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Abstract

High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic
fields (7 Tesla and above) enables researchers to study how anatomical and functional
properties change within the cortical ribbon, along surfaces and across cortical depths.
These studies require an accurate delineation of the gray matter ribbon, which often
suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual
segmentation errors are commonly corrected by browsing the data slice-by-slice and
manually changing labels. This task becomes increasingly laborious and prone to error
at higher resolutions since both work and error scale with the number of voxels. Here
we show that many mislabeled, non-brain voxels can be corrected more efficiently and
semi-automatically by representing three-dimensional anatomical images using
two-dimensional histograms. We propose both a uni-modal (based on first spatial
derivative) and multi-modal (based on compositional data analysis) approach to this
representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We
present an openly accessible Python implementation of these approaches and
demonstrate that editing cortical segmentations using two-dimensional histogram
representations as an additional post-processing step aids existing algorithms and yields
improved gray matter borders. By making our data and corresponding expert (ground
truth) segmentations openly available, we facilitate future efforts to develop and test
segmentation algorithms on this challenging type of data.

Introduction 1

Magnetic resonance imaging (MRI) has become one of the most important tools to 2

study human brain function and structure in vivo. Moving from high (3 Tesla [T]) to 3

ultra high (7 and 9.4 T) magnetic fields (UHF), together with improvements in 4

acquisition methods, leads to increases in signal and contrast to noise (SNR and CNR, 5

respectively) [1–3]. The increase in SNR can be leveraged to increase the voxels’ 6

resolution of both functional and structural images to sub-millimeter scales. Such 7

sub-millimeter spatial resolutions allow for in vivo studies that probe cortical properties 8

at the mesoscale [4–8]. These studies include (i) cortical-depth dependent analyses of 9
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function [9–14] and structure [5, 8, 15], (ii) the mapping of cortical columnar 10

structures [16–21] as well as (iii) sub-millimeter cortical topography [18,22–24]. 11

Such studies crucially depend on accurate and precise delineations of the gray matter 12

(GM) ribbon both at the inner (white matter; WM) and outer (cerebrospinal; CSF) 13

border. Since the aim of these studies is to investigate how the (functional) MRI 14

(f/MRI) signal varies as a function of small position changes in GM, systematic GM 15

segmentation errors would invalidate the conclusions drawn from these studies. 16

Consider, as an example, an fMRI study conducted with a voxel resolution of 0.8 mm 17

isotropic. Assume an average thickness of human cortex of 2.4 mm and a true signal 18

change at the upper cortical depth level. In this study, under optimal conditions the 19

functional resolution would allow a straight piece of cortical ribbon to be divided in 20

three relative cortical depths, each of them one voxel thick. Falsely labeling an 21

additional fourth voxel as GM would make the difference between reporting an fMRI 22

signal change at most superficial (false voxel excluded) or mid-superficial (false voxel 23

included) cortical depth level. This example stresses the importance of accurate and 24

precise GM segmentations. 25

Obtaining accurate and precise definitions of the GM ribbon, however, is currently a 26

difficult and time-consuming task for sub-millimeter UHF data. The increases in SNR, 27

CNR and resolution attainable in UHF anatomical data as well as analysis [25] and 28

reconstruction [26] strategies specific to UHF reveal several structures outside of the 29

brain that were barely visible on images obtained at conventional field strengths (1.5 30

and 3 T) and lower resolution (> 1 mm isotropic) [27]. Such structures include the dura 31

mater [28], medium-sized blood vessels in the sulci [29] as well as draining sinuses and 32

connective tissue adjacent to GM [30]. To date, many of the existing brain segmentation 33

algorithms have been developed and benchmarked on images collected at 1 mm 34

isotropic resolution or lower and at conventional field strengths [31] (but see [32]). If 35

segmentation algorithms do not model these non-brain structures they might falsely 36

label (part of) these structures as GM. Faced with such segmentation errors, researchers 37

commonly correct the misclassified voxels manually. However, the increase in resolution 38

leads to an exponential increase in the number of voxels, which renders manual 39

correction a laborious task. Furthermore, manual correction is prone to error and may 40

introduce an observer bias, thereby reducing the reproducibility of subsequent 41

analyses [33]. This currently leaves researchers with the dilemma of accepting the likely 42

erroneous outcome of automatic segmentation algorithms or performing a 43

time-consuming and error-prone manual correction. 44

CBS tools [32] directly tackle many of the challenges of UHF high-resolution 45

anatomical data by, for example, including pre-processing steps to estimate dura mater 46

and CSF partial voluming. Consequently, these tools provide an improved initial GM 47

segmentation compared to other solutions [32]. However, we show that in many cases 48

the initial CBS segmentation can be further improved with the approaches proposed 49

here. Furthermore, CBS tools have been optimized for whole-brain data obtained with 50

the MP2RAGE sequence [26]. While the MP2RAGE sequence is commonly used at 51

UHF as a basis for brain tissue class segmentations, we note that many high-resolution 52

studies at UHF also use alternative sequences to define GM [12,25,34,35], some of 53

which offering partial coverage of the brain only [12,35]. In such cases, alternative 54

approaches that do not depend on particular templates, atlases or other forms of prior 55

information are useful and required. 56

Here, we show that non-brain voxels misclassified as GM can largely be corrected 57

using a multi-dimensional transfer function that is specified based on a two-dimensional 58

(2D) histogram representation [36–39] of three-dimensional (3D) MRI brain data. We 59

demonstrate that this transfer function offers an efficient way to single out non-brain 60

tissue voxels. Removing these voxels from GM classifications found by automatic 61
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segmentation pipelines improves GM segmentations. This approach addresses the 62

problems of an entirely manual correction, since it yields a meaningful summary 63

representation of the data that allows to manipulate the data efficiently. As a 64

consequence, it is both more time efficient than manual slice-by-slice correction and it 65

reduces observer bias. 66

This paper is intended as a demonstration that 2D histogram based methods are 67

useful for improving segmentation of MRI images. In particular, we aim to show that 68

for images acquired at sub-millimetre resolution and at very high field strength (7 T 69

and above) 2D histogram based methods offer an efficient way to obtain a more refined 70

brain mask that excludes usually undesired structures like vessels and dura mater. 71

Several alternatives to the methods presented here exist for data visualization, 72

dimensionality reduction or data fusion, such as principal component analysis [40], 73

multidimensional scaling [41] or the t-SNE algorithm [42]. However, a detailed 74

quantification of the merits and disadvantages of these methods is beyond the scope of 75

this manuscript which is intended to introduce a simple and fast solution. Likewise, 76

there are alternative ways of defining clusters in an image to the normalized graph cut 77

algorithm that we have used here [43–46]. While all these methods have their merit, we 78

decided to use normalized-cut multilevel segmentation since it already has been shown 79

to work successfully on the 2D histogram representations of volumetric data [39]. 80

We structured the paper as follows. In Section 1, we introduce the technique of 81

specifying transfer functions based on 2D histogram representations of voxel intensity 82

and gradient magnitude. We offer theoretical considerations for why this technique is 83

suited to remove vessels and dura mater voxels in high-resolution MRI data (< 1 mm 84

isotropic voxel size). In Section 2, we extend the use of histogram-based transfer 85

functions to multi-modal MRI data sets (e.g. T1 weighted [T1w], Proton Density 86

weighted [PDw], T2* weighted [T2*w]) by considering MRI data in the compositional 87

data analysis framework [47]. We show that this compositional framework yields an 88

intuitive and useful summary representation of multi-modal MRI data which aids the 89

creation of transfer functions. In Section 3 we outline required features of the input 90

data and recommended data pre-processing steps. In Section 4 and 5 we validate the 91

suggested methods by evaluating obtained GM segmentation results against expert GM 92

segmentations obtained for nine subjects recorded at 7 T. We demonstrate considerable 93

improvement in segmentation performance metrics for the two methods suggested here. 94

We have implemented the methods described here in a free and open Python software 95

package [48]. The package as well as validation data, corresponding expert 96

segmentations [49], and processing scripts [50] used to validate the proposed methods 97

are all openly available (see Table 1 for links). 98

What? Where?
data https://zenodo.org/record/1206163

scripts https://zenodo.org/record/1219231

software https://zenodo.org/record/999487

Table 1. Availability of validation data and code. Validation data and scripts as well
as segmentation software are all openly accessible by following the corresponding links
for their repositories.
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1 Theory I: Transfer functions and 2D histograms 99

1.1 Multi-dimensional transfer functions 100

In the context of MRI data visualization, a transfer function can be understood as a 101

mapping of voxel data to optical properties such as color and opacity. Effective transfer 102

functions make structures of interest in the data visible. This can, for example, be 103

achieved by assigning low opacity values to voxels that make up irrelevant structures 104

and by highlighting desired structures with high opacity and salient color values. 105

Multi-dimensional transfer functions assign renderable properties based on a 106

combination of values [36–38,51]. This is important in the context of MRI data where 107

features of interest are often difficult to extract based on a single value alone. 108

