66).	

The	surprising	negative	relationship	between	CA1	and	LO	also	held	for	V1	(r	=	-0.55,	p	=	0.0047)	and	V2	

(r	=	-0.57,	p	=	0.0036),	whereas	the	positive	relationship	of	CA2-CA3-DG	was	found	only	for	LO	(V1:	r	=	

0.039,	p	=	0.86;	V2:	r	=	0.17,	p	=	0.43).	

In	 sum,	 although	 these	 findings	 do	 not	 resolve	 the	 causal	 direction	 of	 hippocampal-cortical	

interactions,	 they	 are	 consistent	 with	 the	 proposed	 mechanism	 of	 the	 hippocampus	 supplying	

predictions	to	visual	cortex,	compared	to	if	we	had	found	no	such	relationships.	

	

	

Figure	 5.	 Hippocampal-cortical	 interactions.	 Correlation	 between	 the	 strength	 of	 predicted	 shape	

decoding	in	the	hippocampus	and	the	latency	shift	in	the	decoding	signal	caused	by	predictions	in	LO.		

	

Caudate	 predictions.	 In	 addition	 to	 the	hippocampus,	we	also	examined	 the	 striatum,	 specifically	 the	

caudate	and	putamen,	based	on	previous	studies	of	prediction	(Den	Ouden	et	al.,	2009;	Turk-Browne	et	

al.,	2009),	as	well	as	the	known	involvement	of	the	striatum	in	associative	learning	(Poldrack	et	al.,	2001;	

Shohamy	and	Turk-Browne,	2013).	We	 found	 that	 the	caudate	 represented	 the	predicted	shape	 (t23	=	

3.07,	p	=	0.0054)	but	not	presented	shape	(t23	=	0.10,	p	=	0.92),	as	 in	the	hippocampus.	We	could	not	

reconstruct	 shape	 information	 from	 the	 putamen,	 for	 either	 the	 predicted	 (t23	 =	 1.58,	 p	 =	 0.13)	 or	
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presented	 (t23	=	0.27,	p	=	0.79)	 shapes.	Unlike	 the	hippocampus,	LO	 facilitation	did	not	correlate	with	

prediction	in	the	caudate	(r	=	0.23,	p	=	0.27)	or	putamen	(r	=	0.23,	p	=	0.27),	nor	were	there	correlations	

with	V1	or	V2	(ps	>	0.05).	

	

Discussion	

Predictive	 coding	 refers	 to	 a	 class	 of	 theories	 (Mumford,	 1992;	 Rao	 and	 Ballard,	 1999;	 Friston,	 2005)	

about	 cortical	 processing	 that	 fits	well	with	 the	 strong	 influence	of	predictions	on	 sensory	processing	

reported	 here	 and	 elsewhere	 (Den	 Ouden	 et	 al.,	 2009;	 Alink	 et	 al.,	 2010;	 Meyer	 and	 Olson,	 2011;	

Todorovic	 et	 al.,	 2011;	 Wacongne	 et	 al.,	 2011;	 Kok	 et	 al.,	 2012).	 Such	 models	 contain	 separate	

populations	of	neurons	encoding	predictions	and	prediction	errors	(Bell	et	al.,	2016;	Fiser	et	al.,	2016;	

Kok,	2016;	Kok	et	al.,	2016a)	and	seek	 to	explain	mostly	 lower-level	phenomena	 that	can	be	 resolved	

within	 local	circuits	of	visual	cortex,	 such	as	end-stopping	and	surround	suppression	 (Rao	and	Ballard,	

1999;	 Spratling,	 2010).	 However,	 many	 predictive	 cues	 in	 our	 environment	 require	 cross-modal	

interactions	 and	 invoke	 complex	 expectations	 about	 objects.	 In	 these	 situations,	 the	 source	 of	 the	

prediction	signals	may	lie	outside	of	visual	cortex,	a	possibility	that	has	not	received	much	attention	in	

the	predictive	coding	literature.	

We	 hypothesised	 that	 such	 cross-modal	 predictions	 may	 be	 generated	 in	 the	 hippocampus.	

Specifically,	 upon	 presentation	 of	 a	 predictive	 cue,	 CA3	 may	 retrieve	 the	 associated	 item	 through	

pattern	completion	of	a	learned	temporal	relation,	and	send	this	prediction	to	CA1,	and	from	there	back	

to	sensory	cortex,	 including	through	the	subiculum	(Lavenex	and	Amaral,	2000).	Within	CA1,	memory-

based	predictions	(originating	from	CA3)	have	been	proposed	to	inhibit	matching	sensory	signals	(from	

EC),	 thereby	 signalling	 novelty,	 or	 prediction	 error	 (Lisman	 and	 Grace,	 2005;	 Kumaran	 and	Maguire,	

2007;	Chen	et	al.,	2011;	Duncan	et	al.,	2012;	Chen	et	al.,	2015).	Based	on	this	model,	one	would	expect	

CA3,	 but	 not	 CA1,	 to	 represent	 only	 the	 predicted	 item,	 and	 that	 is	 indeed	what	we	observed	 in	 the	
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current	study.	In	addition,	a	representation	of	the	predicted	item	was	found	in	the	subiculum,	known	to	

be	a	major	relay	between	the	hippocampus	and	sensory	cortex,	though	admittedly	not	well	understood	

and	often	excluded	from	hippocampal	models	(McClelland	et	al.,	1995;	Schapiro	et	al.,	2017).	

