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Abstract

Whole genome shotgun based next generation transcriptomics and metagenomics 1

studies often generate 100 to 1000 gigabytes (GB) sequence data derived from tens of 2

thousands of different genes or microbial species. De novo assembling these data 3

requires an ideal solution that both scales with data size and optimizes for individual 4

gene or genomes. Here we developed a Apache Spark-based scalable sequence clustering 5

application, SparkReadClust (SpaRC), that partitions the reads based on their molecule 6

of origin to enable downstream assembly optimization. SpaRC produces high clustering 7

performance on transcriptomics and metagenomics test datasets from both short read 8

and long read sequencing technologies. It achieved a near linear scalability with respect 9

to input data size and number of compute nodes. SpaRC can run on different cloud 10

computing environments without modifications while delivering similar performance. In 11

summary, our results suggest SpaRC provides a scalable solution for clustering billions 12

of reads from the next-generation sequencing experiments, and Apache Spark represents 13

a cost-effective solution with rapid development/deployment cycles for similar large 14

scale sequence data analysis problems. The software is available under the Apache 2.0 15

license at https://bitbucket.org/LizhenShi/sparc. 16

Introduction 17

Whole genome shotgun sequencing (WGS) using next-generation sequencing 18

technologies followed by de novo assembly is a powerful tool for de novo sequencing 19

large eukaryote transcriptomes (reviewed in [22]) and complex microbial community 20

metagenomes (reviewed in [37]) without reference genomes. Because of the stochastic 21

sampling nature associated with WGS and the presence of sequencing errors, it is 22

necessary for the reads to cover a single gene or genome many times (coverage), 23

typically 30x-50x, to ensure high quality de novo assembly [2]. Unlike in single genome 24

sequencing projects where the majority of the genomic regions are equally represented, 25

in transcriptome and metagenome sequencing projects, different species of transcripts or 26

genomes may have very unequal representation, up to several orders of magnitude in 27

abundance difference[16, 23]. To obtain a good assembly covering low abundant species 28
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one would sequence the population at much higher depth than single genome projects. 29

As in practice it is difficult to precisely estimate the required sequencing depth without 30

knowing the community structure, sequencing large transcriptomes and complex 31

metagenomes often generates as much data as the budget allows, producing 100-1000 32

GB of sequence data or more [15] [33]. The largest project so far is the Tara Ocean 33

Metagenomics project where 7.2 Tera bases (Tb) was generated [35]. 34

Since current NGS technologies are not able to read the entire sequence of a genome 35

at once, genomes are broken into small DNA/RNA fragments followed by massive 36

parallel high-throughput sequencing. Different technologies produce sequence reads that 37

vary in length. For example, Illumina technology [17] typically generates about 150 base 38

pair(bp) per read, comparing to 100 bp to 15,000 bp by Pacific Biosciences [28]. 39

Assembling these reads to obtain genomes is challenging due to it is both a compute 40

and memory-intensive problem, and this challenge grows exponentially with the size of 41

dataset. Further, the de novo assembly problem is compounded by the quality of 42

sequencing data and the presence of certain genetic complexity (repeat elements, species 43

homology, etc). For a comprehensive review of de novo assembly algorithms please refer 44

to [25]. Assembling a large dataset as a whole also requires efficient computing, and 45

these assemblers use either multiple processes on a shared memory architecture 46

(MetaSPAdes[26], MEGAHIT[19], etc) or MPI to distributed on a cluster[11]. The 47

shared memory approach is very hard to scale up to exponentially increased NGS data 48

size. In addition, these assemblers try to tackle the problem as a whole and is not able 49

to produce optimized results as different transcripts or genomes may need 50

individualized optimal parameter settings. 51

Our work was initially inspired by a “divide-and-conquer” approach presented by 52

DIME [13]. DIME first clusters reads based on their overlap, then assembles them 53

separately. It was implemented using Apache Hadoop [4] platform and in theory should 54

scale to large data sets. In practice, however, Hadoop-based implementation has very 55

poor computing efficiency, making it expensive to run on commercial cloud providers. 56

