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Abstract 

Protein-protein interactions control a large range of biological processes and their 

identification is essential to understand the underlying biological mechanisms. To 

complement experimental approaches, in silico methods are available to investigate protein-

protein interactions. Cross-docking methods, in particular, can be used to predict protein 

binding sites. However, proteins can interact with numerous partners and can present multiple 

binding sites on their surface, which may alter the binding site prediction quality. We evaluate 

the binding site predictions obtained using complete cross-docking simulations of 358 

proteins with two different scoring schemes accounting for multiple binding sites. Despite 

overall good binding site prediction performances, 68 cases were still associated with very 

low prediction quality, presenting individual area under the specificity-sensitivity ROC curve 

(AUC) values below the random AUC threshold of 0.5, since cross-docking calculations can 

lead to the identification of alternate protein binding sites (that are different from the 

reference experimental sites). For the large majority of these proteins, we show that the 

predicted alternate binding sites correspond to interaction sites with hidden partners, i.e. 

partners not included in the original cross-docking dataset. Among those new partners, we 

find proteins, but also nucleic acid molecules. Finally, for proteins with multiple binding sites 

on their surface, we investigated the structural determinants associated with the binding sites 

the most targeted by the docking partners.  
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Abbreviations 

ANOVA: ANalysis Of Variance; AUC: Area Under the Curve; Best Interface: BI; CAPRI: 

Critical Assessment of Prediction of Interactions; CC-D: Complete Cross-Docking; DNA: 

DesoxyriboNucleic Acid; FDR: False Discovery Rate; FRIres(type): Fraction of each Residue 

type in the Interface; FP: False Positives; GI: Global Interface; HCMD: Help Cure Muscular 

Dystrophy; JET: Joint Evolutionary Tree; MAXDo: Molecular Association via Cross 

Docking; NAI: Nucleic Acid Interface; NPV: Negative Predicted Value; PDB: Protein Data 

Bank; PIP: Protein Interface Propensity; PiQSi: Protein Quaternary Structure investigation; 

PPIs: Protein-Protein Interactions; PPV: Positive Predicted Value; Prec.: Precision; PrimI: 

Primary Interface; RNA: RiboNucleic Acid; ROC: Receiver Operating Characteristic; SecI: 

Secondary Interface; Sen.: Sensitivity; Spe.: Specificity; TN: True Negatives; TP: True 

Positives; WCG: World Community Grid. 
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Introduction 

Proteins play a fundamental role in many biological process (metabolism, information 

processing, transport, structural organization), through physical interactions with other 

proteins and molecules such as metabolites, lipids and nucleic acids 1. In particular, protein-

protein interactions (PPIs) control the assembly of proteins in large edifices forming complex 

molecular machines 2. 

The study of PPIs permits to decipher the protein network constituting the interactome of an 

organism, to understand the molecular sociology of the cell 3 and to explain their role in 

biological systems 4-8. PPIs detection can be realized using numerous experimental 

approaches 9, including in vitro techniques such as tandem affinity purification and in vivo 

methods like the yeast two-hybrid. However, these experimental methods are associated with 

several limitations, such as cost, time, a low interaction coverage, and biases toward certain 

protein types and cellular localizations, that generate a significant number of false positives 

and negatives 10. On the other hand, in silico methods have been developed and constitute 

complementary approaches to experimental techniques 11-13. Molecular modeling can notably 

be used to identify protein interactions, with the advantage of providing structural models for 

the corresponding complexes and insights into the physical principles behind the complex 

formation. Docking methods, which were originally developed to predict the structure of a 

complex starting from the structures of two proteins known to interact 14, can be diverted for 

the prediction of protein interfaces. In this perspective, the collection of docking poses will be 

used to derive a consensus of predicted interface residues 15 both in single docking studies 

16-20, in which the docking poses result from the docking of two protein partners already 

known to interact, and in complete cross-docking (CC-D) studies 21-24, which involve 

performing docking calculations on all possible protein pairs within a given dataset. Several 
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benchmarking databases are available to evaluate protein-protein docking protocols, such as 

the Docking benchmark 5.0 25, DOCKGROUND 26, or 2P2IDB 27. The Docking benchmark 

5.0 25 includes 230 protein-protein complexes and provides both bound and unbound 

structures for the majority of the protein partners. It is considered as the gold standard for 

protein-protein docking evaluation, notably thanks to the careful protein annotations (about 

the functional and docking difficulty categories). One should note that our docking algorithm 

was evaluated in a previous study on the 168 proteins of the Docking benchmark 2.0 28. 

DOCKGROUND 26 is a large protein-protein interactions database, with 396 co-crystallized 

protein-protein complexes and the corresponding X-ray unbound structures for both proteins. 

2P2Idb 27 is a smaller database dedicated to orthosteric modulation of protein-protein 

interactions. Its specificity is to provide all interactions for which both the protein-protein and 

protein-inhibitor have been structurally resolved, resulting in a database of 31 protein-protein 

complexes, 619 protein-ligand complexes and 553 PPI inhibitors. Earlier studies 21,23,24, using 

such benchmarking databases, showed that the cross-docking method could be used to 

accurately predict protein binding sites. However, proteins are able to interact with different 

partners, forming an intricate network and thus complicating PPI analysis 29,30. In their work 

on over 35 000 protein complex structures from the PDB, Zhao et al. 31 found that around 

40% of the proteins presented multiple interfaces, an estimation which concurs with the work 

of Kim et al. 32, who estimated that 40% of protein domains can bind via multiple orientation. 

 Among them, proteins presenting more than 5 partners are defined as hub (in reference to the 

protein interaction networks) or social partners. These hub proteins can be classified 

according to the number of binding sites exhibited on their surface into singlish interface hubs 

(one or two multibinding protein interface 33) or multi-interface hubs (larger number of 

binding sites) 34. To our knowledge the impact on cross-docking binding site predictions of 
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the existence of multiple binding sites on the protein surface has never been systematically 

addressed. However, previous studies using a different approach based on sequence and 

structure analysis of a single protein, tackled the problem of predicting multiple binding sites 

for proteins 35,36.  

