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ABSTRACT:  82 

Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, 83 

necessitating the development of techniques to isolate these pathogens into sterile culture for 84 

research purposes. However, early methods of isolating chytrids from their hosts relied on 85 

killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected 86 

animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and 87 

distributed the protocol to interested researchers worldwide as part of the BiodivERsA 88 

project RACE – here called the RML protocol. In tandem, we developed a lethal procedure for 89 

isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their 90 

inception, we find that these methods have been widely applied across at least 5 continents, 91 

23 countries and in 62 amphibian species, and have been successfully used to isolate chytrids 92 

in remote field locations. Isolation of chytrids by the non-lethal RML protocol occured in 93 

18% of attempts with 207 fungal isolates and three species of chytrid being recovered. 94 

Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of 95 

one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods 96 

have resulted in a significant reduction and refinement of our use of threatened amphibian 97 

species and have improved our ability to work with this important group of emerging fungal 98 

pathogens. 99 
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INTRODUCTION 100 

A major consequence of globalisation has been the increase of invasive species owing to 101 

trade in live animals and plants. A further outcome of this process is the concomitant rise of 102 

novel emerging fungal pathogens (EFPs; (Farrer et al. 2017)) as these infections are moved 103 

within trade networks and establish in uninfected regions – an example of fungal ‘pathogen 104 

pollution’ (Fisher et al. 2012). Whilst EFPs can affect humans, they have also been broadly 105 

detrimental to natural populations of plants and animals, leading to worldwide losses of 106 

biodiversity. This dynamic has been most apparent across amphibians, where EFPs leading to 107 

population extirpation and species extinctions have contributed to amphibians now being the 108 

most endangered class of vertebrate (Stuart et al. 2004; Mendelson et al. 2006). In particular, 109 

emergence of parasitic fungi in the genus Batrachochytrium (phylum Chytridiomycota, order 110 

Rhizophydiales) have played a major role in driving amphibian population and species 111 

declines worldwide (Berger et al. 1998; Fisher et al. 2009). 112 

While a single species, Batrachochytrium dendrobatidis (Bd), was originally thought to have 113 

caused the ongoing panzootic (James et al. 2009), we now know that amphibian 114 

chytridiomycosis is caused by a much broader swathe of phylogenetic diversity than was 115 

previously thought (Farrer et al. 2011; Schloegel et al. 2012). Next-generation sequencing 116 

and phylogenomic analyses have shown that Bd sensu stricto is composed of deep genetic 117 

lineages which are emerging through international trade in amphibians (Fisher et al. 2007; 118 

Schloegel et al. 2009; Schloegel et al. 2010). Superimposed upon this background of trade-119 

associated lineages of Bd has come the recent discovery of a new species of pathogenic 120 

chytrid, also within the Rhizophydiales, B. salamandrivorans (Bsal; Martel et al. 2013). This 121 

pathogen has rapidly extirpated European fire salamanders (Salamandra salamandra) in the 122 

Netherlands and a broad screening of urodeles has shown that Bsal occurs naturally in 123 

southeast Asia where it appears to asymptomatically infect salamander and newt species 124 

(Laking et al. 2017). 125 

The ability to isolate and culture both Bd and Bsal has played a key role in catalysing 126 

research into their pathogenesis and virulence (Voyles et al. 2007; Rosenblum et al. 2012; 127 

Farrer et al. 2017), phenotypic characteristics (Piotrowski et al. 2004; Fisher et al. 2009; 128 

Becker et al. 2017) and a wealth of experimental studies on epidemiologically relevant 129 

parameters (Garner et al. 2009; Ribas et al. 2009; Rosenblum et al. 2012). Longcore et al. 130 

(1999) first isolated Bd from infected amphibians by modifying techniques used to isolate 131 
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other chytrids (Barr 1987). Longcore cleaned small (< 0.5mm dia) pieces of Bd-infected leg 132 

and foot skin by wiping them through agar and then placed skin pieces onto a clean plate of 133 

nutrient agar containing penicillin G and streptomycin. This method worked well for isolating 134 

from dead animals sent by courier from North and Central America. The method, however, 135 

requires euthanizing potentially healthy animals if their infection status was unknown. 136 