If	the	hippocampus	is	a	source	of	sensory	expectations,	there	should	be	a	relationship	between	

the	strength	of	hippocampal	predictions	and	effects	of	prediction	in	visual	cortex.	Although	the	current	

study	did	not	allow	us	to	study	this	relationship	within	participant	(across	trials)	because	of	poor	single-

trial	 decoding,	we	 did	 find	 such	 a	 relationship	 across	 participants.	 This	 also	 held	 for	 the	 CA2-CA3-DG	

subfield	 alone,	 in	 line	 with	 CA3’s	 proposed	 role	 in	 generating	 predictions	 via	 pattern	 completion.	

Conversely,	 in	 line	with	 the	proposed	 inhibitory	 role	 of	 predictions	 in	 CA1,	 prediction	 strength	 in	 this	

subfield	was	negatively	correlated	with	the	facilitative	effects	of	prediction	on	visual	cortex.	

The	 model	 outlined	 above	 suggests	 a	 specific	 direction	 of	 neural	 signal	 flow	 during	 the	

generation	of	predictions,	namely	from	CA3	through	CA1	and	the	subiculum	to	cortex.	However,	due	to	

the	slow	nature	of	the	haemodynamic	response	and	the	lack	of	causal	intervention,	standard	fMRI	does	

not	 allow	 us	 to	 distinguish	 the	 direction	 of	 flow	 between	 regions.	 Future	 studies	 will	 be	 needed	 to	

directly	address	this	important	issue,	including	with	intracranial	recordings	in	neurological	patients	with	

both	depth	electrodes	in	the	hippocampus	and	surface	electrodes	in	sensory	cortex.	Additionally,	signals	

from	the	hippocampus	to	cortex	are	known	to	arrive	in	the	deep	layers	of	EC,	while	signals	from	cortex	

to	hippocampus	flow	through	the	superficial	 layers	of	EC	(Lavenex	and	Amaral,	2000).	Using	high-field	

fMRI	to	study	layer-specific	prediction	signals	in	EC	could	thus	be	used	to	help	establish	the	direction	of	

signal	flow	between	hippocampus	and	cortex	(Muckli	et	al.,	2015;	Kok	et	al.,	2016a).	

The	 current	 study	 suggests	 that	 the	 hippocampus	 is	 involved	 in	 signalling	 cross-modal	

predictions.	However,	there	are	several	other	mechanisms	for	prediction	in	the	brain,	including	related	

to	object	recognition	and	semantic	labels	in	medial	prefrontal	cortex	(Bar	et	al.,	2006)	and	to	value	and	

reinforcement	learning	in	the	ventral	striatum	(Den	Ouden	et	al.,	2012),	as	well	as	many	other	areas	of	
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polymodal	 association	 cortex	 that	 receive	 the	 required	 sensory	 inputs.	 What	 might	 distinguish	 the	

contribution	 of	 the	 hippocampus	 is	 the	 ability	 to	 quickly	 and	 flexibly	 learn	 new	 predictions,	whereas	

these	other	systems	 learn	more	gradually	after	extensive	experience	and	consolidation	 (McClelland	et	

al.,	 1995;	 Schapiro	 et	 al.,	 2017).	 Regardless,	 further	 work	 will	 be	 needed	 to	 understand	 the	 relative	

contributions	 of	 each	 system	 and	 whether	 they	 have	 a	 cooperative	 or	 competitive	 relationship.	 For	

instance,	it	has	long	been	unclear	whether	the	ventral	striatum	contains	stimulus-specific	predictions.	It	

has	been	proposed	that	the	striatum	serves	as	a	gating	mechanism,	upregulating	connectivity	between	

top-down	 attention	 systems	 and	 sensory	 cortex	when	 prediction	 errors	 occur	 (Zink	 et	 al.,	 2006;	 Den	

Ouden	et	al.,	2010),	rather	than	containing	actual	stimulus	representations	itself.	However,	our	findings	

suggest	that	at	 least	 the	caudate	contains	shape-specific	representations	of	predicted	stimuli	and	that	

they	are	encoded	in	similar	activity	patterns	to	the	corresponding	sensory	stimuli	(given	generalisation	

of	 the	model	 from	 localiser	 to	prediction	 runs).	An	 important	avenue	 for	 future	 research	would	be	 to	

tease	 apart	 the	 roles	 of	 these	 two	 learning	 systems,	 the	 hippocampus	 and	 the	 striatum,	 in	 storing	

predictive	associations,	and	their	respective	roles	in	sending	feedback	to	sensory	cortex	(Poldrack	et	al.,	

2001;	Shohamy	and	Turk-Browne,	2013).	

The	effects	of	the	complex	shape	predictions	on	processing	in	the	visual	cortex,	as	reported	here,	

differ	 strikingly	 from	 those	 reported	 previously	 for	 low-level	 feature	 predictions,	 using	 an	 otherwise	

similar	paradigm	(Kok	et	al.,	2012).	Whereas	invalid	grating	orientation	predictions	in	that	study	led	to	

both	 an	 increased	 peak	 BOLD	 amplitude	 and	 a	 reduced	 orientation	 representation	 in	 V1	 (Kok	 et	 al.,	

2012),	 the	current	study	found	that	 invalid	shape	predictions	 lead	to	delayed	 signals,	both	 in	terms	of	

BOLD	amplitude	and	shape	representations.	Although	the	cause	of	this	difference	 is	currently	unclear,	

we	 offer	 a	 couple	 of	 potential	 explanations:	 First,	 predictions	 about	 low-level	 features	 and	 complex	

shapes	 may	 be	 encoded	 differently	 in	 visual	 cortex.	 Whereas	 a	 prediction	 about	 grating	 orientation	

could	 be	 encoded	 by	 simply	 increasing	 the	 gain	 of	 all	 neurons	 tuned	 for	 that	 orientation	 across	 the	
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visual	field	(Kok	et	al.,	2016b),	complex	shape	predictions	would	require	encoding	different	orientations	

and	curvatures	at	specific	retinotopic	locations.	This	may	be	a	particularly	difficult	challenge	given	that	

complex	 shapes	are	known	 to	be	encoded	 in	a	 spatially	 invariant	manner	 in	higher-level	 visual	 cortex	