In the cross-docking dataset of 358 proteins used in this work, even if the majority of proteins 

were associated with only one experimental partner, some multi-interface proteins presenting 

up to 5 experimental partners were also available. The first aim of our study was to evaluate 

both the binding site predictions obtained using cross-docking simulations with our dataset 

and the ability of the cross-docking method to detect multiple binding sites on protein 

surfaces. Therefore, we compared the efficiency of two scoring schemes accounting for 

multiple binding sites. 

In a second step, we analyzed the cases where cross-docking calculations lead to the 

identification of alternate protein binding sites that were different from the reference 

experimental sites based on the interaction partners present in the protein dataset. For the 

large majority of these proteins, the predicted alternate binding sites were shown to 

correspond to interaction sites with other partners not included in the original cross-docking 

dataset. Finally, we tried to understand why some interfaces were better predicted than others 

using our CC-D results, and why, in some cases, protein-protein docking results could lead to 

the identification of binding sites for nucleic acids. 
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Materials and Methods 

Cross-docking calculations 

Protein dataset 

The HCMD2 dataset comprises 2246 non-redundant proteins. Among them around 400 are 

known to be involved in neuromuscular diseases (around 200 experimentally-determined 

structures and around 200 predicted structural models) and the 1800 remaining proteins, with 

a role in muscular dystrophy that is yet unknown, are human proteins, notably involved in the 

pathways monitoring essential cardiac or cerebral mechanisms. The HCMD dataset was 

constructed with the aim to study the potential interactions of the 400 proteins involved in 

neuromuscular diseases within the human body, to provide new insights on their molecular 

mechanism and to help biomedical researchers to develop therapies for neuromuscular 

diseases (for more information see Section 5 “Proteins list that will be analyzed on phase 2 of 

the HCMD2 project” in http://www.ihes.fr/~carbone/HCMDproject.htm). Starting from the 

HCMD2 dataset, we extracted all the proteins for which a complex structure was available in 

the PDB, and where at least one experimental partner is also present in the dataset, i.e. 

proteins corresponding to different chains from the same Protein Data Bank (PDB) 37 

structure. Any further reference to these proteins uses the PDB code of the experimental 

structure from which they were extracted, followed by their corresponding one letter chain 

denomination. For example, chain F of the 1LI1 PDB structure presented in the Results 

section will be denoted 1LI1_F. Within the 399 proteins originally extracted from the HCMD 

dataset, only 358 proteins, coming from 138 unique PDB structures, were used for this study 

after a quality control step, and constitute the SubHCMD dataset (listed in Table S1). It is to 

note that all the proteins are in the bound form. The SubHCMD dataset protein sizes range 
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from 21 to 789 residues, with a median value around 150 residues per protein. In the quality 

control step, alpha-carbon only structures, proteins with no interaction with other monomers 

of the same PDB present in the HCMD dataset and proteins with missing docking results 

were excluded. The large majority of proteins was associated with only one experimental 

partner but for some proteins over 5 experimental partners were available in the dataset (see 

Table S1 and Figure S1). Among the 358 proteins of the SubHCMD dataset, 16 proteins are 

antibody monomers, 6 are antigen monomers, 82 are enzyme monomers, 8 are inhibitor 

monomers and 246 are classified as « other ». 

Reduced protein representation 

We use a coarse-grain protein model developed by Zacharias 38, where each amino acid is 

represented by one pseudoatom located at the Cα position and either one or two pseudoatoms 

representing the side-chain (with the exception of Gly). Ala, Ser, Thr, Val, Leu, Ile, Asn, Asp, 

and Cys have a single pseudoatom located at the geometrical center of the side-chain heavy 

atoms. For the remaining amino acids, a first pseudoatom is located midway between the Cβ 

and Cγ atoms, while the second is placed at the geometrical center of the remaining side-chain 

heavy atoms. This representation, which allows different amino acids to be distinguished from 

one another, has already proved useful both in protein-protein docking 38-40 and protein 

mechanic studies 41-43. Intermolecular interactions between the pseudo-atoms of the Zacharias 

representation are treated using a soft LJ-type potential with appropriately adjusted 

parameters for each type of side-chain, see Table I in 38. In the case of charged side-chains, 

electrostatic interactions between net point charges located on the second side-chain 

pseudoatom were calculated by using a distance-dependent dielectric constant ε=15r, leading 

to the following equation for the interaction energy of the pseudoatom pair i,j at distance rij : 
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where Bij and Cij are the repulsive and attractive LJ-type parameters respectively, and qi and qj 

are the charges of the pseudoatoms i and j. 

Systematic docking simulations 

Our systematic rigid body docking algorithm MAXDo (Molecular Association via Cross 

Docking) was derived from the ATTRACT protocol 38 and uses a multiple energy 

minimization scheme. For each pair of proteins within the SubHCMD dataset, the first 

molecule (called the receptor) is fixed in space, while the second (termed the ligand) is used 

as a probe and placed at multiple positions on the surface of the receptor. The initial distance 

of the probe from the receptor is chosen so that no pair of probe-receptor pseudoatoms comes 

closer than 6 Å. Starting probe positions are randomly created around the receptor surface 

with a density of one position per 70 Å2. The same protocol is then repeated for the ligand 

protein. For each pair of receptor/ligand starting positions, different starting orientations were 

generated by applying 5 rotations of the gamma Euler angle defined with the axis connecting 

the centers of mass of the 2 proteins (Figure S2a). An extension of the binding site predictions 

resulting from evolutionary sequence analysis realized with JET 44 were used to define the 

area for docking and restrain the conformational space of the docking algorithm. Thus, only 

surface regions containing residues predicted to belong to potential binding sites by JET (i.e. 

residues whose trace value is equal or above 7) will be treated by MAXDo (Figure S2b). For a 

starting configuration to be treated by the energy minimization scheme, both the receptor and 

the ligand must present at least one JET predicted residue on their surface that is less than 2 Å 

away from the axis connecting their centers of mass. 