Further, it is difficult to perform this protocol in remote regions that lack suitable laboratory 137 

facilities, and the lethal sampling of amphibians may be contraindicated if the species is 138 

endangered, protected or located in protected areas. 139 

We confronted this issue in a 2008-2014 project funded by BiodivERsA 140 

(http://www.biodiversa.org) – RACE: Risk Assessment of Chytridiomycosis to European 141 

amphibian biodiversity (Fisher et al. 2012). One of the objectives of this project was to adjust 142 

the protocol of Longcore et al. (1999) to (i) reduce the need to kill adult amphibians, (ii) 143 

improve rates of chytrid isolation by allowing the use of more animals, (iii) develop protocols 144 

that enabled isolation in a field setting, and, (iv) integrate the data into the GPS-smartphone 145 

enabled epidemiological software application Epicollect (Aanensen et al. 2009; Aanensen et 146 

al. 2014). Further, ‘forewarned is forearmed’ and we wished to determine whether the 147 

protocol was able to isolate other species of chytrid that are part of the amphibian skin 148 

microbiota, and that may present a biosecurity risk. This need to more broadly characterise 149 

global chytrid biodiversity was met by using resources from RACE to train researchers 150 

worldwide in chytrid isolation techniques to provide opportunities to characterise novel 151 

chytrids as they were discovered. 152 

In addition to the non-lethal isolation protocol, a lethal method was developed in parallel to 153 

isolate chytrids from the mouthparts of larval amphibians. We describe this method as a 154 

refinement to the main isolation protocol. 155 

METHODS 156 

Non-lethal field isolation of chytrids 157 

Animals were captured and held in separate plastic bags or suitable containers until ready for 158 

processing (Supp. Info. RML Protocol 1 and Supp. Info. Swabbing Protocol 2). Using clean 159 

gloves and sterilized dissection scissors or scalpel blades, the terminal 1-2mm of the 160 

phalanges of the 4th hind toe (counting from the proximal toe) was clipped and laid on the 161 
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surface of an mTGhL + antibiotic (200 mg/L penicillin-G and 400 mg/L streptomycin 162 

sulphate) agar plate. Alternatively, ~1mm toe-webbing biopsy punches were taken (Sklar 163 

instruments, PA, USA) then laid on a plate. This allowed multiple animals to be processed 164 

rapidly in the field. Subsequently, each tissue sample was transferred to a second plate with a 165 

sterile needle or forceps then cleaned (as far as possible) of surface-contaminating bacteria 166 

and fungi by dragging it through the agar-medium. The needle or forceps was then used to 167 

place the tissue sample in a sterile 2 ml screw-cap microtube containing liquid mTGhL 168 

medium with antibiotics, then stored in a cool, dry place. While 4 oC appears optimal, we 169 

have successfully used shaded regions of streams to cool cultures when refrigeration was not 170 

immediately available and have even held tubes and plates for several days at > 10 oC until 171 

suitable storage conditions were available. 172 

Once back in the laboratory, samples in tubes were visually screened for evidence of yeast or 173 

bacterial contamination (when the media takes on a ‘cloudy’ appearance), or mycelial ‘balls’ 174 

around the toe that are evidence of non-chytrid fungal contaminants. Visibly clear samples 175 

were decanted into a single well of a sterile 12-well lidded culture plate then incubated at 176 

18oC for up to 4 weeks, topping up with extra medium to counter evaporation as necessary. 177 

Depending on the size of the initial tissue sample, toe clips and webbing were divided into 178 

several smaller samples before transferring to liquid culture media. 179 

Isolating chytrids from tadpoles 180 

Tadpoles often have higher burdens of infection than adults, especially long-lived tadpoles 181 

(Skerratt et al. 2008), and have higher densities and encounter rates than adults. In some 182 

situations where tadpoles were large and infections heavy, tadpoles were microscopically 183 

screened with a dissecting microscope or hand lens for areas of dekeratinization of the mouth 184 

parts, especially the jaw sheaths, that indicates infection (Fellers et al. 2001; Smith et al. 185 