Further, Hadoop-based solutions often produce much larger intermediate files than the 57

input files during the assembly, making them harder to scale to very large datasets. 58

Recently Apache Spark [5] has overtaken Hadoop in the big data ecosystem due to 59

its fast in-memory computation. Spark has been successfully applied to several 60

genomics problems such as [39, 18, 7, 24, 8]. In this paper we developed a new 61

algorithm based on Spark’s GraphX library, called Spark Read Clustering (SpaRC), for 62

parallel construction and subsequent partition of NGS sequence reads. For scalability 63

and computing efficiency SpaRC implemented several heuristics: 1) the pairwise 64

similarity between sequences (edge weight) is estimated by the number of shared k-mers; 65

2) To control the explosion of edges as data complexity grows, SpaRC sets a max 66

number of edges a vertex can have for each shared k-mer; 3) it adopts an overlapping 67

community detection algorithm - Label Propagation Algorithm (LPA) [30] - to partition 68

the read graph, therefore avoiding the formation of very large partitions due to 69

repetitive or other shared genetic elements between species. We report clustering 70

accuracy and computing performance on both transcriptomic and metagenomic datasets 71

from both short read (Illumina) and long read (PacBio) sequencing platforms. 72

Methods 73

Algorithm Overview 74

SpaRC is a generic sequence read clustering algorithm as it is designed for clustering 75

both short and long reads. It first computes the number of shared k-mers between a pair 76

of reads to approximate their overlap, and then builds an undirected read graph followed 77

2/13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246496doi: bioRxiv preprint 

https://doi.org/10.1101/246496
http://creativecommons.org/licenses/by-nc-nd/4.0/


by graph partitioning to achieve read clustering. Specifically, it contains four modules: 78

K-mer Mapping Reads, Graph Construction and Edge Reduction, Graph Partition, and 79

Sequence Retrieval. We describe each of these modules in details as the following. 80

K-mer Mapping Reads (KMR) 81

Given a set of sequence reads, KMR splits them into k-mers according to a predefined 82

k-mer length and only keeps distinct k-mers for each read to avoid low-complexity 83

sequences. KMR keeps track of each k-mer and the reads containing it. The length of 84

k-mer (k) is a parameter to control the sensitivity and specificity of read overlap 85

detection. Shorter k-mers result in more sensitivity but less specificity and vice versa. 86

The ideal k-mer size may depend on sequencing platform, read depth, and sequence 87

complexity. 88

Generally k-mers appear in only a single read are derived from either sequencing 89

errors or rare molecules, and they take up a large fraction of the total k-mers but are 90

not useful for computing read overlap, therefore they are filtered out. KMR allows users 91

to specify customized filtering criteria (min kmer count and max kmer count) for more 92

stringency. 93

Graph Construction and Edge Reduction (GCER) 94

GCER constructs a read graph where a node is a read and an edge links two nodes if 95

they share k-mers. Some nodes, if derived from repetitive elements, homologous genes 96

among species or contamination, can have extremely high number of edges (degrees). 97

GCER sets the maximum degree of any vertex for each shared k-mer in a graph 98

(max degree) as a parameter to reduce unnecessary computation. 99

After all the vertices and edges are generated, GCER then merges the edges having 100

the same source and destination and filters out those edges with the number of shared 101

k-mers less than the specified parameter min shared kmers. 102

Graph Partition 103

SpaRC provides two algorithms for iterative graph partition, Label Propagation 104

Algorithm (LPA) [30] (by default) and Connected Components (CC) [9] . As repetitive 105

elements and homologous genetic elements shared between different molecules/genomes 106

create “overlap communities”, in practice LPA in general works much better than CC 107

because LPA allows the resolution of overlap communities. For dataset with very low 108

sequencing coverage CC may be useful. 109

Sequence Retrieval (AddSeq) 110

In the above modules reads are represented by numeric IDs to save memory and storage. 111

Once the clusters are formed, AddSeq retrieves the sequences and get them ready for 112

downstream parallel assembly with a choice of an assembler. 113

Algorithms 114

1 For each read r in the read s e t R: 115

2 Generate d i s t i n c t kmer−read t u p l e s 116

3 117

4 Group the t u p l e s by k−mer and generate kmer−reads p a i r s (KR) 118

5 F i l t e r KR by only keeping p a i r s over lapp ing between min kmer count 119

6 and max kmer count 120

7 121
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8 For each l i s t o f reads in KR: 122