During each energy minimization, the ligand was free to move over the surface of the 
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receptor. Thus, for each couple of proteins P1P2, considering P1 as the receptor and P2 as the 

ligand will lead to substantially the same results than treating P2 as the receptor and P1 as the 

ligand (unlike our earlier CC-D studies where the receptor and the ligand proteins were 

treated differently 21,23,24). This enables to reduce the number of minimization steps by almost 

a factor 2. 

Computational implementation 

Each energy minimization for a starting configuration of a pair of proteins typically takes 5 s 

on a single 2 GHz processor. Between 313 and 2552230 minimizations are needed to probe all 

possible interaction conformations (with a mean value of 61564 minimizations). Therefore, a 

CC-D search on the SubHCMD dataset, involving namely = 64261 receptor/ligand pairs, 

would require several thousand years of computation on a single processor. However, since 

each minimization is independent of the others, this problem belongs to the « embarrassingly 

parallel » category and is well adapted to multiprocessor machines, and particularly to grid-

computing systems. In the present case, our calculations have been carried out using the 

World Community Grid (WCG, www.worldcommunitygrid.org) during the second phase of 

the Help Cure Muscular Dystrophy (HCMD2, https://www.worldcommunitygrid.org/research/

hcmd2/overview.do?language=en_US) project. It took approximately three years to perform 

CC-D calculations on the complete HCMD dataset of 2246 proteins. More technical details 

regarding the execution of the program on WCG can be found in Ref. 45. 

Data analysis 

Definition of surface and interface residues 

The relative solvent accessible surface area, calculated with the NACCESS program 46, using 

a 1.4 Å probe, is used to define surface and interface residues. Surface residues have a relative 
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solvent accessible surface area larger than 5 %, whereas interface residues present at least a 

10 % decrease of their accessible surface area in the protein bound structure compared to the 

unbound form. 

Interface propensities of the surface residues 

In order to see whether cross-docking simulations can give us information regarding protein 

interaction sites, we used the protein interface propensity (PIP) approach 24 initially developed 

by Fernandez-Recio et al. 15. The PIP value, representing the probability for residue i of 

protein P1 to belong to an interaction site, is computed by counting the number of docking hits 

for residue i in protein P1, that is, the number of times residue i belongs to a docked interface 

between P1 and all its interaction partners in the benchmark. In earlier works 21, we used a 

Boltzmann weighting factor which would favor docked interfaces with low energies. As a 

consequence, for a given protein pair P1P2, all interfaces with a 2.7 kcal.mol-1 or more energy 

difference from the lowest energy docked interface would have a Boltzmann weight lower 

than 1 % (see ref 23 for more details). Here, in order to limit the number of docked interfaces 

that would have to be reconstructed for determining the interface residues, which is the most 

time-consuming part of the analysis process, we chose to calculate the residues PIP values 

using only the lowest energy docking poses within this 2.7 kcal.mol-1 criterion, therefore we 

have  

where Npos,P1P2 is the number of retained docking poses of P1 and P2 (which will vary with 

protein P2) satisfying the energy criterion, and Nint,P1P2(i) is the number of these conformations 

where residue i belongs to the binding interface. Finally, the PIP value for a given residue i 

belonging to protein P1 taking into account the CC-D calculations within the whole 
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benchmark will simply be the average PIP of this residue over all the possible partner proteins 

P2, that is 

PIP values are comprised between 0 (the residue does not appear in any docked interface) and 

1 (the residue is present in every single docked interface involving protein P1) and will be 

used for the prediction of binding sites. For each protein pair in the benchmark, between 1 and 

10134 docking poses were kept using the 2.7 kcal.mol-1 energy criterion, with an average of 

73 docking poses (Figure S3a), and a median value of 26 docking pose kept. These low 

statistics on each individual protein pair are compensated by the fact that every protein was 

docked with 358 different partners. Eventually, for each protein in the dataset, between 1293 

and 241367 docking poses were used to calculate the residues PIP values, with an average of 

25968 docking poses and a median value of 17136 docking poses (Figure S3b). 

Evaluation of the binding site predictions 

Considering the PIP values results for all the residues, we define as predicted interface 

residues, residues whose PIP value lies above a chosen cutoff. Surface residues can then be 

divided into 4 classes: true positives (TP) are all the surface residues that are correctly 

predicted as interface residues, true negatives (TN) being all the surface residues that do not 

belong to an experimental protein interface and that are predicted as such. False positives (FP) 

are all surface residues predicted to be in the interface and which do not belong to an 

experimental interface, and false negatives (FN) being all surface residues that belong to an 

experimental protein interface but are not predicted as interface residues. We can use the 

classical notions of sensitivity, specificity and the error function to evaluate their efficiency 

for the identification of protein interaction sites. Sensitivity (Sen.) is defined as the number of 
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surface residues that are correctly predicted as interface residues (true positives, TP) divided 

by the total number of experimentally identified interface residues in the set (T). Specificity 

(Spe.) is defined as the fraction of surface residues that do not belong to an experimental 

protein interface and that are predicted as such (true negatives, TN). Additional useful notions 

that are commonly used include the positive predicted value (PPV, also called precision, 

Prec.), which is the fraction of predicted interface residues that are indeed experimental 

interface residues (TP/P), the negative predicted value (NPV), which is the fraction of 

residues that are not predicted to be in the interface and which do not belong to an 

experimental interface (TN/N) and the false discovery rate (FDR) which is the fraction of 

residues that are predicted to be in the interface and which do not belong to an experimental 

interface (FP/P), and corresponds to 1- Prec. 

An optimal prediction tool would have all notions (Sen., Spe., Prec. and NPV) equal to unity. 