(DiCarlo	 et	 al.,	 2012).	 In	 line	 with	 this	 account,	 there	 is	 evidence	 that	 predictions	 about	 low-level	

features	 and	 complex	 natural	 images	 can	 have	 different	 effects	 on	 perception	 (Denison	 et	 al.,	 2011,	

2016).	 Second,	whereas	 invalid	 gratings	 in	 Kok	 et	 al.	 (2012)	were	maximally	 different	 from	 predicted	

gratings	 (i.e.,	orthogonal	orientations),	 the	difference	between	predicted	and	unpredicted	shapes	was	

more	subtle.	Such	small	violations	may	be	less	prone	to	strong	prediction	errors,	but	may	rather	lead	to	

an	integration	of	top-down	predictions	and	bottom-up	sensory	signals	(Kok	et	al.,	2013).	Clearly,	future	

research	is	required	to	investigate	these	and	other	factors.	A	clear	next	step	is	to	investigate	how	low-

level	feature	predictions,	particularly	when	involving	cross-modal	cues,	engage	the	hippocampus.	

How	might	the	latency	differences	between	visual	cortex	signals	induced	by	validly	and	invalidly	

predicted	shapes	be	explained,	 in	terms	of	underlying	neural	signals?	We	are	of	course	not	suggesting	

that	neuronal	spiking	in	visual	cortex	is	delayed	half	a	second	by	invalid	prediction	cues.	Rather,	invalid	

predictions	may	lead	to	the	suppression	of	visual	cortex	signals	evoked	by	the	first	shape	on	a	given	trial,	

but	 less	 so	 for	 the	 second	 shape	 (which	 is	no	 longer	 really	unexpected	once	 the	 first	 shape	has	been	

observed).	 If	only	 the	response	 to	 the	 first	 shape,	but	not	 the	second	shape,	 is	 suppressed,	 this	could	

lead	to	a	delayed	peak	activity	once	convolved	with	the	BOLD	response.	This	scenario	seems	particularly	

plausible	 for	 the	 reconstructed	 shape	 representations,	 since	 the	 early	 BOLD	 signals	 on	 invalid	 trials	

would	 presumably	 contain	 a	 mixture	 of	 the	 predicted	 and	 presented	 shapes,	 which	 might	 to	 some	

extent	cancel	each	other	out	in	the	eyes	of	the	decoder.	

Previous	 studies	 have	 found	 that	 predictive	 cues	 can	 lead	 to	 the	 cortical	 reinstatement	 of	

expected	stimuli	(Kok	et	al.,	2014;	Hindy	et	al.,	2016),	in	anticipation	of	the	actual	sensory	inputs	(Kok	et	

al.,	2017).	Such	cortical	reinstatement	has	also	been	shown	for	other	cognitive	processes	as	well,	such	as	
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visual	 short	 term	memory	 (Harrison	 and	Tong,	 2009;	Bosch	et	 al.,	 2014;	Gordon	et	 al.,	 2014),	mental	

imagery	 (Stokes	 et	 al.,	 2009a;	 Albers	 et	 al.,	 2013),	 and	 preparatory	 attention	 (Stokes	 et	 al.,	 2009b;	

Peelen	and	Kastner,	2011;	Myers	et	al.,	2015).	One	intriguing	possibility	is	that	these	different	cognitive	

processes	are	subserved	by	the	same	neural	mechanism	(Pearson	and	Westbrook,	2015).	Specifically,	is	

cortical	reinstatement	in	working	memory,	imagery,	and	attention	mediated	by	the	hippocampus,	as	it	

seems	 to	 be	 in	 associative	 memory	 (Bosch	 et	 al.,	 2014;	 Gordon	 et	 al.,	 2014)	 and	 the	 cross-modal	

predictions	 studied	 here?	 Additionally,	 regardless	 of	 the	 source,	 do	 these	 different	 processes	 affect	

visual	 cortex	 the	 same	 way,	 or	 do	 different	 processes	 modulate	 different	 layers	 of	 visual	 cortex,	 in	

support	of	different	computational	goals	(Friston,	2005;	Muckli	et	al.,	2015;	Kok	et	al.,	2016a)?	

In	conclusion,	here	we	find	that	patterns	of	neural	activity	in	the	hippocampus	reflect	stimulus-

specific	predictions,	as	signalled	by	cross-modal	cues.	These	findings	are	consistent	with	a	role	 for	the	

hippocampus	in	generating	memory-based	predictions	that	influence	sensory	systems.	
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Materials	and	Methods	
	
Participants.	Twenty-five	healthy	individuals	participated	in	the	experiment.	All	participants	were	right-

handed,	MR-compatible,	and	had	normal	or	corrected-to-normal	vision.	Participants	provided	informed	

consent	 to	 a	 protocol	 approved	 by	 the	 Princeton	 University	 Institutional	 Review	 Board	 and	 were	

compensated	 ($20	 per	 hour).	 One	 participant	 was	 excluded	 from	 analysis	 because	 they	moved	 their	

head	between	runs	such	that	large	parts	of	the	occipital	lobe	were	no	longer	inside	the	field	of	view.	The	

final	sample	consisted	of	24	participants	(15	female,	age	23	±	3,	mean	±	SD).	