9 Generate pa i rw i s e edges ( reads as nodes ) 123

10 124

11 For each node in the edges : 125

12 I f the node degree > max degree , sample max degree edges 126

13 127

14 Count d i s t i n c t edges and generate edge−count p a i r s (EC) 128

15 F i l t e r EC to only keep p a i r s whose count i s more than min shared kmers 129

16 Generate graph g0 with the edges in EC 130

17 131

18 I f c l u s t e r i n g a lgor i thm Ā i s CC: 132

19 Generate the connected components o f g0 . 133

20 For each connected component , add the connected 134

21 component to the s e t o f read c l u s t e r s Ω . 135

22 e l s e i f Ā i s LPA: 136

23 Run l a b e l propagat ion step f o r m i t e r a t i o n s 137

24 Group the nodes ( reads ) by i t s l a b e l s 138

25 For each reads group , add the group to Ω 139

Hardware and Software Environment 140

We implement the above algorithm using the Scala (Scala 2.11.8) functional 141

programming language [36]. Performance was tested on two closely matched cloud 142

environments, 20 nodes Open Telekom Cloud (OTC) and Amazon’s Elastic MapReduce 143

(EMR, emr-5.9.0). For these two clusters, one node is used as the master and all other 144

nodes are used as workers. Configuration details are shown in Table 1. 145

Table 1. Configuration for OTC and AWS EMR

OTC AWS EMR
# of cores/node 8 8
Memory/node 64 61
Storage/node 500GB SSD 160GB SSD
Ethernet 1 Gbps 10 Gbps
Spark version 2.1.1 2.2.0
Hadoop version 2.7.3 2.7.3
Cluster mode Standalone YARN
# of executors/node 3 3
Driver memory 55GB 40GB
Driver cores 5 5
Memory/executor 18GB 16GB
Cores/executor 2 2
HDFS Block Size 32MB 32MB

Datasets 146

We tested the performance of SpaRC on both simulated and real world datasets. A 147

maize sequence dataset we generated previously from [23], and the cow rumen 148

metagenome dataset [14], from which we generated subsets of 1 to 100 (GB) in fastq, for 149

testing scalability. A mock dataset containing 26 genomes is used to verify accuracy. 150

Three long read transcriptome datasets were provided by PacBio. The datasets are 151

described in Table 2. 152
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Table 2. Metrics of test datasets

Dataset # Species Read Length (bp) Size(GB)
PacBio1 (Human Alzheimer
brain transcriptome)

High 300 - 30816 3.8

PacBio2 (Human UHRR +
synthetic RNA, 2Cell)

High 62 - 14621 1

PacBio3 (Human UHRR
+ synthetic RNA, 3Cell)

High 54 - 14833 1.8

Maize transcriptome High 151X2 4
Mock metagenome Low (26) (90-150)x2 15
Cow Rumen metagenome Medium 100x2 100

Results 153

SpaRC clustering accuracy 154

In order to measure the clustering performance of SpaRC, we used two sets of real world 155

data sets with “known answers” and ran SpaRC to obtain clusters. 156

The first dataset is derived from human Alzheimer whole brain transcriptome 157

sequenced by PacBio consisting of 1,107,889 full-length transcript sequences. The 158

transcript sequences were first clustered together based on an isoform-level clustering 159

algorithm [12], then the consensus sequence from each cluster were mapped back to the 160

human genome to identify which loci it came from. Reads coming from clusters where 161

the mapped genomic location overlap by at least 1 bp are considered to be from the 162

same loci. This is the theoretical limit for overlap-based clustering algorithms. The 163

second data set is two million Illumina short metagenome reads (150bp) sampled from a 164

mock microbial community consisting of 26 genomes described previously [34]. Clusters 165

are defined similarly as above for the PacBio transcriptome data set. 166

By comparing the SpaRC clusters to “known answers” in the above two datasets, we 167