If this cannot be achieved, a compromise can be obtained by minimizing a normalized error 

function based on the sensitivity and specificity values, which is comprised between 0 and 1 

and defined as: 

Receiver operating characteristics (ROC) curves can be drawn by plotting Sensitivity (also 

called True Positive Rate) as a function of 1-Specificity (also called False Positive Rate) when 

changing the PIP value used as a cutoff for prediction. On a classical ROC curve the 

minimum error corresponds to the point on the curve that is the farthest away from the 

diagonal (which corresponds to random prediction). The Area Under the specificity-

sensitivity ROC Curve (AUC) can be used as a metric to evaluate and compare binding sites 

prediction performances. Individual ROC curves and individual AUC values can be derived 

from the study of a single protein, with the TP, TN, FP and FN values being calculated 
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considering only the surface residues of the query protein. For example, an individual ROC 

curve can be plotted for the 1LI1_F protein, the sensitivity and 1-specifity values being 

computed on the 177 surface residues of the 1LI1_F protein and the corresponding individual 

AUC value is equal to 0.360 (BI score without using alternate interfaces). In addition, a 

general ROC curve and a general AUC value can be computed for the complete SubHCMD 

dataset, with TP, TN, FP and FN values being processed using all the 50718 surface residues 

from all proteins in the SubHCMD dataset. 

Specific case of protein with multiple experimental partners 

In a simple case of binding site prediction evaluation, the studied protein presents only one 

experimental partner, and thus one reference interaction site. The evaluation of the ability of 

the method to detect this interface then comes down to comparing the predicted interface to 

the reference experimental one. However, the dataset used in this study includes protein 

presenting more than one experimental partner and thus more than one interaction site. To 

evaluate our binding sites predictions while accounting for multiple experimental binding 

sites, we compared the efficiency of 2 scoring schemes. The first score, called Global 

Interface (GI) score, was obtained by comparing the predicted interface with one single global 

reference experimental interface generated by concatenating all the available experimental 

interfaces (Figure S4a). In other terms, if a surface residue is identified as being part of at 

least one of the experimental binding sites of the target protein, this residue is tagged as 

interface residue in the global reference experimental interface. Conversely, if a residue is not 

identified as being part of any of the experimental interfaces of the query protein, it is 

considered as non-interface residue in the global experimental reference. In the second score, 

named Best Interface (BI) score, and similar to the approach developed for the JET2 
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program35, the predicted interface is compared to each reference experimental interface 

separately, and only the predicted interface associated with the best binding site prediction 

performance was kept (Figure S4b). 

Interface analysis 

Search for alternate interfaces protocol 

After coloring the residues of the 358 proteins of the SubHCMD dataset according to their 

PIP value, we realized a systematic visual inspection of the binding site predictions, which led 

to the identification of alternate binding sites predictions in 188 cases (53% of the protein 

dataset). To explain the existence of these predicted alternate binding sites, we searched for 

alternate experimental partners for the 358 proteins of the SubHCMD dataset. In this 

perspective, we first analyzed for each one of the proteins whether the original PDB structure, 

from which the protein was extracted, comprises other chains that are not included in the 

SubHCMD dataset, and which could bind on the predicted alternate interaction site. We 

distinguish the cases where the alternate experimental partner identified with this analysis is a 

protein (“Interface with another protein chain of the same pdb structure not included in the 

dataset”) and the cases where the alternate experimental partner identified consists of a DNA 

or RNA molecule (“Interface with nucleic acid”). Then, for proteins with predicted alternate 

binding sites that remained unexplained after this first step of investigation, we searched in 

the PiQSi (Protein Quaternary Structure investigation) database 47 for possible partners fitting 

our predicted binding sites. This database allows the investigation and curation of quaternary 

structures by using information about the quaternary structure of homologous proteins. The 

PiQSi webser thus allowed searching for possible homodimeric structures of the proteins that 

are not described in the original PDB structure (“Interface from homodimers”) and whose 
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interfaces correspond to the predicted alternate binding sites. We also investigated the 

quaternary structures of homologous proteins to identify complexes between proteins of the 

SubHCMD dataset and partners different from those observed in the original PDB structures 

to explain the predicted alternate binding sites. Again, we differentiate the interface according 

to the nature of the heterodimer partner identified with PiQSi: “Interface from heterodimers” 

for proteins and “Interface with nucleic acids” for DNA and RNA. 

Nucleic acid interfaces.  

Since 45 proteins in the SubHCMD dataset also present an interface with nucleic acids, we 

compared the 48 nucleic acid experimental interfaces (NAI) existing between a protein of our 

dataset and one molecule of nucleic acid (8 with DNA and 40 with RNA, 3 proteins 

presenting 2 distinct interfaces with RNA) to the 501 initial protein-protein reference 

experimental interfaces (PPI) formed by proteins of our dataset using the following metrics:  

- Fraction of each residue type in the interface (FRIres(type)): 

where Nres(type)[interf] is the number of residues from the corresponding type present in the 

experimental interface and Nres(total)[interf] the total number of residues in the interface. 

- Number of each residue type in the interface 

- Accessible surface area (ASA) computed with NACCESS 46 

- Binding site global charge in the interface. 

Using a one-tailed Wilcoxon test 48, we evaluated for each one of these metrics whether the 

mean value associated with the NAI was significantly different from the mean value observed 

in PPI. We also evaluated whether the mean value of the fraction of each residue type in the 

interface (FRIres(type)) in the NAI was significantly different from the one observed in the 

whole corresponding protein surface (FRIres(type)[surface]): 

!16

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/244913doi: bioRxiv preprint 

https://doi.org/10.1101/244913
http://creativecommons.org/licenses/by-nc-nd/4.0/


where Nres(type)[surface] is the number of residues of the corresponding type present in the total 

surface  and Nres(total)[surface] the total number of residues in the surface.  

Ocupancy rate.  

For every protein included in our dataset, we computed the occupancy rate of each predicted 

binding site on its surface, to see if some binding sites are more targeted by the protein 

partners during the simulations. For a protein pair P1P2, the occupancy rate of a given binding 

site on the surface of P1 is defined as the fraction of docking poses for which this binding site 

is selected as the best interface using the BI scoring scheme described earlier. The global 

occupancy rate for each interface at the surface of P1 is then computed as the average of the 

occupancy rates for all the possible cross-docking partners P2. 