2007). Tadpoles are killed before excising their mouthparts and these preliminary 186 

microscopic screens enabled us to use only a small number of animals to isolate chytrids. 187 

Additionally, uninfected and naïve tadpoles that were reared in captivity were used as live 188 

substrates to bait chytrids from adult amphibians with low levels of Bd infection (Bataille et 189 

al. 2013). 190 

Susceptible tadpoles were reared until gills were resorbed and animals were free-swimming 191 

and feeding (developmental Gosner stage 25), because at earlier stages they are still 192 
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developing the keratinized mouthparts. Each tadpole container was then immersed within a 193 

similar but larger container that held at least one chytrid-infected animal. Water exchange 194 

between the infected and bait animal containers occurred through small holes (< 0.3 mm) 195 

drilled into the bottom of the walls of the smaller internal containers. Animals were held in 196 

these conditions for between 2 and 4 weeks at species-appropriate conditions. Tadpoles were 197 

periodically examined every fourth day for the presence of the depigmented areas in the jaw 198 

sheaths that have been associated with chytrid infection. 199 

Isolating chytrids from tadpoles first required killing by immersion in a 5 g/L solution of MS-200 

222 (Torreilles et al. 2009) or other approved method. Note that anaesthetics which contain 201 

ethanol, such as phenoxyethanol (Gentz 2007), should be avoided as these will kill chytrids 202 

while MS222 is not toxic (Webb et al. 2005). We then dissected out keratinized jaw sheaths 203 

and cleaned the entire sheath, or sections, as above using an agar plate with antibiotics 204 

((Longcore et al. 1999); Supp. Info. RML Protocol 1). Cleaned sections were then placed 205 

singly into sterile 12-well culture plates with 1 mL liquid media + antibiotics, or onto agar 206 

plates with 6 – 10 sections per plate, and incubated at 10 – 20 oC.  207 

Because zoospore release may occur immediately, especially from tadpole mouthparts, 208 

cultures were examined with an inverted microscope for the presence of active zoospores 209 

every day for up to one week following the day that they were initiated. After that, checks 210 

every two days were sufficient. 211 

Culture and diagnosis of chytrid isolates 212 

Subsequent culture methods for Bd followed those of Longcore et al. (1999). When isolation 213 

of Bsal was anticipated an incubation temperature of 15 oC was required (Blooi et al. 2015) 214 

whereas a temperature of 18 – 22 oC is closer to the measured growth optimum of Bd 215 

(Longcore et al. 1999; Ribas et al. 2009). Once growth of zoospores and/or zoosporangia was 216 

observed, 100 – 500 µL volume of culture containing zoospores and zoosporangia was 217 

transferred by pipette to a new 12-well plate with liquid medium and no antibiotics, and 218 

incubated at 15 – 20 °C. All successfully cultured isolates were subcultured into larger 219 

volumes, then centrifuged at 1700 g for 10 min before cryopreservation. A portion of the 220 

initial pellet was also be used for DNA extraction, while the remaining volume was 221 

resuspended in 10% DMSO and 10% FCS in liquid media and transferred into six 2 mL 222 

cryotubes for cryopreservation at -80 °C (Boyle et al. 2003).  223 
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We confirmed the identity of Bd and Bsal by quantitative PCR with an MGB Taqman probe 224 

assay in either single-plex or multiplex (Boyle et al. 2004; Blooi et al. 2013). We identified 225 

non-Batrachochytrium chytrids was achieved by sequencing appropriate regions of the 226 

ribosomal RNA gene with universal fungal primers followed by comparison against OTUs 227 

held in UNITE database (Unified system for DNA-based fungal species linked to 228 

classification: https://unite.ut.ee) to establish a species-hypothesis for the chytrid isolate in 229 

question (Schoch et al. 2012). If further genetic data were required, then multilocus analysis 230 

or whole-genome sequencing was undertaken using chytrid-specific methods (James et al. 231 