measured SpaRC’s performance by cluster purity, and cluster completeness. Here 168

cluster purity is defined as the percentage of reads belonging to the dominant known 169

cluster for each SpaRC cluster, and completeness is defined as the maximum percentage 170

of reads from a known cluster could be captured by a SpaRC cluster. It is worth noting 171

that cluster completeness will be an underestimation of the true cluster completeness as 172

the “known answers” are overestimation as described above. As the sensitivity of 173

overlap detection is heavily influenced by the read length, in the Illumina metagenome 174

dataset we joined the reads in a pair that are pair-end sequenced to double the read 175

length for clustering. 176

In both experiments SpaRC clustered the majority of the reads (PacBio: 82.65%, 177

Ilumina: 98.3%), and generated very pure clusters ( Fig 1 A,E). For the impure read 178

clusters in the both datasets, the contamination events seem to be relative low, as their 179

purity increases with cluster size (Fig 1 B,F). 180

Clustering long reads achieved a much higher completeness than short reads, with 181

many more clusters that have completeness ≥ 90% (84.88%, n=9,578, Fig 1 C), 182

comparing to short read clusters (37.19%, n=37,879) , Fig 1 G). For the long read 183

transcriptome dataset, the completeness improves as cluster size is getting bigger, 184

suggesting more copies of a transcript increases the chance of finding overlap. For the 185

short read metagenome dataset, larger clusters tend to have lower completeness. As the 186

copy number of each genome is a constant and larger clusters translate to larger genome 187

regions, they are more prone to be broken into smaller clusters due to loss of some 188

overlaps. 189

We also tested whether or not completeness would get worse if the read pairs in the 190

5/13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246496doi: bioRxiv preprint 

https://doi.org/10.1101/246496
http://creativecommons.org/licenses/by-nc-nd/4.0/


short read dataset were not joined. This indeed is the case, as clusters that have 191

completeness ≥ 90% is decreased to 6.08% and more small clusters are produced 192

(n=42,181). 193

Accuracy comparison with alternative solutions 194

To assess whether using SpaRC improves recovery of the known synthetic spike-in 195

transcripts in the PacBio human data, clustering results from SpaRC were compared 196

with the minimap-based [20] clustering results and run through the PacBio Iso-Seq 197

clustering pipeline [27]. The results (Table 3) from SpaRC show comparable results 198

with slightly improved recovery of the synthetic spike-in transcripts (more true 199

positives) and slightly reduced artifacts (fewer false positives). The difference seems to 200

be more pronounced when sequence depth is lower (PacBio2). 201

Table 3. Comparison of recovered synthetic SIRV transcripts in the PacBio
human transcriptome data.

Dataset
SpaRC Minimap
TP FP TP FP

PacBio2 (375k reads) 57 13 54 17
PacBio3 (623k reads) 61 11 61 14

Data Complexity has a major effect on SpaRC execution time 202

As introduced above, SpaRC consists of 4 steps: KMR, GCER, Graph Partition, and 203

AddSeq. To measure the computing efficiency of each step on data with different 204

complexity (number of species, see Table 2), we run SpaRC against Human Alzheimer 205

transcriptome, Maize transcriptome, and Cow Rumen metagenome with the same data 206

size (about 4GB) on OTC. 207

We found different datasets give rise to very different execution times (Fig 2). First 208

of all, complex metagenome dataset has many more unique kmers, which requires longer 209

KMR running time. Same sized transcriptome dataset, Pabio has more k-mers than 210

Illumina, presumably due to higher error rate. Second, reads from complex metagenome 211

dataset typically have fewer edges than transcriptome because many species do not have 212

sufficient sequencing coverage. Longer reads tend to have more edges because they have 213

more k-mers (Table 4). Finally, even given comparable number of total edges (Table 4), 214

LPA step takes significantly longer execution time for long read transcriptome dataset 215

than the short read transcriptome dataset. This is because each long read dataset has 216

more edges per vertex than short read, and GraphX’s LPA implementation uses 217

vertex-cut for graph partition [38], resulting in more copies of vertices, which in turn 218

translates into higher time cost in each LPA iteration. 219

Table 4. Metrics of different datasets

Dataset # of k-mers # of edges # of nodes Avg degrees per node
PacBio1 179,039,835 263,116,527 1,027,204 512
Maize 96,643,966 298,631,852 11,465,314 52
Cow Rumen 46,027,775 41,155,061 4,001,389 20