	

Stimuli.	 Visual	 stimuli	 were	 generated	 using	 MATLAB	 (Mathworks,	 Natick,	 MA,	 USA)	 and	 the	

Psychophysics	 Toolbox	 (Brainard,	 1997).	 In	 the	 MR	 scanner,	 the	 stimuli	 were	 displayed	 on	 a	 rear-

projection	 screen	using	a	projector	 (1024	x	768	 resolution,	60	Hz	 refresh	 rate)	against	a	uniform	grey	

background.	Participants	viewed	the	visual	display	through	a	mirror	that	was	mounted	on	the	head	coil.	

The	visual	stimuli	consisted	of	complex	shapes	defined	radial	 frequency	components	 (RFCs)	 (Zahn	and	

Roskies,	 1972;	Op	de	Beeck	 et	 al.,	 2001;	Drucker	 and	Aguirre,	 2009)	 (Figure	 1A).	 The	 contours	 of	 the	

stimuli	were	defined	by	seven	RFCs,	based	on	a	subset	of	the	stimuli	used	in	Op	de	Beeck	et	al.	(2001)	

(see	their	Figure	1a).	A	one-dimensional	shape	space	was	created	by	varying	the	amplitude	of	three	out	

of	the	seven	RFCs.	Specifically,	the	amplitudes	of	the	1.11	Hz,	1.54	Hz	and	4.94	Hz	components	increased	

together,	ranging	from	0	to	36	(first	two	components),	and	from	15.58	to	33.58	(third	component).	Note	

that	 we	 chose	 to	 vary	 three	 RFCs	 simultaneously,	 rather	 than	 one,	 to	 increase	 the	 perceptual	 (and	

neural)	discriminability	of	the	shapes.	

In	order	 to	map	out	 this	 shape	space	perceptually,	we	generated	13	shapes	 that	 spanned	the	

continuum,	 with	 the	 amplitudes	 of	 the	 three	 modulated	 RFC	 increasing	 with	 equal	 steps	 from	 the	

minimum	to	the	maximum	of	the	ranges	defined	above.	Six	participants	categorised	these	shapes	as	one	

of	the	two	extremes	of	the	continuum	(each	shape	presented	24	times).	Psychometric	curves	were	fit	to	
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these	data	and	we	determined	the	points	along	the	continuum	(in	terms	of	the	amplitudes	of	the	three	

modulated	RFCs)	that	were	judged	as	10%,	50%	and	90%	likely	to	be	the	extreme	shape	with	maximal	

values.	 The	 five	 shapes	 we	 used	 in	 the	 fMRI	 experiment	 consisted	 of	 these	 three	 experimentally	

determined	points	 in	 the	 space	 continuum,	 as	well	 as	 the	 two	extremes	 (Figure	1A).	 The	participants	

who	took	part	in	the	fMRI	experiment	were	exposed	to	the	same	perceptual	categorisation	experiment	

after	 the	 fMRI	session	ended,	and	we	determined	that	 for	each	participant	the	chance	of	classifying	a	

shape	as	the	maximal	extreme	increased	monotonically	as	a	function	of	the	amplitude	of	the	three	RFCs.	

During	the	 fMRI	experiment,	 the	shapes	were	presented	centred	on	 fixation	 (colour:	black,	size:	4.5°).	

Additionally,	a	fourth	RFC	(the	3.18	Hz	component)	was	used	to	create	slightly	warped	versions	of	the	

five	shapes,	to	enable	the	same/different	shape	discrimination	cover	task	(see	below).	

Auditory	 cues	 consisted	 of	 three	 pure	 tones	 (440,	 554	 and	 659	 Hz,	 80	 ms	 per	 tone,	 5	 ms	

intervals),	presented	in	either	ascending	or	descending	pitch.	

	

Experimental	 design.	 Each	 trial	 of	 the	 main	 experiment	 started	 with	 the	 presentation	 of	 a	 fixation	

bullseye	 (diameter:	0.7°).	During	 the	prediction	runs,	an	auditory	cue	 (ascending	or	descending	 tones,	

250	ms)	was	presented	100	ms	after	onset	of	the	trial	(Figure	1A).	After	a	500	ms	delay	two	consecutive	

shape	 stimuli	were	 presented	 for	 250	ms	 each,	 separated	 by	 a	 500	ms	 blank	 screen	 (Figure	 1A).	 The	

auditory	cue	(ascending	vs.	descending	tones)	predicted	whether	the	first	shape	on	that	trial	would	be	

shape	2	or	shape	4	(out	of	five	shapes;	Figure	1B).	The	cue	was	valid	on	75%	of	trials,	while	in	the	other	

25%	of	trials	the	unpredicted	shape	would	be	presented.	For	instance,	an	ascending	auditory	cue	might	

be	 followed	 by	 shape	 2	 on	 75%	 of	 trials,	 and	 by	 shape	 4	 on	 the	 remaining	 25%	 of	 trials.	 The	

contingencies	 between	 the	 auditory	 cues	 and	 grating	 orientations	 were	 flipped	 halfway	 through	 the	

experiment,	and	the	order	of	mappings	was	counterbalanced	across	participants.	
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On	 each	 trial,	 the	 second	 shape	was	 either	 identical	 to	 the	 first,	 or	was	 slightly	warped.	 This	

warp	was	achieved	by	modulating	the	amplitude	of	the	3.18	Hz	RFC	component	defining	the	shape.	This	

modulation	could	be	either	positive	or	negative	(counterbalanced	over	conditions)	and	participants’	task	