2009; Farrer et al. 2013; Farrer et al. 2017; Farrer et al. 2017). 232 

Collation of data 233 

To track and report chytrid isolation for the RACE project, we used a generic data collection 234 

tool that allows the collection and submission of geotagged data forms from field locations, 235 

Epicollect5 (https://five.epicollect.net). This software has the advantage that it can be used on 236 

mobile devices with or without internet connection, and allows the immediate sharing of data 237 

across the research community. Our database at                      238 

https://five.epicollect.net/project/bd-global-isolation-protocol included the following data 239 

fields: Date; Continent, Country, Site name; Latitude/Longitude; Wild caught or trade?; 240 

Amphibian species; Life history stage; Number sampled; Chytrid isolated?; Number isolated; 241 

Species of chytrid isolated; Chytrid lineage; Photograph of amphibian; Name of researchers. 242 

RESULTS 243 

The ‘RACE modified Longcore (RML) Protocol’ for the non-lethal isolation of chytrids from 244 

amphibians is detailed in Supp. Info. 1. Ensure that you have the relevant licences, permits 245 

and permissions from ethical committees to follow the RML protocol 1, swabbing protocol 2 246 

and isolation from larval amphibians. 247 

Non-lethal isolation from adult and juvenile amphibians 248 

Following the formalisation and distribution of the RACE protocols, our Epicollect5 project 249 

summarised chytrid surveys from 2007 through to 2017 (Table 1). The Epicollect5 database 250 

can be spatially visualised at                                                      251 

https://five.epicollect.net/project/bd-global-isolation-protocol/data. Figure 1 depicts the 252 
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isolation of amphibian-associated chytrids using the RACE protocols from 5 continents 253 

(Africa, Asia, Australia, Europe and South America), 23 countries, 239 sampling episodes, 254 

and from latitudes spanning -44.1 S (Batrachyla antartandica, Chile) through to 55.6 N (Bufo 255 

viridis, Sweden). Chytrids have been non-lethally isolated from 34 amphibian species, of 256 

which 28 were anuran and 5 were caudatan species. The database also contains 5 records of 257 

chytrids that were non-lethally sampled from the amphibian trade.  258 

In total, 1,152 animals were non-lethally sampled, recovering 207 chytrid isolates and 259 

resulting in a recovery rate of 18% (~1 isolate per 5 animals sampled). Of these chytrids, 203 260 

(98%) were Bd, 2 were Rhizophydium sp., 2 were Kappamyces sp. and none were Bsal (Table 261 

1). Of the Bd isolated, 42 (88%) were determined to be BdGPL, 5 (10%) were BdCAPE, and 262 

1 (2%) was BdCH. 263 

Isolation of chytrids from larval amphibians 264 

In total, 784 tadpoles were sampled recovering 334 chytrid isolates and resulting in a 265 

recovery rate of 43% (~1 isolate per 2 – 3 animals sampled). Isolates were recovered from 34 266 

species of amphibian, all of which were anurans (Table 2). These chytrid isolates were all Bd 267 

and, of the lineages recorded, 129 (78%) were BdGPL, 34 (20%) were BdBRAZIL and 3 268 

(2%) were hybrids.  269 

Baiting chytrid isolates from live adult animals using tadpoles was used successfully in South 270 

Korean Bombina orientalis as previously described (Bataille et al. 2013). Here, six tadpoles 271 

were co-housed with adult B. orientalis, yielding a single isolate of Bd for each attempt 272 

equating to a rate of success of ~20%. 273 

DISCUSSION 274 

The RML protocol, based on the original suggestions of Joyce Longcore for the non-lethal 275 

isolation of chytrids from amphibians, has been a success with isolates of chytrids recorded 276 

from five continents. There are likely many other unrecorded uses of this method because this 277 

protocol has been widely dispersed during the 5-year span (2008-2014) of the RACE project 278 

which trained a cohort of amphibian disease researchers in these techniques.  279 