Considering multiple values, such as the intensity in images acquired using different 109

contrast weighting (e.g. T1w, PDw and T2*w), increases the chances of uniquely 110

isolating a feature and making it visible [51]. 111

In theory, multi-dimensional transfer functions could be used to perform exhaustive 112

tissue-type segmentation of human brain MRI data. In this process, each voxel would 113

be classified as either WM, GM, or CSF by specifying appropriate transfer functions. It 114

has been shown, however, that this approach is less successful than other, bespoke brain 115

segmentation algorithms [52]. Here, we propose that transfer function-based methods 116

still have a role to play in UHF MRI brain segmentation pipelines because they are 117

well-suited for efficient removal of mislabeled non-brain tissue. We motivate this 118

proposition by considering that brain and non-brain voxels become separable in 2D 119

histogram representations. 120

1.2 2D histogram representation 121

2D histogram representations have been shown to greatly facilitate the process of 122

specifying effective, 2D transfer functions [36,38]. 2D histograms are obtained by taking 123

an n-dimensional data set and binning its data points along two dimensions. In 124

principle, a 2D histogram can be obtained from any two sets of values. A 2D histogram, 125

plotting gradient magnitude against image intensity, however, has been shown to be 126

particularly useful to identify tissue boundaries [36,38]. The term gradient magnitude 127

here refers to the magnitude of the vector that represents the spatial intensity gradient 128

at every MRI voxel, where the spatial intensity gradient is equal to the first spatial 129

derivative of the image intensity values. 130

Fig 1 shows how 3D MRI data of a human brain are represented in a 2D histogram 131

(a T1w image was divided by a PDw image [25] and brain extracted; images were 132

acquired with 0.7 mm isotropic resolution; for more details see Section 4). The 133

histogram is obtained by plotting gradient magnitude against image intensity. In this 134

representation, different tissue types occupy different regions. CSF voxels are 135

characterized by very low intensity and low gradient magnitude values and therefore 136

occupy the lower-left space of the histogram. GM and WM voxels have medium to high 137

intensities and very low gradient magnitudes. Therefore, these tissue classes form 138

circular regions at the bottom-center of the histogram. Voxels at the GM-WM interface 139

fall within an arc reaching from medium to high intensities, following a low to medium 140

to low gradient magnitude trajectory. Similarly, voxels at the CSF-GM interface span 141

an arc from low to medium intensities. Finally, blood vessels and dura mater are thin 142

structures characterized by very high gradient magnitudes and medium to high 143

intensities. Therefore, these structures occupy up-center and the up-right parts of the 144

2D histogram. 145

Since different tissue types occupy different regions in the 2D histogram, each tissue 146

type and boundary can, in principle, be isolated using a 2D transfer function based on 147
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Fig 1. 2D histogram representation for MRI image of a human brain. (A)
Intensity and (B) gradient magnitude values of a brain extracted T1w-divided-by-PDw
MRI image are represented in a (C) 2D histogram. Darker regions in the histogram
indicate that many voxels in the MRI image are characterized by this particular
combination of image intensity and gradient magnitude. (D) The 2D histogram displays
a characteristic pattern with tissue types occupying particular areas of the histogram.
Voxels containing CSF, dura mater or blood vessels (black dashed lines and arrows)
cover different regions of the histogram than voxels containing WM and GM (red
dashed lines). As a result, brain tissue becomes separable from non-brain tissue.

image intensity and gradient magnitude. For the purposes of this paper, we focus on the 148

distinction between brain (WM, GM, GM-WM interface) and non-brain (CSF, CSF-GM 149

interface, blood vessels, dura mater) voxels. The intensity-gradient magnitude 150

histogram is particularly suited to distinguish non-brain tissue because voxels 151

containing dura mater and vessels are characterized by high gradient magnitude values. 152

Given the typical voxel sizes of current high resolution studies, gradient magnitude will 153

be high in the entirety of these structures (see Fig 1B for an example) and the 154

combination of high intensity and high gradient magnitude values renders these 155

structures separable from WM and GM voxels. 156

157

1.3 Creating transfer functions 158

The simplest way to create a transfer function is to explore the data by moving widgets 159

with a specified shape over the 2D histogram representation [38]. For example, Fig 2 160
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shows how a circular sector could be moved on top of the 2D histogram to highlight 161

particular regions. In this case, only MRI voxels whose intensity-gradient magnitude 162

combination falls within the highlighted region of the 2D histogram would be selected. 163

Position and size of the circular sector can then be refined until the desired data have 164

been isolated. 165

Fig 2. Creation of 2D transfer functions with pre-defined shapes. (A)
Intensity and (B) gradient magnitude values of of a brain extracted
T1w-divided-by-PDw MRI image are represented in a 2D histogram. By moving
widgets of pre-defined shape, e.g. a circle, over the (C) 2D histogram and (D)
concurrent visualization of selected voxels on a 2D slice of brain, positions of different
tissue types in the 2D histogram can be probed and transfer functions can be created.
In this example, the different probe positions (yellow, orange and red circles) appear to
contain different aspects of GM.

Using such a straightforward process of exploration and refinement [51], however, 166

might yield slightly sub-optimal results. The shape of the widget might not capture the 167

ideal shape given the data or the user might lack the prior knowledge that is required 168

for this task. Alternatively, hierarchical exploration of normalized graph cut decision 169

trees [39] can be used. This graph cut method results in a set of components (i.e. 170

clusters) of the histogram that are mutually exclusive and collectively exhaustive. This 171

allows the user to split and merge clusters in a data-driven and intuitive way that can 172

be aided by the immediate visualization of the resulting segmentation (Fig 3, S1 Video). 173

The method allows for semi-automatic tissue selection, i.e. the shape of the clusters is 174

data-driven but the decision which clusters to join and which to divide is made by the 175

user. 176
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Fig 3. Creation of 2D transfer functions with data-driven shapes. (A) The
user starts with the 2D histogram representation of image intensity and gradient
magnitude (left side) and concurrent visualization of the original brain data (right side).
The user can then interact with and select data in the 2D histogram to specify transfer
functions. In this example, this was done with the help of a normalized graph cut
decision tree. (B) The interaction with the 2D histogram results in data-driven shapes
of selected areas, here shaded in pink, green and blue (left side). Voxels selected by
those areas are highlighted in corresponding colors against the backdrop of the original
brain data (right side). The visualization reveals that the area of the 2D histogram
shaded in blue selects brain voxels, while the areas shaded in green and pink select
CSF* and blood vessel voxels**/dura mater***, respectively.

177

2 Theory II: Multi-modal MRI data analysis 178
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2.1 Compositional analysis for MRI data 179

More than one MRI contrast is often available and a combination of different contrasts 180

can be useful in distinguishing different tissue types by differentially highlighting unique 181

intrinsic properties. Two images with different contrast weighting can be combined 182

using, for example, a ratio image [25, 53, 54]. This approach is beneficial for two reasons: 183

1) it reduces image biases as all acquisitions are affected by the same sensitivity profile 184

of the receive elements in the radio frequency (RF) coil, and 2) if the images carry 185

opposing contrast for the tissues of interest, the ratio increases contrast and benefits the 186

delineation of the structures (tissues) of interest. 187

The ratio image approach, however, is limited to pairs of images. To operate on the
relative information of more than two images, we propose to use the barycentric
coordinate system which was discovered by August Ferdinand Möbius in 1827 [55]. In
the barycentric coordinate system, coordinates of a point represent a simplex whose
center of mass is determined by the weights at its vertices (the term n-simplex in
geometry is the generalized form of the triangle [56]; for example the 0-simplex is a
point, the 1-simplex is a line segment, the 2-simplex is a triangle, the 3-simplex is a
tetrahedron and so on). In other words, points in the barycentric coordinate system
represent compositions of non-negative fractions whose sum of components gives a
constant value. The barycentric coordinates of multiple measurements acquired in each
voxel can be extracted through the following vector decomposition:

~v = [v1, v2, . . . , vD] ∈ RD
>0,

~v =
s ·~b
k

, where ~b ∈ SD, and s ∈ R1
>0. (1)

The vector ~v stands for a voxel with D number of measurements, RD
>0 indicates positive 188

real numbers, k is an arbitrary scalar, s is a scalar representing sum of the vector 189

components and the vector ~b stands for the barycentric coordinates which belong to 190

simplex sample space SD. The barycentric coordinates are acquired by applying closure 191

operation (C) used in compositional data analysis [47] to ~v: 192

~b = C(~v) = k
~v

s
, (2)

This decomposition (Eq. 1) might seem trivial, however the statement highlights the 193

sampling space of the component ~b which is D dimensional simplex SD. When a set of 194

measurements are represented as vectors with positive components summing up to a 195

constant (e.g. percentages), compositional data (CoDa) analysis methods [47,57,58] 196

becomes relevant. The compositional data analysis offers a set of principled operations 197

taking the geometry of the simplex space into account. The general framework for 198

CoDa analysis and its fundamental operations have already been rigorously documented 199

in [47], however, for completeness we provide a step-by-step illustration of how 200

multi-modal MRI data with three image contrasts (here T1w, PDw and T2*w 201

magnitude images) can be processed under the compositional data analysis framework 202

to acquire a useful representation of different tissue types. By only analyzing the 203

barycentric components, the data are being compressed resulting in some information 204

loss. However, this compression is done with the aim of revealing more useful 205

information through the remaining components. 206

Let multi-modal MRI data consisting of T1w, PDw, T2*w measurements be defined 207
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as a matrix M with n rows and 3 columns (in relation to Eq. 1 D = 3): 208

M =


v1,T1w v1,PDw v1,T2∗w
v2,T1w v2,PDw v2,T2∗w

...
...