2P2I inspector.  

We used the occupancy rates to extract from the SubHCMD dataset 85 proteins (Table S2) 

presenting one primary interface (PrimI), and one secondary interface (SecI). To be included 

in this part of the analysis, proteins should present at least 2 binding sites on their surface, and 

the occupancy rate for the PrimI should be at least 50% larger than the occupancy rate for the 

SecI (Table S2). 43 descriptors (Table S3) were computed for each one of the 170 protein 

complexes (85 complexes forming the PrimI and 85 complexes forming the SecI) using the 

2P2I inspector website 49. Predicted interfaces with no corresponding experimental binding 

site or interfaces with a non-protein partner (nucleic acids) could not be included in this part 

of the study since the 2P2I inspector website only accepts protein PDB files as input. We then 

evaluated for each descriptor if the mean value observed for this descriptor in the PrimI was 

significantly different from the one observed for the SecI using a one-tailed paired Student 
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test. 

Statistical analysis 

The R Wilcoxon Mann-Whitney algorithm 50 was used to compute the one-tailed Wilcoxon 

test to evaluate whether the mean value observed for the fraction of each residue type in the 

interface, the number of each residue type in the interface, the accessible surface area and the 

binding site global charge in the NAI were significantly inferior (option “less”) or 

significantly superior (option “greater”) than the mean values observed in the PPI. To correct 

for multiple tests for the fraction of each residue type in the interface and the number of each 

residue type in the interface, the Bonferroni threshold 51 was applied to evaluate the statistical 

significance of the p-values obtained (Bonferroni threshold is equal to 0.05/Nres(type), with 

Nres(type) being the number of residue type tested). 

The R tool was used to compute the one-tailed paired Student test 52 to evaluate for each 2P2I 

inspector descriptor if the mean value observed for this descriptor in the PrimI was 

significantly inferior (option “less”) or significantly superior (option “greater”) than the one 

observed for the SecI. To correct for multiple tests, the Bonferroni 51 threshold was applied to 

evaluate the statistical significance of the p-value (Bonferroni threshold is equal to 0.05/

Ndescriptors, with Ndescriptors being the number of computed 2P2I inspector descriptors). 

All graphics were produced using the statistical and graphical tool R (http://www.r-

project.org/). 
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Results 

We must recall that, since the point of this work is to  investigate  the  prediction  of  binding 

sites on protein surfaces with no prior knowledge of the binding partners, and not the correct 

docking of experimentally known partners, which can be achieved via other more effective 

but much more computationally demanding methods 53, we did not evaluate the quality of the 

best structural predictions for the docked complexes. However, in an earlier work 21, where 

we performed cross-docking simulations on a limited test-set involving 12 proteins (using 

their bound structures), our method was able to predict correctly the position of the ligand 

protein with respect to its receptor with an rsmd of the Cα pseudoatoms below 3 Å, thus 

validating the quality of the force-field used in our systematic rigid body docking algorithm 

called MAXDo. Furthermore, this force-field, which was originally developed by Zacharias 

for protein-protein docking 38, has been successfully used on numerous occasions for the 

prediction of protein complex structures, especially during the CAPRI contest where the 

unbound structures of the protein partners are used 39,54,55. 

Identification of protein interaction sites 

Classically, the performance of a cross docking method to identify protein interaction sites is 

assessed using complexes formed by experimental partners. Therefore, the evaluation of the 

method is limited to the prediction efficiency for identifying one reference experimental 

interaction site on each protein’s surface. However, many proteins are known to be able to 

interact with different partners and to present multiple binding sites on their surface 56-58. 

Among the 358 proteins used for this CC-D study, 96 present more than one known 

experimental partner and thus potentially complex binding sites distributions (with single sites 

binding several partners or/and multiple patches, see ref. 36). Consequently, we developed a 
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new protocol for the evaluation of the binding site predictions for these proteins and we 

compared the use of two scoring schemes accounting for multiple binding sites, the Global 

Interface (GI) score and the Best Interface score (BI) (detailed in the Material and Methods 

section), for evaluating the binding sites prediction.  

The performances of the GI and BI scores are summarized in Table 1, Figures 1 and 2. 

Differences only appear for the 96 proteins (out of the 358 proteins included in the dataset) 

associated with more than one experimental partner, the two scoring schemes being identical 

when only one experimental partner is available (Figure S5). When considering the complete 

dataset of 358 proteins, the BI score is associated with a higher overall AUC value (0.732 

compared to 0.696, while random predictions would give an AUC value of 0.5) and lower 

minimum error (0.48 compared to 0.51) than the GI score (Figure 1). For 80 over the 96 

proteins with more than one experimental partner included in the dataset, the best individual 

AUC is obtained with the BI scoring scheme. The GI scoring scheme is associated with an 

individual AUC superior to the BI scoring scheme for only 12 proteins over 96. As a 

consequence, we chose to use the BI score for the rest of the analysis. 

Identification of alternate interfaces different from the reference experimental interfaces 

Predicted alternate interfaces 

The efficiency of the PIP values for predicting protein interfaces in different protein 

functional groups has been assessed in our earlier work 24 on 168 proteins from the Docking 

Benchmark 2.0 28. Here the individual AUC values obtained with the 358 proteins of the 

dataset show a large distribution in the binding site prediction efficiency depending on the 

protein studied, even when using the BI score (see Figure S6). 66 proteins are associated with 

very high binding site prediction efficiency, with individual AUC values superior to 0.9, 
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whereas the individual AUC values lie below the random prediction threshold of 0.5 for 68 

proteins (i.e. 19% of the complete set). By coloring the protein surface residues with the PIP 

values resulting from the cross-docking calculations, we could observe predicted alternate 

interfaces that are visibly different from the expected reference experimental interfaces for 