Among the steps in the workflow, AddSeq is the simplest step and takes very little 220

time (no more than 1 minute) for all datasets. 221
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A B

C D

E F

G H

Figure 1. SpaRC’s clustering performance on long and short reads. A-D) Pacbio transcriptome and E-H) Illumina
metagenome.
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Figure 2. Performance difference between datasets

Degree of Parallelism 222

on SpaRC’s computing performance 223

It has been reported parallelism level has a major effect on the performance of the 224

Spark applications [1]. In earlier versions of SpaRC based on Spark version 1.6, we also 225

observed smaller parallelism level led to poor performance due to some jobs take too 226

long to finish due to data imbalance (data not shown). We therefore evaluated the effect 227

of parallelism level on the overall execution time of the current SpaRC software. 228

Because the size of each data partition is also a function of input data size, we run 229

multiple SpaRC experiments over 20GB and 50GB Cow Rumen dataset on OTC, each 230

with a Spark default parallelism (spark.default.parallelism) value ranging from 50 to 231

20,000. Once set, Spark automatically sets the number of partitions of an input file 232

according to its size for distributed shuffles. 233

As shown in Fig 3, we found the performance of SpaRC does not vary much over 234

several orders of magnitude in parallelism, for both of the two datasets tested. As long 235

as the parallelism is not extreme (less than 100 or over 1 million), SpaRC’s performance 236

is quite consistent. When there are too few data partitions, performance suffers because 237

of cluster resource under utilization. In contrast, when there are too many data 238

partitions, there might be excessive overhead in managing small tasks. It is not 239

necessary, at least in this case, to adjust the default parallelisms. 240

It is worth noting that Spark relies on Hadoop file system (HDFS) which has a 241

default partition size 64MB. Our previous work showed that bioinformatics applications 242

can benefit from setting it to 32MB [32], therefore in SpaRC we recommend setting 243

HDFS default partition size to 32MB. 244

SpaRC scales near linearly with input data and compute nodes 245

We designed two different experiments to measure the scalability of the SpaRC. The 246

first one tests its data scalability as more input are added on a fixed-sized cluster, and 247

the second measures its horizontal scalability as more nodes are added to the cluster to 248

compute the same input. For data scalability test we use 20GB, 40GB, 60GB, 80GB, 249

and 100GB fastq datasets from Cow Rumen metagenome. The sequence retrieval step 250

(AddSeq) is not shown due to its negligible processing time (as mentioned in the above). 251

We report in Fig 4 the result of the first experiment varying input data size and 252

maintaining the number of nodes in the OTC cluster to a fixed value (20). The KMR 253
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Figure 3. The effect of parallelism level on the total execution time

and GCER Step scale up linearly as expected, while LPA step scales up near linearly, 254

consistent with previously reported [30]. 255
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Figure 4. Scalability with different input size

We next tested SpaRC performances by keeping the input size fixed (10GB, 50GB) 256

but varying number of nodes. As shown in Fig 5, the compute time required for each 257

stage and the total time decreases as the number of nodes increases. However, there 258

appears to be a “sweet spot” for each specific input size (10 nodes for 10GB, 50 for 259

50GB, respectively). Before the number of nodes reaches this spot, every doubling in 260

number of nodes translates into approximately halving the compute time. However, the 261

slope of time saving is decreasing when the node number increases beyond the spot. 262
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This phenomenon can be explained by the Amdahl’s law [3] in parallel computing. 263

Overall, we achieve the near-linear scalability as other spark-based tools [8, 31], 264

suggesting SpaRC scales well to the number of nodes. 265
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Conclusion and Discussion 266

Metagenome and transcriptome assembly is challenging due to both its scale and 267

complexity. Here we developed a scalable algorithm, SpaRC, for large-scale metagenome 268

and transcriptome reads clustering to enable downstream assembly optimization 269

tailored towards individual gene/genome. SpaRC takes advantage of Apache Spark for 270

scalability, efficiency, fast development and flexible running environments. We evaluated 271