...
vn,T1w vn,PDw vn,T2∗w

 (3)

where n stands for the total number of voxels and each row vi is the vector of 209

measurements for a specific voxel i. Each column represents an image. 210

The first step in compositional MRI data analysis is to convert the data components 211

from Cartesian coordinates in real space (R3) to barycentric coordinates in simplex 212

space (S3), applying the closure operation (Eq. 2) to every voxel (i.e. to each row of M) 213

for obtaining a new matrix B indicating the barycentric coordinates of every voxel: 214

B = C(M) = k

[
vi,T1w

si
,
vi,PDw

si
,
vi,T2∗w

si

]
for i ∈ [1, 2, . . . , n], (4)

k can be ignored after selecting it as 1. 215

It is important to note that in the case of MRI images the scalar component s by 216

itself does carry information; however, this information relates to the bias field in cases 217

where the bias field is approximately equal across measurement types. Since we are not 218

interested in bias field information, we do no longer use this component. 219

As the next step, the barycentric coordinates of compositions (B) are centered (i.e. 220

normalized) by finding the sample center and perturbing each composition with the 221

inverse of the sample center: 222

B̂ = B⊕ cen(B)−1, (5)

where the symbol ⊕ denotes the perturbation operation defined in multi-dimensional 223

simplex space (SD), which can be considered as an analogue of addition in real space: 224

~x⊕ ~y = C[x1y1, x2y2, ..., xDyD] ∈ SD, (6)

where ~x and ~y indicates two different compositions consisting of D components and 225

cen(B) stands for: 226

cen(B) = C[gT1w,gPDw,gT2∗w] where gm =

(
n∏

i=1

vi,m

)1/n

, (7)

where n is the number of voxels, C is the closure operator (Eq. 2) and gm is the 227

geometric mean of component m (i.e. T1w, PDw, T2*w). 228

After centering, the data are standardized: 229

B̃ = B̂� totvar[B]−1/2, (8)

the symbol � stands for the power operation defined in simplex space, which can be 230

considered as an analogue of multiplication in real space: 231

~x� p = C[xp1, x
p
2, ..., x

p
D] ∈ SD, (9)

where ~x is the barycentric coordinates of a composition with D components and p is a 232

scalar. The total variance in Eq. 8 is computed by: 233

totvar[B] =
1

n

n∑
i=1

d2a(xi, cen(B)), (10)
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where d2a indicates squared Aitchison distance. This is a metric defined in simplex space 234

that is analogous to Euclidean distance in real space: 235

da(~x, ~y) =

√√√√ 1

2D

D∑
j=1

D∑
k=1

(
ln
xj
xk
− ln

yj
yk

)2

, (11)

the barycentric coordinates ~x and ~y indicate two different compositions consisting of D 236

components. For example in the case of compositions consisting of T1w, PDw and 237

T2*w measurements D = 3. 238

After standardization, the barycentric coordinates are transformed from the three 239

dimensional simplex space (S3) to two dimensional real space (R2) with the purpose of 240

conveniently visualizing the compositional distribution in a 2D histogram by using the 241

isometric logratio (ilr) transformation [59]: 242

ilr(B̃) = ln(B̃) ·H, (12)

where ilr transformation is applied to every voxel and H indicates a Helmert 243

sub-matrix [60] of 3 rows and 2 columns: 244

H =


1√
2

1√
6

− 1√
2

1√
6

0 −
√

2
3

 . (13)

We have selected the matrix H because it is the suggested standard choice [61]. 245

Note that the closure operation described in Eq. 2 implies scale invariance. If the 246

receive (and in some cases transmit) field (B1) inhomogeneities for MRI data are similar 247

across modalities and assumed to be having a multiplicative effect on the measured 248

signal, applying closure will mitigate inhomogeneities by canceling out the common 249

multiplicative term (ie. bias field) in each image modality. For instance, assume two 250

voxels contain the same tissue type but have dissimilar intensities due to a 251

multiplicative effect. If before the closure operation voxel 1 has an intensity of 100 in all 252

recorded modalities and voxel 2 has an intensity of 500 in all modalities, then after the 253

closure operation both voxels will have the same compositional description, which would 254

be desired. It should be noted that if B1 inhomogeneities differ significantly across 255

modalities, the closure operation will yield inaccurate compositional descriptions. In 256

this case, we recommend to use bias field correction algorithms before using the 257

compositional data analysis framework. A practical example for this case is that for 258

magnetization-prepared rapid acquisition gradient-echo (MPRAGE) sequences, the 259

transmit field in T1w image is effected by an inversion pulse which is not present in PDw 260

and T2*w images. In such cases, individual image bias field correction is recommended. 261

262

2.2 2D histogram representation and creation of transfer 263

functions 264

Fig 4 shows how three different 3D MRI contrast images of a human brain (T1w, PDw 265

and T2*w brain extracted images; 0.7 mm isotropic resolution; for more details see 266

Section 4) can be represented in a 2D histogram. The 2D histogram is obtained by 267

taking the three MRI contrast images as an input and performing the operations of the 268

CoDa analysis framework described above. In particular, applying the ilr 269

transformation to the barycentric coordinates allows the three images to be represented 270

along two dimensions. Different tissue types have different compositional characteristics 271
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and therefore occupy different regions in the resulting 2D histogram. WM and GM 272

voxels are separated in two distinct clusters which mainly differ along the T1w axis. 273

CSF voxels occupy the lower left corner of the histogram, which represents a 274

combination of low T1w with high PDw and T2*w values. CSF voxels still differ from 275

WM and GM voxels mainly along the T1w axis. In contrast, vessel and dura mater 276

voxels differ from WM, GM and CSF voxels also along the PDw and T2*w axes, which 277

makes these voxels to be spread out in the direction orthogonal to the T1w axis. To see 278

how a combination of two MP2RAGE images (UNI, INV2) and one T2* image 279

estimated from a multi-echo 3D gradient recalled echo (GRE) sequence are represented 280

in a 2D histogram, please see S7 Fig. 281

The dimensionality reduction accomplished by the ilr transformation allows to 282

specify 2D transfer functions even though the input consists of three channels. Fig 5 283

shows how normalized graph cuts can be used on 2D histogram representation of ilr 284

coordinates to create transfer functions. The resulting transfer functions highlight 285

specific clusters that readily separate brain tissue from non-brain tissue. 286

287

3 Input data requirements and preparation 288

3.1 Data preparation 289

In order to obtain optimal results with the gradient-magnitude method, several 290

pre-processing steps should be performed on the data. Ranging from absolutely 291

necessary to desired but not critical, these pre-processing steps include: (i) bias field 292

correction, (ii) brain extraction, (iii) cerebellum removal and (iv) removal of brain stem 293

structures. Successful bias field correction is critical to performance since otherwise 294

intensity values for different tissue types start to mix in 2D histogram space. Brain 295

extraction should be performed to remove irrelevant voxels from the 2D histogram 296

representation. Removal of cerebellar and brain stem structures is recommended since it 297

further improves conformity to ideal 2D histogram shapes (Fig 1D). Bias field correction 298

and brain extraction can be performed using automatic algorithms [62,63]. Removal of 299

cerebellum and sub-cortical structures might require the manual creation of masks. We 300

note, however, that generation of these masks is only desired, not strictly necessary. 301

Furthermore, generation of these masks is often a desirable processing step for many 302

automatic tissue class segmentation algorithm, since it improves their performance. 303

304

3.2 Data requirements 305

Suitability of the intensity-gradient magnitude histogram for separating brain from 306

non-brain tissue will depend on the resolution and CNR of the input data. We expect a 307

lower limit of resolution around 1 mm. At lower resolutions, the intensity-gradient 308

magnitude method will yield unsatisfactory results due to partial voluming between the 309

thin structures we are aiming to correct and surrounding CSF or tissues. We do not 310

expect an upper resolution limit for the input data. Although, initially, values in the 311

gradient magnitude image will no longer be high in all vessel and dura mater voxels, 312

very high-resolution images can still be accommodated by choosing the appropriate level 313

of smoothness on the gradient magnitude image. In S1 Fig, we demonstrate that by 314

setting the appropriate smoothness level of Deriche filter [46], gradient magnitude 315

images for very high resolution data (0.25 mm isotropic) [64,65] can be approximated to 316

those observed for data at lower resolution (0.7 mm isotropic). 317
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Fig 4. 2D histogram representation of three 3D MRI contrast images. (A)
Each voxel is considered as a 3 part composition in 3D real space. The barycentric
coordinates of each composition which reside in 3D simplex space are represented in 2D
real space after using a isometric log-ratio (ilr) transformation. (B) The ilr coordinates
are used to create 2D histograms representing all voxels in the images. The blue lines
are the embedded 3D real space primary axes. It should be noted that in this case the
ilr coordinates are not easily interpretable by themselves but they are useful to visualize
the barycentric coordinates which are interpretable via the embedded real space
primary axes. Darker regions in the histogram indicate that many voxels are
characterized by this particular scale invariant combination of the image contrasts. In
this representation, brain tissue (WM and GM, red dashed lines) becomes separable
from non-brain tissue (black dashed lines and arrows).