was	 to	 indicate	 whether	 the	 two	 shapes	 on	 a	 given	 trial	 were	 the	 same	 or	 different,	 using	 an	 MR-

compatible	button	box.	 	After	the	response	 interval	ended	(750	ms	after	disappearance	of	the	second	

shape),	 the	 fixation	 bullseye	 was	 replaced	 by	 a	 single	 dot,	 signalling	 the	 end	 of	 the	 trial	 while	 still	

requiring	 participants	 to	 fixate.	 This	 task	 was	 designed	 to	 avoid	 a	 direct	 relationship	 between	 the	

perceptual	prediction	and	the	task	response.	Furthermore,	by	modulating	one	of	the	RFCs	that	was	not	

used	to	define	our	one-dimensional	shape	space,	we	ensured	that	the	shape	change	on	which	the	task	

was	performed	was	orthogonal	to	the	changes	that	defined	the	shape	space,	and	thus	orthogonal	to	the	

prediction	 cues.	 The	 size	 of	 the	 modulation	 was	 determined	 by	 an	 adaptive	 staircasing	 procedure	

(Watson	and	Pelli,	1983),	updated	after	each	trial,	in	order	to	make	the	task	challenging	(~75%	correct).	

Separate	staircases	were	run	for	trials	containing	valid	and	invalid	cues,	as	well	as	for	the	localiser	runs,	

to	equate	task	difficulty	between	conditions.	All	participants	completed	two	runs	of	this	task	(128	trials	

per	run).	

In	 two	additional	 runs,	which	were	 interleaved	with	 the	 runs	 just	described	 (in	ABBA	 fashion,	

order	 counterbalanced	 over	 participants),	 the	 25%	 invalid	 trials	 did	 not	 involve	 presentation	 of	 the	

unpredicted	 shape,	 but	 rather	 no	 shape	 stimuli	 were	 presented	 at	 all.	 These	 omission	 trials	 were	

included	in	an	attempt	to	decode	expected	but	omitted	shapes	from	the	BOLD	response.	However,	no	

such	 effects	 were	 found.	 We	 are	 conducting	 additional	 studies	 to	 better	 understand	 the	 conditions	

under	which	omission	trials	do	(e.g.,	Kok	et	al.,	2014;	Hindy	et	al.,	2016)	and	do	not	(the	current	study)	

reveal	 expectations,	 and	 thus	 the	 data	 from	 the	 omission	 trials	will	 not	 be	 considered	 further	 in	 this	

manuscript.	
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Finally,	participants	completed	two	localiser	runs	(120	trials	per	run),	in	which	no	auditory	cues	

were	 presented.	 As	 in	 the	 prediction	 runs,	 the	 start	 of	 each	 trial	 was	 signalled	 by	 the	 onset	 of	 the	

fixation	bullseye,	and	the	SOA	between	this	onset	and	the	presentation	of	the	first	shape	was	850	ms	

(Figure	1C).	On	any	given	trial,	one	of	the	five	shapes	would	be	presented,	with	equal	(20%)	likelihood.	

As	 in	 the	 prediction	 runs,	 the	 first	 shape	was	 followed	 by	 a	 second	 one	 that	 was	 either	 identical	 or	

slightly	warped,	and	participants’	task	was	to	report	same	or	different.	These	runs	were	designed	to	be	

as	similar	as	possible	to	the	prediction	runs,	save	the	absence	of	the	auditory	cues	and	the	equal	rates	of	

presentation	 of	 all	 five	 shapes.	 The	 two	 localiser	 runs	 flanked	 the	 runs	 containing	 the	 auditory	 cues,	

constituting	the	first	run	and	sixth	(last)	run	of	the	experiment.	

The	 staircases	were	 kept	 running	 throughout	 the	experiment.	 They	were	 initialised	at	 a	 value	

determined	during	a	practice	session	1-3	days	before	the	fMRI	experiment	(no	auditory	cues,	120	trials).	

After	the	initial	practice	run,	the	meaning	of	the	auditory	cues	was	explained,	and	participants	practiced	

briefly	 with	 both	 cue-shape	 contingencies	 (valid	 trials	 only;	 16	 trials	 per	 contingency).	 Additionally,	

before	the	first	prediction	run	of	the	fMRI	experiment	(run	2),	as	well	as	in	between	runs	3	and	4,	when	

the	contingencies	between	cue	and	stimuli	were	 flipped,	participants	performed	a	practice	block	 (112	

trials,	valid	cues	only),	to	acquaint	them	with	the	upcoming	cue-shape	contingency.	

	

MRI	acquisition.	Structural	and	functional	MRI	data	were	collected	on	a	3T	Siemens	Prisma	scanner	with	

a	 64-channel	 head	 coil.	 Functional	 images	 were	 acquired	 using	 a	 multiband	 echo-planar	 imaging	

sequence	(TR	=	1000	ms,	TE=	32.6	ms,	60	transversal	slices,	voxel	size	=	1.5	×	1.5	×	1.5	mm,	55°	flip	angle,	

multiband	 factor	 6).	 This	 sequence	 produced	 a	 partial	 volume	 for	 each	 participant,	 parallel	 to	 the	

hippocampus	 and	 covering	 the	majority	of	 the	 temporal	 and	occipital	 lobes.	Anatomical	 images	were	

acquired	using	a	T1-weighted	MPRAGE	sequence,	using	a	GRAPPA	acceleration	factor	of	3	(TR	=	2300	ms,	