188 out of the 358 proteins included in the dataset (53%). This visual observation can be 

partially correlated with the individual AUC values since for all 68 proteins for which the 

binding site predictions performance are below the random prediction threshold (AUC equal 

to 0.5), predicted alternate interfaces are observed. Conversely, only 24 % of proteins with 

individual AUC values above 0.75 present predicted alternate interfaces, and this rate 

decreases to 9 % when focusing on proteins with individual AUC values above 0.9. In order 

to proceed in a more systematic and observer-independent approach, we used the correlation 

between the visual observations and the false discovery rate (FDR) computed using the 

optimal PIP-cutoff of 0.15 (Figure S7). We computed the optimal threshold of FDR with the 

normalized error function, and obtained an optimal value of 0.67. Using this value, we assume 

that a protein associated with a FDR superior to 0.67 will present an alternate binding site 

whereas a protein with a FDR inferior to 0.67 will not present a predicted alternate binding 

site. Indeed, 164 proteins over the 188 for which predicted alternate interface were visualized 

(87%) present a FDR superior to 0.67 and only 16% of proteins for which no predicted 

alternate interface could be observed present a FDR superior to the optimal FDR threshold. 

Binding site predictions for proteins with no visual predicted alternate interface and FDR 

values superior to 0.67 include the reference experimental interfaces, but are larger than them. 

Rationalizing the prediction of alternate interfaces 

In an earlier study 24, we showed for some examples that the apparent failure of cross-docking 

calculations for predicting experimental binding sites could be explained by the detection of 
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alternate interfaces formed by the protein with other biomolecular partners that are not present 

in the original reference dataset. We decided to push this analysis further in an exhaustive 

fashion by investigating whether it is possible to find experimental partners that would bind 

on the predicted alternate interfaces and to which extent. For 146 proteins over the 188 

proteins (78%) with predicted alternate interfaces, we could identify an alternate experimental 

partner, not included in the original dataset (and therefore in the docking calculations), whose 

experimental interface with the protein under study corresponds to the predicted alternate 

interface. Eventually, predicted alternate interfaces could be segregated in 3 categories: 

interfaces with another protein partner (interfaces with another protein chain from the same 

PDB structure not included in the dataset, interfaces from homodimers; interfaces from 

heterodimers); interfaces with nucleic acids; unexplained predicted alternate interfaces (note 

that small ligand-binding sites, as described in ref. 35 were not detected in the process).  

Interfaces with another protein partner 

Interface with another protein chain from the same PDB structure not included in the dataset. 

Figure 3a presents the case of the structural protein collagen alpha 2 (IV) (1LI1_F). In our 

dataset, 2 experimental partners for this protein are included: the collagen alpha 1(IV) 

(1LI1_B) and a second monomer of collagen alpha 2 (IV) (1LI1_C) (shown in grey and black, 

respectively, on Figure 3a). However, the residues of 1LI1_F presenting the highest PIP 

values do not belong to any of the expected reference experimental interfaces, leading to a 

low individual AUC value of 0.360. Nevertheless, the global 1LI1 PDB structure comprises 

six protein chains in total, and the residues of 1LI1_F presenting the highest PIP values are in 

fact those involved in the interface with two other chains of the same PDB structure not 

included in our dataset, 1LI1_D (Figure 3a, shown in smudge green) and 1LI1_E (Figure 3a, 

shown in green). When adding the information about these new reference experimental 
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interfaces, the individual AUC of the binding site prediction associated with 1LI1_F increases 

to 0.689 (corresponding to the interface with 1LI1_E). One must note that the binding sites of 

1LI1_D and 1LI1_E on the surface of 1LI1_F are contiguous. These two sites form a large 

patch that can bind multiple partners (similar to what could be observed in refs. 35 and 36), and 

in this specific case, the GI score computed by comparing the PIP values to the global 

reference interface obtained by concatenating the 1LI1_D and 1LI1_E experimental interfaces 

performs better than the BI score (0.800 vs 0.689). We proceeded in the same way for each 

one of the proteins of our dataset and we identified 81 proteins over 188 with predicted 

alternate interfaces (43%), whose predicted alternate binding site corresponds to the interface 

with another protein chain of the same PDB that was not included in the original dataset. In 

addition to these 81 proteins, 10 proteins (1AVO_B, 1D8D_A, 1D8D_B, 1JJO_C, 2NNA_A, 

2NNA_B, 3BRT_B, 3BRT_C, 3C5J_A, 3C5J_B) present enhanced binding site predictions 

when adding new reference experimental interfaces from other protein chains of the same 

PDB structure not included in the dataset. These 10 proteins do not present obvious predicted 

alternate interface, i.e. their individual AUC values are superior to 0.5, their FDR values 

computed at the optimal PIP cut-off of 0.15 are below 0.67 and no predicted alternate 

interface could be detected by visual inspection (Figure S8a-j, left panels). In fact, as 

illustrated in Figure S8a-j (right panels), the new experimental interfaces are overlapping the 

initial reference experimental interface, explaining why no predicted alternate interface was 

detected at first. Finally, taking into account all these new reference experimental interfaces, 

the global performance of the binding site prediction obtained with the BI score and measured 

using the overall AUC increases from 0.732 (value obtained with the initial reference 

experimental interfaces) to 0.776 (Figure S9, green line). 

Interfaces from homodimers and heterodimers. Using the PiQSi webserver 47, we searched for 
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alternate partners for the 188 proteins with predicted alternate binding sites. For 12 proteins 

over these 188 proteins (6%), interfaces formed in homodimeric structures (described in the 

PiQSi database) overlap alternate binding sites predicted using the PIP values, as illustrated in 

the Figure 3b. Adding these new reference experimental interfaces to the binding site 

prediction calculations leads to only a small increase of overall AUC (0.736 vs 0.732, Figure 

S9, blue line). In the same way, for 22 proteins over the 188 proteins investigated (12%), we 

could identify homolog proteins forming heterodimeric complexes that could explain the 

predicted alternate binding site. This is notably the case for the RalA protein (2BOV_A) that 

presents one of the lowest binding site predictions quality (individual AUC = 0.232). As 

shown in the Figure 3c, cross-docking led to the prediction of an alternate binding site on the 

opposite side of 2BOV_A compared to the reference experimental interface with the C3 

ribosyltransferase (2BOV_B). Using the PiQSi database, we could identify another complex 

(PDB ID: 1UAD) between the same RalA protein (1UAD_A) and a different partner, the Sec5 

protein (1UAD_C). The experimental interface between RalA and Sec5 perfectly concurs 

with the alternate interface predicted by cross-docking on the surface of RalA (2BOV_A). 