SpaRC on both transcriptome and metagenome datasets and demonstrated that SpaRC 272

produces accurate results comparable to state-of-the-art clustering algorithms. 273

Since Apache Spark is still a very young project undergoing heavy development, 274

some of its components have not been stable and/or optimized. For example, currently 275

LPA is implemented in GraphX using the pregel interface [21] instead of in GraphFrame 276

[10], which did not take the full advantage of the scalability and efficiency of DataFrame 277

API [6]. Current LPA function in GraphFrame is a simple wrapper of the method in 278

GraphX, and it is neither space nor time efficient. Since it cumulatively caches the 279

results of each iteration for job recovery, disk usage often explodes as the number of 280

iterations increases. Furthermore, if one executor dies, all of its cached data is lost and 281

the whole process has to start from scratch. Creating a checkpoint for each iteration 282

like the GraphFrame version of connect component should alleviate this problem. 283

We observed the clusters produced tend to be too small when the read length is 284

short (e.g., single-end metagenomic dataset on Illumina platform). For pair-end 285

sequencing datasets one can merge (if they overlap) or concatenate the two ends to 286

increase the cluster size. Decreasing k-mer size, or requiring less shared k-mers should 287

also help increase cluster size. However, this may lead to decrease of purity. One 288

potential solution is to run an additional binning or scaffolding step (using pair-end or 289

long reads if available) after assembling each cluster of reads into contigs, a common 290

step in metagenome assemblies. 291

Based on our experience running SpaRC on OTC and AWS cloud computing 292

environments give similar performance. We also attempted to run SpaRC on HPC 293

environments, including NERSC’s Cori system 294
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(http://www.nersc.gov/users/computational-systems/cori/) and Pittsburgh 295

Supercomputing Center’s Bridge system (https://www.psc.edu/bridges). On these 296

systems, the Hadoop and Spark frameworks are provisioned in an on-demand fashion to 297

allow Spark jobs. Although SpaRC runs well on small datasets on both systems, scaling 298

up to larger dataset (¿1Gb) failed because of various job scheduling and network 299

problems. More research is needed to get SpaRC run in similar HPC environments. 300
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[1] Anas Abu-Doleh and Ümit V Çatalyürek. “Spaler: Spark and GraphX based de 317

novo genome assembler”. In: Big Data (Big Data), 2015 IEEE International 318

Conference on. IEEE. 2015, pp. 1013–1018. 319

[2] Subramanian S Ajay et al. “Accurate and comprehensive sequencing of personal 320

genomes”. In: Genome research 21.9 (2011), pp. 1498–1505. 321

[3] Amdahl’s law. url: https://en.wikipedia.org/wiki/Amdahl%27s_law. 322

[4] Apache Hadoop. url: http://hadoop.apache.org/. 323

[5] Apache Spark. url: http://spark.apache.org/. 324

[6] Michael Armbrust et al. “Spark sql: Relational data processing in spark”. In: 325

Proceedings of the 2015 ACM SIGMOD International Conference on Management 326

of Data. ACM. 2015, pp. 1383–1394. 327

[7] Amir Bahmani et al. “SparkScore: leveraging apache spark for distributed 328

genomic inference”. In: Parallel and Distributed Processing Symposium 329

Workshops, 2016 IEEE International. IEEE. 2016, pp. 435–442. 330

[8] Marcelo Rodrigo de Castro et al. “SparkBLAST: scalable BLAST processing 331

using in-memory operations”. In: BMC bioinformatics 18.1 (2017), p. 318. 332

[9] Connected component (graph theory). url: 333

https://en.wikipedia.org/wiki/Connected_component_(graph_theory). 334

11/13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246496doi: bioRxiv preprint 

https://en.wikipedia.org/wiki/Amdahl%27s_law
http://hadoop.apache.org/
http://spark.apache.org/
https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
https://doi.org/10.1101/246496
http://creativecommons.org/licenses/by-nc-nd/4.0/