TE	 =	 2.27	 ms,	 voxel	 size	 1	 ×	 1	 ×	 1	 mm,	 192	 transversal	 slices,	 8°	 flip	 angle).	 Additionally,	 to	 enable	
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hippocampal	segmentation,	two	T2-weighted	turbo	spin-echo	(TSE)	images	(TR	=	11390	ms,	TE	=	90	ms,	

voxel	size	=	0.44	×	0.44	×	1.5	mm,	54	coronal	slices,	perpendicular	to	the	long	axis	of	the	hippocampus,	

distance	factor	20%,	150°	 flip	angle)	were	acquired.	To	correct	 for	susceptibility-induced	distortions	 in	

the	 EPI	 images,	 a	 pair	 of	 spin	 echo	 volumes	 was	 acquired	 in	 opposing	 phase	 encode	 directions	

(anterior/posterior	 and	 posterior/anterior)	 with	 matching	 slice	 prescription,	 voxel	 size,	 field	 of	 view,	

bandwidth,	and	echo	spacing	(TR	=	8000	ms,	TE	=	66	ms).	

	

fMRI	 preprocessing.	The	 images	were	preprocessed	using	FEAT	6	 (FMRI	Expert	Analysis	Tool),	part	of	

FSL	5	(http://fsl.fmrib.ox.ac.uk/fsl,	Oxford	Centre	for	Functional	MRI	of	the	Brain)	(Jenkinson	et	al.,	2012).	

Susceptibility-induced	distortions	were	determined	on	the	basis	of	the	opposing	spin	echo	volume	pairs	

using	the	FSL	topup	tool	(Andersson	et	al.,	2003).	The	resulting	off-resonance	field	output	was	converted	

from	Hz	to	rad/s,	and	supplied	to	FEAT	for	B0	unwarping	(see	below).	The	first	six	volumes	of	each	run	

were	discarded	to	allow	T1	equilibration.	For	each	run,	the	remaining	functional	 images	were	spatially	

realigned	 to	 correct	 for	head	motion,	and	 simultaneously	 supplied	 to	B0	unwarping	and	 registered	 to	

the	 participants’	 structural	 T1	 image,	 using	 boundary-based	 registration.	 The	 functional	 data	 were	

temporally	high-pass	filtered	with	a	128	s	period	cutoff,	no	spatial	smoothing	was	applied.	Finally,	 the	

two	TSE	images	were	averaged	and	the	resulting	image	was	registered	to	the	T1	image	through	FMRIB’s	

Linear	Image	Registration	Tool	(FLIRT).	

All	 analyses	 were	 performed	 in	 participants’	 native	 space.	 For	 the	 searchlight	 analyses	 (see	

below),	each	participant’s	output	volumes	were	registered	to	the	MNI	(Montreal	Neurological	Institute)	

template	 to	 allow	 group-level	 statistics.	 This	 was	 achieved	 by	 applying	 the	 non-linear	 registration	

parameters	 obtained	 from	 registering	 each	 participant’s	 T1	 image	 to	 the	MNI	 template	 using	 AFNI’s	

3dQwarp	(https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dQwarp.html).	
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Regions	of	interest.	Hippocampal	subfields	CA2–CA3–DG,	CA1,	and	the	subiculum,	were	defined	on	the	

basis	 of	 the	 TSE	 and	 T1	 images	 using	 the	 automatic	 segmentation	 of	 hippocampal	 subfields	 (ASHS)	

machine	learning	toolbox	(Yushkevich	et	al.,	2015)	and	a	database	of	manual	medial	temporal	lobe	(MTL)	

segmentations	 from	 a	 separate	 set	 of	 51	 participants	 (Aly	 and	 Turk-Browne,	 2016a,	 2016b).	 Manual	

segmentations	were	based	on	anatomical	landmarks	used	in	prior	studies	(Duvernoy,	2005;	Carr	et	al.,	

2010;	 Schapiro	 et	 al.,	 2012).	 Consistent	 with	 these	 studies,	 CA2,	 CA3	 and	 DG	were	 combined	 into	 a	

single	 ROI	 because	 these	 subfields	 are	 difficult	 to	 distinguish	 at	 our	 functional	 resolution	 (1.5	 mm	

isotropic).	TSE	acquisition	failed	for	one	participant,	and	so	their	hippocampal	ROIs	were	based	on	the	

T1	 image	 alone.	 Results	 of	 the	 automated	 segmentation	were	 inspected	 visually	 for	 each	participant.	

The	hippocampus	ROI	consisted	of	the	union	of	the	CA2–CA3–DG,	CA1,	and	subiculum	subfields.	

In	 visual	 cortex,	 V1,	 V2	 and	 lateral	 occipital	 (LO)	 cortex	 automatically	 defined	 in	 each	

participant’s	T1-weighted	anatomical	scan	with	FreeSurfer	(http://surfer.nmr.mgh.harvard.edu/).	Finally,	

putamen	 and	 caudate	 ROIs	 were	 obtained	 from	 FreeSurfer’s	 subcortical	 segmentation,	 since	 these	

regions	have	been	implicated	in	associative	learning	and	prediction	(Poldrack	et	al.,	2001;	Den	Ouden	et	

al.,	2009;	Turk-Browne	et	al.,	2009;	Shohamy	and	Turk-Browne,	2013).	

The	visual	cortex	ROIs	were	restricted	to	the	500	most	active	voxels	during	the	localiser	runs	in	

each	ROI,	to	ensure	that	we	were	measuring	responses	in	the	retinotopic	locations	corresponding	to	our	

visual	stimuli.	Since	no	clear	retinotopic	organization	is	present	in	the	other	ROIs,	cross-validated	feature	

selection	was	used	instead	(see	below).	