We furthermore expect our methods to be impacted by the CNR of the input data. 318

S2 Fig, S3 Fig and S4 Fig show that with added Gaussian noise (i.e. decreasing CNR) 319

the desired circular and arc-like shapes in the 2D histogram (Fig 1C) become less 320
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Fig 5. Creation of transfer functions using ilr coordinates. (A) The user starts
with the 2D histogram representation of ilr coordinates 1 and 2 (left side) and
concurrent visualization of the original brain data (right side). The user can then
interact with and select data as described in Fig. 3. (B) The interaction with the 2D
histogram results in data-driven shapes, here shaded in pink, green and blue (left side).
Voxels selected by those areas are highlighted in corresponding colors against the
backdrop of the original brain data (right side). The visualization reveals that the area
of the 2D histogram shaded in blue selects brain voxels, while the areas shaded in green
and pink select CSF* and blood vessel voxels**/dura mater***, respectively. The arrow
with exclamation mark (!) indicates an area affected by T2*w image artifacts.

apparent. At very high noise levels separating brain from non-brain tissue in the 2D 321

histogram space becomes challenging (see e.g. S2 Fig). While the in-depth evaluation of 322

additional processing tools is beyond the scope of the present article, we note that if the 323

input data are very noisy, smoothing can be applied. In particular, non-linear 324

anisotropic diffusion based smoothing [66,67] results in the data regaining the desired 325

2D histogram shapes (see S5 Fig). 326

The parameter space of the input data is thus constrained by resolution and CNR. 327

Apart from these restrictions, our methods are suitable for any 3D image and work 328

irrespective of the field-of-view of the acquisition (partial coverage is possible) and 329

membership to a particular species (bottle-nose dolphin brain is also possible; for 330
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examples see S6 Fig). 331

332

4 Validation methods 333

4.1 Validation data set overview 334

In order to validate the methods proposed above, we created two validation data sets 335

based on the acquisition of high-resolution 7 T data of nine subjects and corresponding 336

manually-guided expert segmentations of GM. In particular, we created two validation 337

sets based of on two of the most common acquisition sequences. For five subjects, we 338

collected MPRAGE T1w, PDw, and T2* data (we refer to this data set as the 339

MPRAGE data set below). For four different subjects, we collected MP2RAGE data, to 340

obtain unbiased (uni) images, and multi-echo 3D GRE data, to obtain T2* maps (we 341

refer to this data set as the MP2RAGE data set below). Both data sets can be 342

downloaded from [49]. 343

344

4.1.1 Ethics statement 345

The experimental procedures were approved by the ethics committee of the Faculty for 346

Psychology and Neuroscience (MPRAGE data set) or the Medical Ethical Committee at 347

the Faculty of Health, Medicine and Life Sciences (MP2RAGE data set) at Maastricht 348

University, and were performed in accordance with the approved guidelines and the 349

Declaration of Helsinki. Written informed consent was obtained for every participant 350

before conducting the experiments. 351

352

4.1.2 MRI acquisition parameters 353

All images were acquired on a Siemens 7 T whole body scanner (Siemens Medical 354

Solutions, Erlangen, Germany) using a head RF coil (Nova Medical, Wilmington, MA, 355

USA; single transmit, 32 receive channels). In all acquisitions, we used dielectric 356

pads [68]. 357

For n=5 subjects (age range 24-30, 2 females, no medical condition), the MPRAGE 358

data set consisted of: a T1w image using a 3D MPRAGE sequence (repetition time 359

[TR] = 3100 ms; time to inversion [TI] = 1500 ms [adiabatic non-selective inversion 360

pulse]; time echo [TE] = 2.42 ms; flip angle = 5°; generalized auto-calibrating partially 361

parallel acquisitions [GRAPPA] = 3 [69]; field of view [FOV] = 224 × 224 mm2; matrix 362

size = 320 × 320; 256 slices; 0.7 mm isotropic voxels; pixel bandwidth = 182 Hz/pixel; 363

first phase encode direction anterior to posterior; second phase encode direction left to 364

right), a PDw image (0.7 mm isotropic) with the same MPRAGE as for the T1w image 365

but without the inversion pulse (TR = 1380 ms; TE = 2.42 ms; flip angle = 5°; 366

GRAPPA = 3; FOV = 224 × 224 mm; matrix size = 320 × 320; 256 slices; 0.7 mm iso. 367

voxels; pixel bandwidth = 182 Hz/pixel; first phase encode direction anterior to 368

posterior; second phase encode direction left to right), and a T2*w anatomical image 369

using a modified MPRAGE sequence that allows freely setting the TE (TR = 4910 ms; 370

TE = 16 ms; flip angle = 5°; GRAPPA= 3; FOV = 224 × 224 mm; matrix size = 320 371

× 320; 256 slices; 0.7 mm iso. voxels; pixel bandwidth = 473 Hz/pixel; first phase 372

encode direction anterior to posterior; second phase encode direction left to right). 373

For n=4 subjects (age range 24-58, 2 females, no medical condition) the MP2RAGE 374

data set consisted of: 3D MP2RAGE data (TR = 5000 ms; TI1/TI2 = 900/2750 ms; 375
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TE = 2.46 ms; FA1/FA2 = 5°/3°; FOV = 224×224 mm2; matrix size = 320 × 320; 376

slices = 240; 0.7 mm iso voxels) [26]. For the same subjects, T2*w images were obtained 377

with a multi-echo 3D GRE sequence (TR = 33 ms; TE1/TE2/TE3/TE4 = 378

2.53/7.03/12.55/20.35 ms; FA1 = 11°; FOV = 224 x 159 mm2; matrix = 320 x 227; 379

slices = 208; 0.7 mm iso voxels). More details on the MP2RAGE data acquisition and 380

the T2* estimation can be found in [70]. 381

382

4.1.3 Manually-guided expert segmentations 383

For every subject, we established ”ground truth” GM classifications via 384

manually-guided expert segmentations. All segmentations were created manually by the 385

same expert (OFG), using ITK-SNAP [71] and a graphics tablet (Intuos Art; Wacom 386

Co. Ltd; Kazo, Saitama, Japan). Segmentations were only established for cortical GM, 387

since cerebellar and sub-cortical structures were later removed in a pre-processing step. 388

To establish the segmentation, the expert used T1w images for the MPRAGE and uni 389

images for the MP2RAGE data set. To avoid resulting tissue type classification to be 390

ragged, the expert followed a particular processing sequence. The brain was first 391

traversed in a single direction (e.g. sagittally) and the ground truth was established 392

slice-by-slice. Subsequently, the brain was traversed in the two other directions (e.g. 393

axially, then coronally). This sequence was repeated several times across several regions 394

until the GM segmentation of the whole brain was considered of good quality. To 395

further ensure the quality of the resulting segmentation, they were inspected for 396

mistakes by two additional experts (MS and FDM). 397

398

4.2 Software implementation 399

We implemented the creation of transfer function based on 2D histograms in an open 400

source Python package called Segmentator [48], which is built upon several other 401

scientific packages such as Numpy [72], Scipy [73], Matplotlib [74] and Nibabel [75]. 402

Segmentator allows for selection of data points in a 2D histogram (for example gradient 403

magnitude over intensity) and concurrent visualization of selected brain voxels on a 2D 404

slice. Data points can be selected using a circular sector widget with variable reflex 405

angle and radius. Alternatively, data selection can be performed using the normalized 406

graph cut (n-cut) method (i.e. spectral clustering) as described above. The n-cut 407

algorithm from Scikit-image [76] was modified to export an augmented output which 408

provides step-wise access to independent branches of the decision tree and employed in 409

Segmentator (the modification is available at: 410

https://github.com/ofgulban/scikit-image/tree/ncut-rag-options). 411

The package provides several options to calculate the gradient magnitude image. All 412

the 2D histogram analyses described in this paper were based on gradient magnitude 413

images that were computed as the Euclidean norm of the first spatial derivative 414

estimated using a 3× 3× 3 Scharr kernel [77, 78]. Subsequently, transfer functions were 415

specified using the normalized graph cut algorithm and user intervention for the 416

selection of the non-brain tissue transfer functions. Processing data for a single subject 417

took about 10 minutes on average. The Segmentator package is openly and freely 418

accessible at https://github.com/ofgulban/segmentator. All the operations of the CoDa 419

analysis described above have been implemented as a separate open source Python 420

package [79] freely accessible at https://github.com/ofgulban/compoda. This package 421

uses Numpy [72] and Scipy [73]. 422

423
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4.3 Segmentation procedure 424

For both validation data sets, we followed similar procedures, with modifications where 425

necessary to accommodate for differences in the sequences’ output. Our goal was to 426

obtain initial GM segmentations from existing, fully-automated segmentation 427

algorithms and to quantify the improvement in segmentation accuracy that can be 428

obtained when using the methods described here as post-processing steps. To establish 429

the initial GM segmentations we used FSL FAST [80] and the SPM 12 ”unified 430

segmentation” algorithm [63] for the MPRAGE data set and FSL FAST and CBS 431

tools [32] for the MP2RAGE data set. SPM and CBS tools have been developed and 432

benchmarked on MPRAGE and MP2RAGE images respectively. FSL FAST is suited to 433

process either type, so we used it for both data sets. We then quantified the impact of 434

the following additional post-processing steps: (i) using uni-modal input and transfer 435

functions based on 2D histogram representations of intensity and gradient magnitude 436