[10] Ankur Dave et al. “Graphframes: an integrated api for mixing graph and 335

relational queries”. In: Proceedings of the Fourth International Workshop on 336

Graph Data Management Experiences and Systems. ACM. 2016, p. 2. 337

[11] Evangelos Georganas et al. “HipMer: an extreme-scale de novo genome 338

assembler”. In: High Performance Computing, Networking, Storage and Analysis, 339

2015 SC-International Conference for. IEEE. 2015, pp. 1–11. 340

[12] Sean P Gordon et al. “Widespread polycistronic transcripts in fungi revealed by 341

single-molecule mRNA sequencing”. In: PloS one 10.7 (2015), e0132628. 342

[13] Xuan Guo et al. “Dime: A novel framework for de novo metagenomic sequence 343

assembly”. In: Journal of Computational Biology 22.2 (2015), pp. 159–177. 344

[14] Matthias Hess et al. “Metagenomic discovery of biomass-degrading genes and 345

genomes from cow rumen”. In: Science 331.6016 (2011), pp. 463–467. 346

[15] Adina Chuang Howe et al. “Tackling soil diversity with the assembly of large, 347

complex metagenomes”. In: Proceedings of the National Academy of Sciences 348

111.13 (2014), pp. 4904–4909. 349

[16] Jennifer B Hughes et al. “Counting the uncountable: statistical approaches to 350

estimating microbial diversity”. In: Applied and environmental microbiology 67.10 351

(2001), pp. 4399–4406. 352

[17] Illumina. url: https://www.illumina.com/. 353

[18] Max Klein et al. “Biospark: scalable analysis of large numerical datasets from 354

biological simulations and experiments using Hadoop and Spark”. In: 355

Bioinformatics 33.2 (2017), pp. 303–305. 356

[19] Dinghua Li et al. “MEGAHIT: an ultra-fast single-node solution for large and 357

complex metagenomics assembly via succinct de Bruijn graph”. In: Bioinformatics 358

31.10 (2015), pp. 1674–1676. 359

[20] Heng Li. “Minimap and miniasm: fast mapping and de novo assembly for noisy 360

long sequences”. In: Bioinformatics 32.14 (2016), pp. 2103–2110. 361

[21] Grzegorz Malewicz et al. “Pregel: a system for large-scale graph processing”. In: 362

Proceedings of the 2010 ACM SIGMOD International Conference on Management 363

of data. ACM. 2010, pp. 135–146. 364

[22] Jeffrey A Martin and Zhong Wang. “Next-generation transcriptome assembly”. In: 365

Nature Reviews Genetics 12.10 (2011), pp. 671–682. 366

[23] Jeffrey A Martin et al. “A near complete snapshot of the Zea mays seedling 367

transcriptome revealed from ultra-deep sequencing”. In: Scientific reports 4 368

(2014). 369

[24] Matt Massie et al. “Adam: Genomics formats and processing patterns for cloud 370

scale computing”. In: EECS Department, University of California, Berkeley, Tech. 371

Rep. UCB/EECS-2013-207 (2013). 372

[25] Jason R Miller, Sergey Koren, and Granger Sutton. “Assembly algorithms for 373

next-generation sequencing data”. In: Genomics 95.6 (2010), pp. 315–327. 374

[26] Sergey Nurk et al. “metaSPAdes: a new versatile metagenomic assembler”. In: 375

Genome Research 27.5 (2017), pp. 824–834. 376

[27] PacBio Iso-Seq clustering pipeline. url: 377

https://github.com/PacificBiosciences/IsoSeq_SA3nUP. 378

[28] Pacific Biosciences. url: http://www.pacb.com/. 379

12/13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246496doi: bioRxiv preprint 

https://www.illumina.com/
https://github.com/PacificBiosciences/IsoSeq_SA3nUP
http://www.pacb.com/
https://doi.org/10.1101/246496
http://creativecommons.org/licenses/by-nc-nd/4.0/


[29] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. “An Eulerian path 380

approach to DNA fragment assembly”. In: Proceedings of the National Academy 381

of Sciences 98.17 (2001), pp. 9748–9753. 382
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