All	 ROIs	 were	 collapsed	 over	 the	 left	 and	 right	 hemispheres,	 since	 we	 had	 no	 hypotheses	

regarding	hemispheric	differences.	

	

fMRI	data	modelling.	The	functional	data	of	each	participant	were	modelled	with	general	linear	model	

(GLM),	 using	 FMRIB’s	 Improved	 Linear	 Model	 (FILM),	 which	 included	 temporal	 autocorrelation	
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correction	 and	 extended	motion	 parameters	 (6	 standard	 parameters,	 plus	 their	 derivatives	 and	 their	

squares)	 as	 nuisance	 covariates.	We	 specified	 regressors	 for	 the	 conditions	of	 interest	 (localiser	 runs:	

five	shapes;	prediction	runs:	two	shapes	x	two	prediction	conditions	[valid	vs.	invalid]),	by	convolving	a	

delta	function	at	the	onset	of	the	first	shape	on	each	trial	with	a	double-gamma	HRF.	Additionally,	we	

included	the	temporal	derivative	of	each	regressor	in	order	to	accommodate	variability	in	the	onset	of	

the	response	(Friston	et	al.,	1998).	

To	investigate	the	temporal	evolution	of	shape	representations	in	visual	cortex,	a	finite	impulse	

response	(FIR)	approach	was	used	to	estimate	the	BOLD	signal	evoked	by	each	condition	of	 interest	 in	

20	 1s	 intervals.	 This	 allowed	us	 to	 estimate	 the	 shape	decoding	 signal	 in	 a	 time-resolved	manner,	 by	

training	 the	 decoder	 on	 the	 FIR	 parameter	 estimates	 from	 the	 4-7s	 time	 bins	 in	 the	 localiser	 runs	

(corresponding	to	the	peak	hemodynamic	signal)	and	applying	it	to	all	time	bins	for	the	prediction	runs.	

The	 amplitude	 and	 latency	 of	 this	 time-resolved	 decoding	 signal	 was	 quantified	 by	 fitting	 a	 double-

gamma	function	and	its	temporal	derivative.	

	

Shape	 decoding.	 In	 order	 to	 probe	 neural	 shape	 representations,	 we	 used	 a	 forward	 modelling	

approach	to	reconstruct	 the	shape	from	the	pattern	of	BOLD	activity	 in	a	given	brain	region	 (Brouwer	

and	Heeger,	2009).	This	approach	has	proven	successful	in	reconstructing	continuous	stimulus	features,	

such	as	hue	(Brouwer	and	Heeger,	2009),	orientation	(Brouwer	and	Heeger,	2011),	and	motion	direction	

(Kok	et	al.,	2013).	 In	 the	current	 study,	 shape	contour	was	constructed	along	a	continuous	dimension	

(see	above),	allowing	the	application	of	a	forward	model.		

We	 characterised	 the	 shape	 selectivity	 of	 each	 voxel	 as	 a	 weighted	 sum	 of	 five	 hypothetical	

channels,	each	with	an	 idealised	 shape	 tuning	curve	 (or	basis	 function).	As	 in	previous	 forward	model	

implementations	(Brouwer	and	Heeger,	2009,	2011;	Kok	et	al.,	2013),	each	basis	function	consisted	of	a	

halfwave-rectified	sinusoid	 raised	 to	 the	 fifth	power,	and	 the	 five	basis	 functions	were	spaced	evenly,	
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such	that	they	were	centred	on	the	five	points	in	shape	space	that	constituted	the	five	shapes	presented	

in	 the	 experiment	 (Figure	 2A).	 As	 a	 result	 of	 this,	 a	 tuning	 curve	with	 any	 possible	 shape	 preference	

(within	the	space	defined	here)	could	be	expressed	as	a	weighted	sum	of	the	five	basis	functions.	Note	

that,	 unlike	 other	 stimulus	 features	 previously	 reconstructed	 using	 forward	models,	 the	 shape	 space	

used	here	was	not	circular,	and	therefore	the	channels	did	not	wrap	around.	

In	the	first	stage	of	the	analysis,	we	used	parameter	estimates	obtained	from	the	two	localiser	

runs	 to	estimate	 the	weights	on	 the	 five	hypothetical	 channels	 separately	 for	each	voxel,	using	 linear	

regression.	Specifically,	let	k	be	the	number	of	channels,	m	the	number	of	voxels,	and	n	the	number	of	

measurements	 (i.e.,	 the	 five	 shapes).	 The	matrix	 of	 estimated	 response	 amplitudes	 for	 the	 different	

shapes	during	the	localiser	runs	(Bloc,	m	x	n)	was	related	to	the	matrix	of	hypothetical	channel	outputs	

(Cloc,	k	x	n)	by	a	weight	matrix	(W,	m	x	k):		

	

Eq.	(1)		 	 	 	 	 		Bloc=WCloc 	

	

The	least-squares	estimate	of	this	weight	matrix	W	was	estimated	using	linear	regression:		

	

Eq.	(2)		 	 	 	 					 Ŵ = BlocCloc
T (ClocCloc

T )-1 	

	

These	 weights	 reflected	 the	 relative	 contribution	 of	 the	 five	 hypothetical	 channels	 in	 the	

forward	model	(each	with	their	own	shape	selectivity)	to	the	observed	response	amplitude	of	each	voxel.	