(see Section 1) or (ii) using multi-modal input and the compositional data analysis 437

framework (see Section 2). These two procedures will be referred to below as the 438

gradient magnitude (GraMag) and the compositional data analysis (CoDa) method, 439

respectively. Both methods resulted in masks that could be used to further refine the 440

initial GM segmentation, e.g. by removing blood vessels and dura mater that were 441

falsely labeled as GM initially. In total, we thus used 2 (MPRAGE and MP2RAGE 442

data set) x 2 (GraMag and CoDa) = 4 analysis procedures. All four procedures are 443

summarized in flow chart diagrams (S8 Fig, S9 Fig, S10 Fig, S11 Fig). Furthermore, in 444

an effort to make our analyses fully reproducible, we made the Python and bash scripts 445

used for pipeline processing openly available at [50]. 446

For the MPRAGE data set, we first computed ratio images (T1w divided by 447

PDw) [25] to reduce inhomogeneities. Ratio images were input to either FSL FAST or 448

SPM 12. FSL FAST was used with default values. The FAST algorithm requires an 449

initial brain extraction procedure that we performed using FSL BET [62]. Additionally, 450

we masked the images to exclude: the corpus callosum, the basal ganglia, the 451

hippocampus, the entire brain stem and the cerebellum. Below we refer to this mask as 452

”NoSub mask”. The NoSub mask was created manually for every subject. In SPM 12 453

we used default settings with one exception. We set the number of Gaussians to be 454

modeled to 3 for GM and 2 for WM (default values are 1 and 1). As part of their 455

standard segmentation routine, both FSL FAST and SPM 12 perform initial 456

inhomogeneity correction. We output and inspected the bias corrected images to ensure 457

that the algorithms had converged on plausible solutions. We specified for the FSL 458

FAST algorithm to output hard segmentation labels. Since SPM 12 outputs 459

probabilities for six tissue classes, we transformed this soft output to hard segmentation 460

labels by assigning each voxel to the tissue class with the highest posterior probability. 461

Since the SPM segmentation algorithm works best with unmasked images, we applied 462

the NoSub mask only to the resulting SPM GM segmentations, not to the input data. 463

The resulting GM segmentations from FSL and SPM were saved for later evaluation. 464

For the GraMag method (S8 Fig) we proceeded with bias-corrected ratio images 465

from either SPM or FSL. Since the GraMag method works best with brain extracted 466

images, we combined SPM’s WM and GM segmentation outcomes to form a brain mask 467

and performed brain extraction of the ratio images from SPM. After brain extraction, 468

we also excluded cerebellum and brain stem tissue using the NoSub mask. FSL’s 469

bias-corrected ratio images images did not require masking as the brain extraction (and 470

cerebellum removal) was already performed before segmentation. We then used the 2D 471

histogram representation of intensity and gradient magnitude together with the 472

hierarchical exploration of normalized graph cut decision trees (as described in Section 473

1) to create transfer functions. Exploration of decision trees was limited to an 8-level 474

hierarchy. The criterion for splitting and merging clusters was subjective: a rater (MS) 475
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aimed to obtain shapes that resembled the ideal template shapes (Fig 1D) as closely as 476

possible, given the 2D histogram representation and concurrent visualization of selected 477

voxels. S1 Video demonstrates that selection of voxels was well constrained by 478

clearly-outlined shapes in the 2D histogram representation and commonly required to 479

move down the decision tree hierarchy by only 2-3 levels. Exploration of the decision 480

tree took about 30 - 60 seconds per subject. Generation of normalized graph cut 481

decision trees, which was done previous to exploration by a rater, took about 5 minutes 482

on a workstation computer (RAM: 32 GB, 12 cores (6 virtual); CPU: 2.146 GHz; 483

operating system: Debian 8). The transfer function resulting from this procedure was 484

used to separate brain from non-brain tissue voxels. Non-brain tissue voxels were 485

removed from GM if they were included in the initial FSL and SPM segmentations. 486

For the CoDa method (S9 Fig) we followed a similar procedure, except that we 487

started from three separate images - the bias-corrected T1w, PDw and T2*w images. 488

Again, these images were brain extracted and cerebellum and brain stem tissue were 489

removed using the NoSub mask. These images were transformed into barycentric 490

coordinates, using the closure operator (as outlined in in Section 2). In this case, there 491

were three barycentric coordinates per voxel constrained to a 2-simplex vector space 492

structure. The triplets of barycentric coordinates were mapped to 2D real-space using 493

the ilr transformation. We could therefore proceed with the 2D histogram 494

representation using the first and the second real-space coordinates of the compositions 495

and the hierarchical exploration of normalized graph cut decision trees in this 2D space 496

to separate brain from non-brain tissue voxels. Non-brain tissue voxels were again 497

removed from GM if included in the initial segmentations (of SPM and FSL). 498

For the MP2RAGE data set, the T1 map, T1w (uni) and second inversion image 499

from the MP2RAGE sequence were input to CBS tools [32]. Only the 500

brain-extracted [62] uni image was input to FSL FAST, since this resulted in higher 501

performance than inputting all three images. Both FSL FAST and CBS tools were run 502

with default settings. Note that the default settings for CBS tools include removal of 503

non brain tissue by estimating dura mater and CSF partial voluming. The resulting 504

GM segmentations from FSL and CBS were saved for later evaluation. For the GraMag 505

method (S10 Fig), we proceeded with the FSL FAST bias-corrected, brain-extracted 506

and NoSub masked uni image and proceeded as for the MPRAGE data set to obtain a 507

secondary brain mask. For the CoDa method (S11 Fig), we used FSL FAST 508

bias-corrected, brain-extracted and NoSub masked uni, second inversion and T2* 509

images but otherwise proceeded as for the MPRAGE data set. 510

We observed susceptibility artifacts in some regions of the brain (mostly inferior 511

frontal lobe) in the T2*w images. These artifacts make the affected regions noisy and 512

reduce the effectiveness of using T2*w images in the CoDa method. To quantify the 513

effect of these artifacts, we created masks for the artifact-affected regions and ran all 514

our analyses both with and without the artifact regions included. Results shown in the 515

paper were obtained with the affected regions excluded. Results with the affected 516

regions included are shown in the Supplementary Materials. 517

518

4.4 Quantification 519

The segmentation procedures resulted in three different GM segmentations for each 520

data set and initial segmentation algorithm (SPM or CBS and FSL FAST): (i) an initial 521

segmentation without any further changes, (ii) after correction using the GraMag 522

method and (iii) after correction using the CoDa method. To compare segmentation 523

quality among these three outcomes, we calculated the Dice coefficient (DICE) and the 524

Average Hausdorff Distance (AVHD) using the openly available EvaluateSegmentation 525

Tool (2016; VISCERAL, http://www.visceral.eu). 526
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The DICE is an overlap-based metric and it is the most popular choices for 527

validating volume segmentations [81]. We included it here as a familiar reference for the 528

reader. However, overlap-based metrics like the DICE are not recommended for 529

validating segmentation boundaries against the ground truth, as is our aim here, since 530

they are relatively insensitive to boundary errors. In contrast, the AVHD is a 531

distance-based metric and is sensitive to boundary errors [81]. We therefore consider the 532

AVHD to be a more suitable metric for our purposes and we based our conclusions on 533

the comparisons made with the AVHD. 534

Given that the AVHD quantifies the similarity of two boundaries, we first extracted 535

WM-GM and GM-CSF boundaries from the ground truth segmentations and the six 536

different GM segmentations before calculating the AVHD. Here, an AVHD of 0 537

indicates a perfect match between the segmentation and ground truth boundaries, while 538

values >0 indicate a mismatch. In this case, the value represents the average number of 539

voxels by which the two boundaries deviate from one another. For example, an AVHD 540

of 1 indicates that the segmentation boundary, on average, deviates of one voxel from 541

the ground truth. 542

543

5 Validation results 544

Visual inspection revealed that applying the GraMag method to the MPRAGE data set 545

excluded most of the vessels and dura mater voxels and resulted in a more plausible GM 546

matter definition. The CoDa method equally removed most of the vessels and dura 547

mater voxels. Additionally, the CoDa method excluded structures like the sagittal sinus 548

from the GM definition (see Fig 6 and Fig 7). 549

Table 2 compares segmentation performance before and after applying GraMag and 550

CoDa methods to the initial GM segmentations of the MPRAGE data set. The GraMag 551

method led to an improvement of GM segmentations in all subjects, independently of 552

whether the initial segmentation was done by SPM 12 or FSL FAST. On average, the 553

AVHD decreased from 0.733 ±0.087 (mean ±standard deviation across subjects) to 0.571 554

±0.051 for SPM 12 and from 0.584 ±0.109 to 0.558 ±0.089 for FSL FAST. The GraMag 555

method did not affect the DICE coefficient. On average, it changed very little from 556

0.861 ±0.020 to 0.862 ±0.016 for SPM 12 and from 0.878 ±0.027 to 0.872 ±0.089 for 557