The inclusion of these heterodimeric experimental interfaces in the reference binding sites 

dataset leads to an increase of binding site prediction performance using the BI score, with an 

overall AUC value of 0.749 (Figure S9, cyan line).  

Single docking vs Cross docking 

To study whether similar interface prediction could be obtained by docking a single, randomly 

selected in the PDB, protein against one protein of the subHCMD dataset, i.e. using single-

docking, we used the 4 proteins previously presented as test cases: 1LI1_F, 2P1L_B, 

2BOV_A and 1GT0_D. For each case, we computed all the individual AUC values obtained 
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when performing single-docking with every proteic partner from the SubHCMD dataset 

(Figure S10).  

Correlation between JET score and PIP values 

To reduce the computational time associated with cross-docking, we used binding sites 

predictions from JET to restrain the conformational space of the docking algorithm. The JET 

score we used, ranging from 0 to 10, represents the number of time a residue was selected as 

interface residue by an iteration of iJET. To explore whether this initial pre-filtering protocol 

impacts the resulting PIP values and thus the binding site predictions, we evaluated the 

correlation between <PIP> (i.e., the average PIP value of a given residue after docking with 

all the proteic partners from de SubHCMD dataset) and JET score values for each residue of 

each protein (see Figure S11 for examples of correlation between <PIP> and JET score within 

a protein). An analysis of variance (ANOVA) on the distribution of <PIP> as a function of the 

JET score (Figure 4) shows that the average <PIP> for each JET score group differ 

significantly (p-value below 2E-16). This is particularly true for the two extreme values of JET 

score, 0 and 10, associated with respectively lower and higher average <PIP> compared to the 

other JET score groups. However, an ANOVA on the distribution of <PIP> for JET score 

groups equal to 5, 6, 7, 8 and 9 results in a p-value of 0.126. The average <PIP> is not 

significantly different between these groups, even though only residues with JET score equal 

or above 7 were considered as predicted interface residues in our protocol. We assume that, 

beside the agreement for binding site predictions between JET score and <PIP> values, the 

cross-docking approach is not biased by the pre-filtering step using JET score. Residues not 

predicted as interface residues using JET could be identified using the cross-docking approach 

and conversely, residues predicted as interface residues by JET were associated with low 

!25

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/244913doi: bioRxiv preprint 

https://doi.org/10.1101/244913
http://creativecommons.org/licenses/by-nc-nd/4.0/


<PIP> values. One such example is the case of the protein 3BES_R (Figure S12), for which 

accurate binding site predictions could be obtained both by using JET scores and cross-

docking results, except that both approaches are pointing at two different interfaces 

corresponding to different partners. 

Interfaces with nucleic acid molecules 

For 31 proteins over the 188 with predicted alternate interfaces (16%), the binding signal 

observed with cross-docking simulations turned out to correspond to a binding site with 

nucleic acids. The transcription factor SOX-2 (1GT0_D) is an example of such proteins. The 

PDB structure 1GT0 represents the complex formed between SOX-2 (1GT0_D), the octamer-

binding transcription factor 1 (1GT0_C) and a DNA double strand. The 1GT0_C and 

1GT0_D proteins were included in our cross-docking dataset, unlike the DNA double strand. 

When focusing on the cross-docking binding site predictions for 1GT0_D (Figure 3d), a weak 

binding site prediction of the interface with 1GT0_C is obtained (individual AUC of 0.595). 

Indeed, the residues of 1GT0_D presenting the highest PIP values are those surrounding the 

DNA double strand. Thus, using our cross-docking procedure, we could identify interfaces 

with non-proteic alternate partners, like nucleic acids, not included in the original dataset used 

to run the simulations. New binding site prediction performances were computed including 

this additional experimental interfaces with nucleic acids leading to a slight increase in the 

overall AUC value (0.739 vs 0.732) (Figure S9, magenta line). 

Since our docking scheme has been developed to study protein-protein interactions and only 

proteins were included in the CC-D simulations, its ability to predict nucleic acid binding 

sites came as a surprise to us. However, these predictions concur with earlier work using 

evolutionary data, which showed that DNA and RNA binding sites do overlap with protein 
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binding sites in many cases 44. We thus decided to analyze the nucleic acid interfaces (NAI) at 

our disposal to try to understand this point (Figure S13). We compared the mean value of the 

fraction of each residue type in the interface (FRIres(type)), of the number of each residue 

type in the interface, of the accessible surface area and of the binding site global charge in the 

interface in the NAI and PPI using a one-tailed Wilcoxon test. We also compared the 

FRIres(type) in the interface in the NAI compared to the fraction of each residue type 

observed in the whole corresponding protein surface (FRIres(type)[surface]) using a one-

tailed Wilcoxon test. Compared to PPI, our data show a global enrichment of the NAI in the 

following residues: Arg, Lys (both residues are positively charged in the Zacharias coarse-

grain model), His, Gly, and Ser; while NAI are poorer in Asp and Glu (negatively charged in 

the Zacharias coarse-grain model), Phe and Val. In addition, NAIs appear to be significantly 

more charged than PPIs (mean binding site global charge of 9.5, vs 0.075 with p-values 

inferior to 2.2E-16) but no significant difference in size is observed (with a mean ASA of 2324 

Å2 vs 1956 Å2). We also evaluated whether the nucleic acid binding predictions obtained with 

the cross-docking results were biased by the JET binding site predictions by again using an 

ANOVA on the <PIP> distribution for all the residues predicted to belong to nucleic acid 

binding site as a function of their JET score (Figure S14). The mean <PIP> value is 

significantly different between the JET score groups (p-value < 2E-16), since the mean <PIP> 

value is lower in the group of JET score equal to 0 and higher in the group of JET score equal 

to 10. However, if we reiterate the analysis by excluding these two JET score groups, we 

obtain a non-significant p-value equal to 0.601 showing that the mean <PIP> value is not 

significantly different between JET score groups corresponding to residues not predicted as 

interface residues by JET (JET score equal to 1, 2, 3, 4, 5 and 6) and JET score groups 

corresponding to residues predicted as interface residues by JET (JET score equal to 7, 8 and 
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9). 