In some circumstances chytrids could not be recovered from toe-clips when sampling 280 

populations with persistent infection despite repeated attempts. This was particularly evident 281 
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when the prevalence and burden of chytrid infections in surveys was low (Swei et al. 2011; 282 

Bataille et al. 2013; Laking et al. 2017) or when host species occupied habitats with high 283 

bacterial and/or non-target fungal contaminants. In these situations we isolated chytrids from 284 

tadpole mouthparts as an associated method to the RML protocol. The value of the RML 285 

protocol in propelling forward research on amphibian chytridiomycosis has been very clear: 286 

for instance, of the 59 scientific papers produced by RACE, 15 directly used isolates of Bd 287 

that were generated by this protocol for experimental trials (Supp. Info. 3). Further, 288 

subsequently many more studies using these isolates have extended our knowledge of the 289 

genetic diversity of Bd (James et al. 2009; Farrer et al. 2011; Farrer et al. 2013; Jenkinson et 290 

al. 2016), the development of novel diagnostics (Dillon et al. 2017), the genetic repertoire 291 

that underpins the virulence of these pathogens (Rosenblum et al. 2012; Farrer et al. 2017) 292 

and the biogeographic distributions of Bd diversity worldwide (Farrer et al. 2011; Jenkinson 293 

et al. 2016). 294 

Clearly some uncontrolled biases and unanswered questions in these studies need attention. 295 

First, the majority of Bd isolates belong to the BdGPL lineage. This could be because this 296 

lineage is more widespread (and therefore more readily recovered) than other lineages (James 297 

et al. 2015), or it could be that the intensity of BdGPL infections and/or the rate of zoospore 298 

production is higher than for other lineages, which would also equate to a higher rate of 299 

isolation. To achieve a true and unbiased understanding of the distribution of these lineages, a 300 

lineage-specific diagnostic will need to be developed and deployed. Second, if lineage-301 

specific differences in the probability of successful isolation exist, then mixed infections 302 

where these lineages co-occur may not be detected. This can be controlled for by isolating 303 

and genotyping many isolates from a single host and population, although this may not fully 304 

account for this bias. A related bias is that not all infectious species of chytrid will respond 305 

equally to culturing attempts. For instance, despite known attempts to isolate Bsal from 306 

across its endemic southeast Asian range using the protocol, to date no successful isolations 307 

of Bsal have been recorded. This is likely due to a combination of the low prevalence and 308 

burden of infection in salamanders and newts combined with the low initial growth-rate of 309 

Bsal (Martel et al. 2013; Laking et al. 2017). With the RML protocol, however, workers have 310 

been able to isolate non-Bd species of chytrid (e.g., Kappamyces spp. and Rhizophydium sp. 311 

Table 1). This diversity likely represents only a fraction of the diversity of amphibian-312 

associated chytrids that occur, and non-biased estimators of this diversity by, for instance, 313 

profiling the nuclear ribosomal RNA cistron (Schoch et al. 2012), are sorely needed. 314 
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In this age of the global amphibian crisis, research on the effects of chytrid infections is 315 

transitioning to attempts to mitigate their impacts (Schmeller et al. 2014; Garner et al. 2016; 316 

Canessa et al. 2018). Both of these research streams benefit from the availability of chytrid 317 

isolates, but the ethics behind these research programs can be improved. To that end, our data 318 

on isolation success suggest that tadpoles are a better target for isolation than metamorphosed 319 

animals. This is to some degree unfortunate, because isolation from tadpoles requires killing. 320 

However we have outlined one refinement where captive reared tadpoles can be used to ‘bait’ 321 

infections from wild-caught amphibians to isolate chytrids without killing adult amphibians. 322 

Here, it is important to recognise that amphibians which have been co-housed in collections 323 

should not be returned to the wild due to the danger of cross-transmission of pathogens 324 

during husbandry (Walker et al. 2008). If it is necessary to isolate chytrids directly from wild 325 

tadpoles without using bait animals, we suggest that researchers focus on more fecund 326 

species with long larval periods as the focal species in aquatic amphibian communities. 327 