FSL FAST. The CoDa method equally yielded improved segmentation performance. 558

Compared to the initial segmentation, the AVHD decreased in all subjects and, on 559

average, to 0.569 ±0.054 for SPM 12 and to 0.504 ±0.033 for FSL FAST. We did not 560

observe a clear change in the DICE coefficient. For SPM 12 segmentations we observed 561

0.869 ±0.021 and for FSL FAST segmentations 0.872 ±0.013. All these results were 562

obtained after exclusion of areas affected by artifacts in the T2s image. For results 563

obtained without the artifact masks, please see S1 Table. 564

Table 3 compares segmentation performances before and after applying the GraMag 565

and CoDa methods to the initial GM segmentations of the MP2RAGE data set. The 566

GraMag method decreased AVHD for all but one subject and, on average, from 0.508 567

±0.088 to 0.444 ±0.083 for CBS tools and from 0.990 ±0.062 to 0.775 ±0.088 for FSL 568

FAST. It decreased the DICE coefficient, on average, from 0.882 ±to 0.875 ±for CBS 569

tools and from 0.839 ±to 0.818 ±for FSL FAST. The CoDa method decreased the 570

AVDH in every subject and, on average, to 0.447 ±0.082 for CBS tools and to 0.641 571

±0.069 for FSL FAST. It also increased the DICE coefficient to 0.856 ±0.030 for FSL 572

FAST and decreased it to 0.880 ±0.024 for CBS tools. For results for the MP2RAGE 573

data obtained without the artifact masks, please see S2 Table. 574

575
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Fig 6. Comparison of GM segmentation results for MPRAGE data. GM
segmentation results are shown for one representative subject on a transverse (upper
row) and a sagittal slice (lower row) of the brain before and after applying the GraMag
and CoDa methods. The original image that is input to the segmentation is shown on
the left. The original GM segmentation obtained from SPM 12 is shown in red (middle
and right column). GM segmentations after additional polishing with brain mask
obtained with either the GraMag (middle column) or the CoDa method (right column)
are overlaid in blue. Additional masking removes blood vessels, CSF (arrow *) and most
of dura mater (arrow †) voxels from the SPM GM definition. Because of its unique
compositional properties, connective tissue from the sagittal sinus can be captured and
excluded using the CoDa method (arrow **). An area badly affected by the CoDa mask
is also indicated with arrow ***.

6 Discussion 576

Functional and anatomical MRI studies at the mesoscale (< 1 mm isotropic) require 577

accurate and precise definitions of the GM ribbon. Creating such definitions is currently 578

a challenging task since sub-millimeter UHF data bring non-brain structures like blood 579

vessels and dura mater into sharper focus. As a result, segmentation algorithms that 580

have been benchmarked at lower resolution data might falsely label part of these 581

structures as GM. Here we presented two methods (GraMag and CoDa) to correct many 582

such mislabeled non-brain voxels efficiently and semi-automatically. The two methods 583

are based on theoretical expectations of how 3D brain data is to be represented in 2D 584

histograms. These expectations imply that brain and non-brain tissue should become 585

separable in 2D histogram representations that are either based on gradient magnitude 586

and intensity or on compositional dimensions. We validated these expectations by 587

implementing the suggested methods in an openly available software package and by 588

quantifying their added benefit using a new high-resolution validation data set. We 589

found that, in general, our suggested methods offered an improvement compared to 590

initial GM segmentations. However, we found some differences in the degree of 591
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Fig 7. Comparison of GM segmentation results for MP2RAGE data. Same
conventions as in Fig 6) but with initial segmentation results obtained with CBS tools
instead of SPM 12.

improvement with respect to (i) the two presented methods, the (ii) type of data and 592

(iii) the algorithm used for initial segmentation. 593

We will discuss these three influences in turn. First, the two methods differ in their 594

prerequisites and their segmentation improvement. The GraMag method only requires 595

uni-modal input such as T1w/PDw or MP2RAGE uni images, while the CoDa method 596

requires multi-modal input of images with different contrast weightings. This makes the 597

GraMag method the method of choice when only a single input image is available. In 598

accordance with our theoretical expectation, the GraMag method identified and 599

removed blood vessels and dura mater tissue. If multi-dimensional input is available, 600

even bigger improvements might be obtained with the CoDa method. Notably, in 601

contrast to the GraMag method, the CoDa method can additionally capture and remove 602

connected tissue of the sagittal sinus. This tissue is usually falsely labeled as GM 603

because of similar intensity values and spatial proximity. It then requires tedious 604

manual removal. How well the CoDa method performs, however, critically depends on 605

the quality of all the input images and the specific combination of contrasts. 606

Performance can be affected by low quality on a single input image, as was the case 607

here with T2* images due to susceptibility artifacts. Furthermore, performance will 608

depend on the specific choice of contrasts and whether these contrasts maximize the 609

compositional difference between brain and non-brain tissue. 610

Second, we found that the improvements were slightly larger and more consistent 611

across subjects for the MPRAGE than for the MP2RAGE data set. This might be 612

explained by the fact that the MPRAGE data conformed more to our theoretical 613

expectations than the MP2RAGE data set. Especially, we found GM values in the 614

MP2RAGE uni image to be less focused on one particular area of the 2D histogram 615

(S12 Fig) than the MPRAGE division image. This might result from differences in 616

myelination level across cortical areas and depth [54,82,83], which the MP2RAGE uni 617
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Table 2. Segmentation performance scores MPRAGE data set. The table
shows the DICE (larger is better) and AVHD (less is better) for the initial SPM 12 and
FSL FAST GM segmentations as well as after additional polishing, using either the
gradient magnitude or the compositional data method.

SPM FAST
DICEa AVHDa DICEa AVHDa

S02
Init 0.8606 0.7325 0.8869 0.5661
Init + GraMag 0.8613 0.5811 0.8876 0.5162
Init + CoDa 0.8689 0.5693 0.8719 0.5017

S03
Init 0.8398 0.8585 0.8782 0.5835
Init + GraMag 0.8679 0.6031 0.8722 0.5575
Init + CoDa 0.8625 0.5986 0.8723 0.5039

S05
Init 0.8681 0.6350 0.8858 0.5545
Init + GraMag 0.8595 0.5618 0.8770 0.5359
Init + CoDa 0.8796 0.4950 0.8960 0.4601

S06
Init 0.8428 0.7778 0.8633 0.6462
Init + GraMag 0.8624 0.5711 0.8665 0.5848
Init + CoDa 0.8592 0.5880 0.8775 0.5074

S07
Init 0.8945 0.6205 0.8583 0.6925
Init + GraMag 0.8983 0.5281 0.8623 0.6487
Init + CoDa 0.8692 0.5541 0.8248 0.6689

DICE, DICE Coefficient; AVHD, Average Hausdorff Distance; Init, initial segmentation;
GraMag, gradient magnitude method; CoDa, compositional data method.
a After masking of areas affected by artifact in the T2s image.

image might pick up more than MPRAGE division image [84]. 618

Third, we observed that the performance of the initial segmentation algorithm had 619

an influence on how much we could further improve the GM segmentation. If 620

performance of the initial segmentation algorithm was already relatively high, the 621

improvement obtained with our methods tended to be smaller. Differences in initial 622

segmentation performance might be explained by whether the algorithm has been 623

benchmarked on this particular type of data. We assume FSL FAST and CBS tools to 624

have been benchmarked on MPRAGE and MP2RAGE data respectively, which would 625

explain their relative high performance for these data types. 626

Importantly, our goal here was to aid already existing segmentation pipelines to deal 627

with UHF sub-millimeter resolution data, not to replace those pipelines. Instead, the 628

methods presented here should be considered as an alternative to a large amount of 629

manual slice-by-slice polishing of segmentations and thus as a time-saver. Manually 630

correcting segmentation labels is very time-consuming and can quickly become 631

unreliable. In contrast, our methods greatly reduce the time required for manual 632

polishing because they offer an efficient 2D summary and are more reliable because they 633

are semi-automatic. Although the methods presented here do not entirely eliminate the 634

need for manual corrections, we estimated that for a whole brain cortical ribbon 635

segmentation they do save on average 7.5 hours of manual work (for more details on this 636

estimation see S1 Appendix). 637
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Table 3. Segmentation performance scores MP2RAGE data set. The table
shows the DICE (larger is better) and AVHD (less is better) for the initial CBS tools
and FSL FAST GM segmentations as well as after additional masking, using either the
gradient magnitude or the compositional data method.

CBS FAST
DICEa AVHDa DICEa AVHDa

S001
Init 0.8943 0.3711 0.8403 1.0523
Init + GraMag 0.9141 0.4013 0.8248 0.8241
Init + CoDa 0.9185 0.3249 0.8795 0.5757

S013
Init 0.8672 0.5641 0.7859 1.0272
Init + GraMag 0.8629 0.4921 0.7653 0.8835
Init + CoDa 0.8648 0.4835 0.8137 0.7225

S014
Init 0.8695 0.5897 0.8376 0.9203
Init + GraMag 0.8606 0.4859 0.8136 0.7260
Init + CoDa 0.8710 0.4921 0.8486 0.6789

S019
Init 0.9077 0.4517 0.8529 0.9529
Init + GraMag 0.8865 0.3301 0.8218 0.7005
Init + CoDa 0.8888 0.4096 0.8642 0.6024

DICE, DICE Coefficient; AVHD, Average Hausdorff Distance; Init, initial segmentation;
GraMag, gradient magnitude method; CoDa, compositional data method.
a After masking of areas affected by artifact in the T2s image.