Using	these	weights,	the	second	stage	of	analysis	reconstructed	the	channel	outputs	associated	with	the	

pattern	of	activity	across	voxels	evoked	by	the	stimuli	 in	the	main	experiment	(Bexp),	again	using	linear	

regression.	This	step	transformed	each	vector	of	n	voxel	responses	(parameter	estimates	per	condition)	

into	 a	 vector	 of	 5	 (number	 of	 basis	 functions)	 channel	 responses.	 More	 specifically,	 the	 channel	
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responses	(Cexp)	associated	with	the	responses	in	the	main	experiment	(Bexp)	were	estimated	using	the	

learned	weights	(W):	

	

Eq.	(3)	 	 	 	 						 Ĉexp = (Ŵ
TŴ)-1ŴTBexp 	

	

These	 channel	outputs	were	used	 to	 compute	a	weighted	average	of	 the	 five	basis	 functions,	

reflecting	 a	 neural	 shape	 tuning	 curve	 (Figure	 2B).	 Note	 that,	 during	 the	 main	 experiment	 (i.e.,	 the	

prediction	runs),	only	shapes	2	and	4	were	presented.	Thus,	four	shape	tuning	curves	were	obtained	for	

the	prediction	runs:	two	shapes	by	two	prediction	conditions	(valid	vs.	invalid).	We	collapsed	across	the	

presented	 shape	 by	 subtracting	 the	 shape	 tuning	 curve	 for	 shape	 4	 from	 that	 for	 shape	 2,	 thereby	

subtracting	out	any	non-shape-specific	BOLD	signals	(Figure	2C).	

Decoding	performance	was	quantified	by	subtracting	the	amplitude	of	the	shape	tuning	curve	at	

the	 presented	 shape	 (e.g.,	 shape	 2)	 from	 the	 amplitude	 at	 the	 non-presented	 shape	 (shape	 4).	

Collapsing	across	 conditions	 led	 to	 two	measures	of	decoder	evidence	per	participant:	one	 for	 validly	

predicted	shapes,	and	one	 for	 invalidly	predicted	shapes.	This	allowed	us	 to	quantify	evidence	 for	 the	

shape	as	presented	on	the	screen	(by	averaging	evidence	for	validly	and	invalidly	predicted	shapes)	and	

evidence	 for	 the	 cued	 shape	 (by	 averaging	 (1	 -	 evidence)	 for	 the	 invalidly	 predicted	 shapes	 with	

evidence	 for	 the	validly	predicted	shapes).	These	measures	were	statistically	 tested	at	 the	group	 level	

using	simple	t-tests.	

For	the	visual	cortex	ROIs,	voxels	were	selected	based	on	the	strength	of	the	evoked	response	to	

the	shapes	during	the	localiser	runs.	Other	brain	regions,	such	as	the	hippocampus,	do	not	show	a	clear	

evoked	response	to	visual	stimuli.	Therefore,	we	followed	a	different	voxel	selection	procedure	for	the	

other	ROIs.	First,	voxels	were	sorted	by	their	informativeness,	that	is,	how	different	the	weights	for	the	

five	channels	were	from	each	other	(quantified	by	the	standard	deviation	of	the	five	weights).	Second,	
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the	number	of	voxels	 to	 include	was	determined	by	selecting	between	10%	and	100%	of	all	voxels	 (in	

steps	of	10%),	and	training	and	testing	the	model	on	these	voxels,	within	the	localiser	runs	(i.e.,	training	

on	one	run	and	testing	on	the	other	run).	For	each	iteration,	decoding	performance	on	shapes	2	and	4	

was	 quantified	 as	 described	 above,	 and	 the	 number	 of	 voxels	 that	 yielded	 the	 highest	 decoding	

performance	was	 selected	 (group	 average:	 hippocampus,	 1536	 of	 3383	 voxels;	 caudate,	 590	 of	 2240	

voxels;	putamen,	1498	of	3582	voxels).	

We	also	labelled	the	selected	hippocampus	voxels	based	on	their	subfield	from	the	hippocampal	

segmentation	 (group	 average:	 CA1,	 436	 voxels;	 CA2-CA3-DG,	 572	 voxels;	 subiculum,	 425	 voxels).	

Differential	 contributions	 of	 the	 subfields	were	 statistically	 tested	 by	 performing	 a	 one-way	 repeated	

measures	ANOVA	on	the	measure	of	interest	(e.g.,	decoding	of	the	cued	shape;	Figure	3D).	

For	 the	 main	 ROI	 and	 searchlight	 analyses,	 the	 input	 to	 the	 forward	 model	 consisted	 of	

voxelwise	 double-gamma	 parameter	 estimates,	 reflecting	 the	 amplitude	 of	 the	 BOLD	 response.	

Additionally,	decoding	was	also	applied	to	the	FIR	model	parameter	estimates	in	visual	cortex.	

	

Searchlight	 analysis.	 In	 order	 to	 explore	 the	 specificity	 of	 presented	 and	 predicted	 shape	

representations,	a	multivariate	 searchlight	approach	was	used	 to	 test	 these	effects	within	 the	 field	of	

view	of	our	functional	scans	(most	of	occipital	and	temporal,	and	part	of	parietal	and	frontal	cortex).	A	

spherical	 searchlight	with	a	 radius	of	5	voxels	 (7.5	mm)	was	passed	over	all	 functional	voxels.	 In	each	

searchlight,	we	performed	shape	decoding	in	the	same	manner	as	in	the	ROIs,	yielding	maps	of	decoder	

evidence	 for	 the	presented	 and	predicted	 shapes,	 respectively,	 for	 each	participant.	Group-level	 non-

parametric	permutation	tests	were	applied	to	these	searchlight	maps	using	FSL	Randomise	(Winkler	et	

al.,	 2014),	 correcting	 for	multiple	 comparisons	 at	 p	 <	 0.05	 using	 threshold-free	 cluster	 enhancement	

(Smith	and	Nichols,	2009).	
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