Removal of small numbers of tadpoles when clutch sizes are in the hundreds or thousands 328 

means that removals will have an insignificant ecological impact; for this reason sacrificing 329 

tadpoles is preferable to killing adult animals.  330 

The extent to which toe-clipping effects the fitness of amphibians has been much debated 331 

(e.g. May (2004) but see Funk et al. (2005)). Toe-clipping has been shown to decrease 332 

amphibian survival, but this effect, when present, is linearly related to the number of toes 333 

removed (McCarthy et al. 2004; Ulmar Grafe et al. 2011). For the single toe-clip that the 334 

RML protocol requires, reduction in survival appears to be negligible (Ott et al. 1999; Funk et 335 

al. 2005), and toe clipping is certainly preferred to killing the animal. Attention should be 336 

paid to this issue, however, and, where appropriate, survival estimates should be undertaken 337 

to determine the health implications of this procedure. Also, antiseptic and analgesic 338 

protocols can be considered to ensure that wounds where tissue samples are excised are at 339 

low risk of secondary infection (Chevalier et al. 2017). 340 

In summary, modification of Longcore’s original Bd-isolation protocol (Longcore et al. 341 

1999) has enabled a broad community of scientists to engage with research on emerging 342 

chytrid pathogens of amphibians. This research has had an impact worldwide, and is 343 

contributing to the ongoing dialogue that is occurring between scientists, conservationists and 344 

policy-makers about how we might mitigate against these infections now and into the future. 345 
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TABLE 1. Non-lethal isolation of chytrids from adult and juvenile amphibians 588 
 589 
Continent Country  n Species1 n Sampled2 n Chytrid3 Chytrid species 
Africa Madagascar 2 145 2 Kappamyces sp. 

 
 Cameroon 1 30 1 B. dendrobatidis 

 Ethiopia 1 5 1 B. dendrobatidis 

 South 
Africa 

6 179 45 B. dendrobatidis 

Asia South 
Korea 

2 28 10 B. dendrobatidis 

 Taiwan 3 103 13 B. dendrobatidis/ 
Kappamyces sp. 

Australia Australia 1 2 2 B. dendrobatidis 
 

Europe Belgium 1 11 2 B. dendrobatidis 

 France 2 261 70 B. dendrobatidis 
 

 Hungary 1 15 3 B. dendrobatidis 
 

 Italy 1 14 4 B. dendrobatidis 
 

 Portugal 1 5 1  Rhizophydium  
sp. 

 Spain 4 198 37 B. dendrobatidis 
 

 Sweden 1 23 5 B. dendrobatidis 
 

 Switzerland 1 30 1 B. dendrobatidis 
 

 UK 4 50 8 B. dendrobatidis 
 

South 
America 

Chile 1 10 1 B. dendrobatidis 
 

 French 
Guiana 

2 66 2 B. dendrobatidis 
 

Trade n/a 4 15 5 B. dendrobatidis 

 590 
1Number of amphibian species sampled, 2total numbers of amphibians sampled, 3number of 591 
chytrids isolated 592 
 593 
  594 
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TABLE 2. Isolation of Batrachochytrium dendrobatidis from mouthparts of larval 595 
amphibians 596 
 597 
Continent Country  Host 

species 
Larvae 
sampled 

Bd isolates 

Africa Ethiopia 1 36 1 

 Uganda 1 20 1 

 South 
Africa 

2 88 11 

Asia Taiwan 1 15 1 

Australia Australia 8 54 33 
Europe Belgium 2 2 2 

 Netherlands 1 1 1 

 France 1 138 38 
 Germany 1 10 4 
 Spain 3 19 7 
 Switzerland 1 42 15 
South 
America 

Chile 2 28 4 

 Brazil 17 353 217 
 598 
 599 
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Figure	1.	Worldwide	distribution	of	sites	where	the	RML	Longcore protocol	has	been	used	to	isolate	
chytrids.	Numbers	denote	the	quantity	of	amphibian	species	investigated.	A	browseable version	of	this	
Epicollect 5	map	can	be	accessed	at	https://five.epicollect.net/project/bd-global-isolation-protocol
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