Moreover, we introduced the compositional data analysis framework to the 638

neuroimaging community. Here, we used this framework to combine MRI acquisitions 639

with three different image contrasts in order to derive improved tissue type 640

segmentations. While the compositional analysis framework scales to any dimension and 641

thus any number of MRI images, the current implementation relies on representation of 642

data in a 2D histogram obtained through the ilr transformation of 3D barycentric 643

coordinate data. With more than three images a reduction of dimensions in the 644

barycentric space or in the real space after ilr transformation would be necessary to 645

apply the current tools (e.g. [40]). 646

MRI can provide a multitude of informative images that weight tissue properties to 647

generate the image contrast. The compositional data framework is ideally suited for the 648

analysis and visualization of multiple images as it provides a principled way to combine 649

any number of images. In addition, analyzing multiple MRI contrast images in the 650

compositional data framework avoids spatial scale dependence, i.e. dependence on the 651

image resolution and smoothness of the image. As a result, the compositional properties 652

of vessel voxels even at very high resolutions will remain the same or very similar, no 653

matter whether the voxel is at the center or at the border of the vessel. This is similar to 654

analyzing chemical compositions of materials, which are independent of spatial metrics. 655

An envisioned future application of the compositional framework to MRI data is to 656

use it to single out targeted cortical or subcortical structures based on their 657

compositional properties. For an example of identifying subcortical structures see S7 658

Fig. For discussion of the broader implications of the application of compositional data 659

analysis to images in general please see [85]. 660

Our theoretical expectations implied that the methods presented here require 661
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high-resolution data (<1 mm). This requirement was unfortunately not met by most 662

available segmentation validation data sets. Simulated phantom (”BrainWeb”) data [86] 663

are available at 1 mm and thus fell short of the resolution required for our purposes. 664

Although an updated data set (”updated BrainWeb”, [87,88]) is available at higher 665

resolution, the simulations in this data set were based on initial 3T MRI acquisitions. 666

As a consequence, the updated BrainWeb data revealed considerably less bright vessel 667

and dura mater voxels than 7 T data usually does and was not suitable to validate our 668

methods. 669

These considerations led us to create our own high-resolution segmentation 670

validation data sets for which we established the ”ground truth” via manually-guided 671

expert segmentation. While expert segmentations have well-known drawbacks [33,89], 672

they also have important advantages to alternative methods of establishing the ground 673

truth, such as simulated phantom data. In particular, creating a validation data set 674

based on empirical data and expert segmentations allowed us to benchmark our 675

methods under conditions where image intensities fell into the expected range. Being 676

aware of the problems with expert segmentations, we alleviate concerns about the 677

quality of our expert judgment and consequently the validity of the results presented 678

here by taking the following measures. First, the final ground truth segmentations were 679

inspected by two additional experts. Second, we make the data sets and corresponding 680

ground truth segmentations as well as our processing scripts available. This will allow 681

other researchers to come up with their own judgment of the quality of the ground truth 682

segmentation and validation data. In case changes to the ground truth are suggested 683

and implemented, quantification could be re-run using our openly-accessible work flow. 684

The 2D histogram method presented here is, in principle, capable of generating its 685

own exhaustive tissue-type classifications, i.e. it does not necessarily depend on existing 686

segmentation pipelines to derive GM and WM labels. While we expect the 2D 687

histogram method to give no advantage over existing, fully-automated segmentation 688

algorithms under standard conditions, the histogram method will compare well in cases 689

where standard algorithms fail. Importantly, the 2D histogram method used here does 690

not assume the data to conform to any atlas or template shape. Therefore, it is suitable 691

also for acquisitions with only partial coverage (surface coils) or for specific populations 692

like infant or even dolphin brains (see S6 Fig). 693

Using histogram-based methods would be more attractive if the process of specifying 694

transfer functions was fully automatic. We note that there is no principled obstacle to 695

doing this. Indeed, information-theoretic measures have been suggested [39] that would 696

make the normalized graph-cut application fully automatic, given the specification of an 697

appropriate stopping criterion. The transfer functions (i.e. the circles and arcs applied 698

to our 2D histograms) that we observed for the different brain tissue types were stable 699

across subjects and conformed to expected, ideal shapes. This would allow to define 700

probabilistic templates in the histogram space and transform the methods proposed 701

here to a fully automatic exhaustive tissue-type classifications. 702

We understand our methods as a secondary, more fine-grained brain extraction. 703

When performing the initial brain extraction or tissue class segmentation, the user can 704

often set parameters of the masking to be either more restrictive (at the risk of 705

excluding brain tissue) or more liberal (at the risk of including a lot of non-brain tissue). 706

We assume that, faced with this trade-off, users will usually lean to the liberal choice of 707

parameters to avoid that relevant brain tissue is excluded. In such cases, we suggest our 708

methods will prove useful. Our methods go beyond simply choosing more restrictive 709

parameters because they focus on information that is relevant to excluding vessels, dura 710

mater and connective tissue (Fig 1D). 711

Our comparisons were limited to segmentations obtained from FSL, SPM and CBS 712

tools. While several MRI studies at the mesoscale have used alternative ways of 713
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establishing tissue class segmentations [90,91], we decided to limit our comparison to 714

openly available algorithms. Furthermore, the resolution of our validation data exceeded 715

the recommended input range for FreeSurfer (1 mm to 0.75 mm isotropic). 716

As is to be expected, we found our methods to be be impacted by the CNR of the 717

input data (S2 Fig - S4 Fig). In particular, additional noise caused the 2D histogram 718

representation for both methods to conform less to expected template shapes. However, 719

we note that for images that were acquired with currently very common imaging 720

parameters at ultra high fields, we found our methods to offer clear benefits in GM 721

segmentations. Furthermore, in case acquisitions are noisier than the ones tested here, 722

additional processing steps like advanced smoothing [66,67] might be applied to 723

mitigate noise issues (see S5 Fig). 724

By making our validation data sets publicly available, we hope to inspire further 725

algorithmic testing and development. There is currently a lack of validation data for the 726

performance of tissue-type classification of MRI data acquired at ultra-high fields with 727

sub-millimeter resolution. By publishing our data, our code and our work flow, we 728

invite fellow scientists to benefit from our work but also to further contribute to it. The 729

neuro-imaging community can use our data to test the performance of entirely new 730

methods or modifications to existing segmentation algorithms. Contributions could be 731

made in the form of additional high-resolution data, more ground truth segmentations 732

and algorithmic improvement. Anticipating such algorithmic improvements, we envision 733

a future where segmentation of volumetric images will become gradually less laborious 734

despite increasing resolution and volume of the data. 735
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Supporting information 1031

S1 Appendix. Time benefit estimation. To estimate the time saved by 1032

substituting manual correction with Segmentator, we did the following calculation: 1033

Assuming that the objective of manually correcting mislabeled GM voxels is to reduce 1034

the number of false positives and to increase the number of true positives, we computed 1035

the number of false and true positives both before and after Segmentator intervention. 1036

We computed the difference in true positives and false positives before and after the 1037

application of segmentator and subtracted the true positive difference from the false 1038

positive difference. The resulting number is assumed to indicate the number of voxels 1039

which would have to be subtracted in the process of manually correcting all the voxels 1040

without using Segmentator. For the MRI data presented here, this number amounted to 1041

around 200000 voxels to be corrected (out of a total number of 1100000 voxels in the 1042

cortical ribbon). On average 35000 out of those 200000 voxels could be corrected using 1043

Segmentator. Assuming that a trained operator can manually correct one voxel per 1044

second, on average, this amounts to 7.5 hours of manual work that can be substituted 1045

with 10 minutes of Segmentator usage for the whole brain GM ribbon segmentation at 1046

0.7 mm isotropic resolution. The time that can potentially be saved by using 1047

Segmentator will scale with the total number of GM voxels - it will be higher for high 1048

resolution acquisition (more voxels) and lower at low resolution (less voxels). The script 1049

used for our estimation is available at [50]. 1050
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S1 Fig. Appropriate kernel width approximates lower resolution. Intensity
(left) and gradient magnitude (right) images are shown for T1w MRI data of a human
brain that was either acquired at 0.7 mm isotropic (top) or at the 0.25 mm isotropic [64,65]
(bottom). By choosing an appropriate kernel width for the very high resolution image
(here alpha=1), the gradient magnitude image can be approximated to the lower resolution
image, thus making it possible to use the gradient magnitude method also for very high
resolutions. All images show a sagittal slice for an exemplary subject (sub-02).

S1 Video. Using normalized graph cut decision trees for MRI data. The 1051

exploration of normalized graph cut decision trees allows for finding a more restrictive 1052

brain mask that excludes dura mater and brain vessels in a quick and intuitive manner. 1053
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S2 Fig. Impact of additional noise on GraMag method. Shown are intensity
images (top row), gradient magnitude images (middle row) and 2D histograms for the
GraMag method (bottom row) for a T1w-divided-PDw MRI ratio image without any
additional noise (left) and after applying a moderate (middle) and high (right column)
amount of additive Gaussian noise with two levels of constant standard deviation of
the distribution. The moderate noise (σ = 25) is 16% and high noise (σ = 50) is 32%
calculated relative to the mean cortical gray matter intensity. Noise causes structures
in the 2D histogram that are initially well-defined to spread outward and, at very high
noise levels, to lose shape. Images show a transverse slice for an exemplary subject
(sub-02).

PLOS 34/46

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/245738doi: bioRxiv preprint 

https://doi.org/10.1101/245738
http://creativecommons.org/licenses/by/4.0/


S3 Fig. Impact of additional noise on CoDa method I. Shown are T1w (left),
PDw (middle) and T2*w (right column) without any additional noise (top) and after
applying a moderate (middle) and high (bottom row) amount of additive Gaussian
noise with two levels of constant standard deviation of the distribution. Moderate noise
(σ = 25) is 13% for T1w, 4% for PDw, 5% for T2*w calculated relative to the mean
cortical gray matter intensity. High noise (σ = 50) is 27% for T1w, 9% for PDw, 10%
for T2*w calculated relative to the mean cortical gray matter intensity. Images show a
transverse slice for an exemplary subject (sub-02).
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S4 Fig. Impact of additional noise on CoDa method II. Shown are 2D his-
tograms resulting from the CoDa method without any additional noise (left) and after
applying a moderate (middle) and high (right column) amount of noise (see S3 Fig for
additional details). Noise was either applied to all three channels equally (top row) or
only to the T2*w image (bottom row). Noise causes structures in the 2D histogram that
are initially well-defined to spread outward and, at very high noise levels, to lose shape.
The histograms are based on data for one exemplary subject (sub-02).
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S5 Fig. Noisy images can be de-noised using non-linear anisotropic smooth-
ing. Shown are intensity images (top row), gradient magnitude images (middle row)
and 2D histograms for the GraMag method (bottom row) for a T1w-divided-PDw MRI
ratio image without any additional noise (left), after applying a high amount of noise
(see S2 Fig for additional details) (middle), and after smoothing the noise-affected image
(right column). As previously seen, noise causes structures in the 2D histogram to spread
outward and to lose shape. This process can be reversed and noise-affected images can
thus be recovered if an edge-preserving smoothing (see [66]) is applied. With smoothing,
structures become more confined to the expected regions and well-defined shapes are
regained. Images show a transverse slice for an exemplary subject (sub-02).
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S6 Fig. Application of GraMag to extra-ordinary MR images. Shown are
several examples of the variety of existing volumetric datasets for which our methods
appear to be useful. Every column represents different images: the brain of a bottle-nose
dolphin [92] (left), the occipital lobe of a human brain with 100 micron resolution [93]
(middle) and a human motor cortex acquired with small partial coverage (T1w EPI)
with anisotropic resolution [94] (right). For every image we show a slice (top row),
selected voxels in the 2D histogram (middle row) and selected voxels overlaid on the slice
(bottom row). These images do not contain large intensity inhomogeneities. Therefore,
no bias-field correction was performed. Mild non-linear anisotropic diffusion-based
smoothing was applied to enhance CNR.
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S7 Fig. 2D histogram representation of three 3D MRI contrast images. (A)
Each voxel is considered as a three part composition. The barycentric coordinates of
each composition which reside in 3D simplex space are represented in 2D real space after
using a isometric log-ratio (ilr) transformation. (B) The ilr coordinates are used to create
2D histograms representing all voxels in the images. The blue lines are the embedded
3D real space primary axes (note that the input image units were initially normalized
to have similar dynamic ranges to account for the large scale difference between T2*
and MP2RAGE images). In this case, the ilr coordinates are not easily interpretable
by themselves but they are useful to visualize the barycentric coordinates which are
interpretable via the embedded real space axes. Darker regions in the histogram indicate
that many voxels are characterized by this particular scale invariant combination of the
image contrasts. In this representation, brain tissue (WM and GM, red dashed lines)
becomes separable from non-brain tissue (black dashed lines and arrows). If desired,
subcortical structures like the red nucleus, the globus pallidus and the subthalamic
nucleus can additionally be identified (white circle).
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S8 Fig. Flowchart diagram MPRAGE GraMag pipeline. This diagram pro-
vides a detailed overview of all the inputs, processing steps and outputs for MPRAGE
GraMag pipeline. Rectangular shapes represent processing steps, rhombic shapes repre-
sent input or outputs and cylindrical shapes represent input or output locations.
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S9 Fig. Flowchart diagram MPRAGE CoDa pipeline. This diagram provides
a detailed overview of all the inputs, processing steps and outputs for MPRAGE CoDa
pipeline. Rectangular shapes represent processing steps, rhombic shapes represent input
or outputs and cylindrical shapes represent input or output locations.
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S10 Fig. Flowchart diagram MP2RAGE GraMag pipeline. This diagram pro-
vides a detailed overview of all the inputs, processing steps and outputs for MP2RAGE
GraMag pipeline. Rectangular shapes represent processing steps, rhombic shapes repre-
sent input or outputs and cylindrical shapes represent input or output locations.

PLOS 42/46

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2018. ; https://doi.org/10.1101/245738doi: bioRxiv preprint 

https://doi.org/10.1101/245738
http://creativecommons.org/licenses/by/4.0/


S11 Fig. Flowchart diagram MP2RAGE CoDa pipeline. This diagram pro-
vides a detailed overview of all the inputs, processing steps and outputs for MP2RAGE
CoDa pipeline. Rectangular shapes represent processing steps, rhombic shapes represent
input or outputs and cylindrical shapes represent input or output locations.
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S12 Fig. 2D Histogram Representation for MRI Image of a Human Brain.
The intensity (A) and gradient magnitude (B) values of a T1w-divided-by-PDw MRI
image (MP2RAGE, 0.7 mm isotropic resolution) are represented in a 2D histogram (C).
Darker regions in the histogram indicate that many voxels are characterized by this
particular combination of image intensity and gradient magnitude. The 2D histogram
displays a characteristic pattern with tissue types occupying particular areas of the
histogram (D). Voxels containing CSF, dura mater or blood vessels (black dashed lines
and arrows) cover different regions of the histogram than voxels containing WM and GM
(red dashed lines). As a result, brain tissue becomes separable from non-brain tissue.
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S1 Table. Segmentation performance MPRAGE data without artifact 1054

masking. The table shows the DICE (larger is better) and AVHD (less is better) for 1055

the initial SPM 12 and FSL FAST GM segmentations as well as after additional 1056

polishing, using either the gradient magnitude or the compositional data method.

SPM FAST
DICE AVHD DICE AVHD

S02
Init 0.8576 0.7413 0.8896 0.5375
Init + GraMag 0.8594 0.5865 0.8902 0.4980
Init + CoDa 0.8525 0.6061 0.8421 0.5557

S03
Init 0.8644 0.8753 0.8694 0.5739
Init + GraMag 0.8376 0.6139 0.8781 0.5612
Init + CoDa 0.8483 0.6299 0.8386 0.5687

S05
Init 0.8569 0.6379 0.8782 0.5230
Init + GraMag 0.8688 0.5647 0.8909 0.5233
Init + CoDa 0.8596 0.5591 0.8692 0.5150

S06
Init 0.8601 0.7789 0.8635 0.6477
Init + GraMag 0.8435 0.5797 0.8616 0.5909
Init + CoDa 0.8442 0.6287 0.8580 0.5530

S07
Init 0.8897 0.6403 0.8490 0.7228
Init + GraMag 0.8893 0.5574 0.8460 0.6862
Init + CoDa 0.8508 0.5974 0.7935 0.7305

DICE, DICE Coefficient; AVHD, Average Hausdorff Distance; GraMag, gradient
magnitude method; CoDa, compositional data method.

1057
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S2 Table. Segmentation performance MP2RAGE data without artifact 1058

masking. The table shows the DICE (larger is better) and AVHD (less is better) for 1059

the initial CBS tools and FSL FAST GM segmentations as well as after additional 1060

masking, using either the gradient magnitude or the compositional data method.

CBS FAST
DICE AVHD DICE AVHD

S001
Init 0.8688 0.4081 0.8157 1.0427
Init + GraMag 0.9032 0.4538 0.8095 0.8534
Init + CoDa 0.8914 0.3925 0.8520 0.6290

S013
Init 0.8451 0.6146 0.7539 1.0551
Init + GraMag 0.8501 0.5377 0.7363 0.9299
Init + CoDa 0.8398 0.5270 0.7787 0.7613

S014
Init 0.8389 0.6730 0.8089 0.9837
Init + GraMag 0.8410 0.5532 0.7868 0.7996
Init + CoDa 0.8485 0.5424 0.8213 0.7258

S019
Init 0.8920 0.4798 0.8356 0.9672
Init + GraMag 0.8794 0.3639 0.8081 0.7359
Init + CoDa 0.8772 0.4365 0.8499 0.6204

DICE, DICE Coefficient; AVHD, Average Hausdorff Distance; GraMag, gradient
magnitude method; CoDa, compositional data method.

1061
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