Unexplained interfaces and global prediction performances 

For only 42 proteins over the 188 (22%) with a predicted alternate interface, we could not 

identify an alternate biomolecular partner explaining the predicted alternate binding site. 

When adding all the newly identified alternate reference experimental interfaces to the initial 

ones, the binding sites prediction performances jumped from 0.732 to 0.801 (Figure 1, green 

line and Table 1), with enhanced sensitivity, specificity and precision values. Using the BI 

score with reference experimental PPIs for the original dataset, we failed to correctly predict 

the binding site location on the protein surface for 68 cases (out of 358 proteins), which 

presented an individual AUC value below 0.5. After including the alternate experimental 

binding sites in our calculations, only 10 proteins kept an individual AUC value below 0.5 

(see Figure 5). 

Are some interfaces more targeted than others with the cross-docking simulations? 

The binding site predictions resulting from cross-docking simulations were used to calculate 

occupancy rate for each binding site (Figure S15); i.e. the fraction of docking poses for which 

a given binding site is selected as the best interface (see the Material and Methods section). 

The analysis of the occupancy rate distribution leads to the distinction of two major 

behaviors. The first concerns proteins with one binding site that is predominantly targeted by 

the different partners during the cross-docking simulations (Figure S16a) and the second 

concerns proteins presenting similar occupancy rates for their different predicted binding sites 

(Figure S16b). To gain insight into why some binding sites prevail on others, we used the 

2P2I inspector v2.0 website 27 to compute 43 descriptors for the primary (PrimI) and 

secondary (SecI) interfaces found on 85 proteins (Table S2 and Figure S17). For each of the 
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2P2I inspector descriptors, we performed a statistical analysis using a one-tailed Student test 

to evaluate whether this descriptor's mean value is significantly inferior or superior in the 

PrimI compared to its mean value in the SecI. To correct for multiple tests, the Bonferroni 

threshold was applied to evaluate the statistical significance of the p-value. The percentage of 

polar contribution to the interface is the only descriptor presenting a mean value significantly 

inferior in PrimI compared to SecI (Figure S18 and Table S3). The mean values of 15 

descriptors within the PrimI are significantly superior to their mean value associated with the 

SecI (Figure S19 and Table S3). These descriptors belong to the following categories: Number 

of non-bounded contacts (ContRes, ContRN, ContRP, ContRHyd, ContRC, Nb of non-bonded 

contacts), Gap volume, Accessible surface area (% Interface Accessible Surface Area, 

Interface Accessible Surface Area, % Non polar contribution, Total Interface Area), Segments 

(Number of Segments, Total Nb of Segments, a segment being defined as a stretch of 

interface residues that may contain non-interface residues but not more than four consecutive 

ones), and General Properties (Planarity). 
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DISCUSSION 

Identification of protein interaction sites 

The ability of cross-docking simulations to identify binding sites on protein surface has 

already been proved and studied with docking benchmark datasets of 12 proteins for the proof 

of concept 21, and 168 proteins for more recent studies 23,24. However, to the best of our 

knowledge, the impact of the presence of multiple binding sites on proteins surface, a 

common feature observed in the protein world, has never been systematically addressed. We 

thus decided to tackle this problem, using 358 non-redundant proteins that were not extracted 

from a docking benchmark, but from a database of proteins conceived to study proteins 

involved in neuromuscular diseases or in the pathways monitoring essential cardiac or 

cerebral mechanisms. Among those proteins, 96 presented more than one experimental 

partner in the dataset and thus more than one binding site on their surface. We compared the 

use of 2 scores, GI and BI to ensure the optimal evaluation of binding sites predictions. Using 

the GI scoring scheme with proteins presenting multiple binding sites on their surface, the 

performance of the cross-docking method to make accurate binding site predictions could 

appear artificially low in cases where one binding site was correctly predicted and the other(s) 

only partially. The BI score, which only uses as reference the experimental interface the best 

predicted, avoids this bias and we thus decided to perform the rest of the study with the BI 

score. Note that this best patch approach was also used to compute the performances for 

predicting protein binding sites with the JET2 tool and with similar conclusions 35. We 

obtained good overall binding site prediction performances with the BI score that are only 

slightly inferior to the ones obtained in earlier cross-docking studies involving respectively 12 

21 and 168 proteins 23. The differences observed in terms of specificity and sensitivity could 

be explained by the differences in the proteins dataset used. In the two previously published 
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studies, proteins were extracted from docking benchmark dedicated to protein docking 

evaluation, whereas in this study, the proteins were selected according to their biological 

functions and not for benchmarking purpose, and thus represent more challenging cases for 

docking predictions. In addition, one should note that the SubHCMD dataset only comprises 

bound protein structures, and our previous studies 24 have shown that these will perform less 

well than unbound structures for binding site prediction via CC-D, probably because a 

protein’s specific conformational adaptation to a given partner might decrease the quality of 

its binding to other potential partners. We chose to use the SubHCMD dataset and not a 

benchmark database since the SubHCMD is part of a bigger dataset we are currently 

investigating to learn more about some proteins involved in neuromuscular diseases. 

However, a comparable study could have been achieved with a benchmark database such as 

the Docking benchmark 5.0 25, DOCKGROUND 26, or 2P2IDB 27. It is to note that some 

proteins included in our SubHCMD dataset are also present in these benchmarking databases 

(1ATN_A, 1ATN_D, 1US7_A, 1US7_B, 2C0L_A, 2C0L_B, 2OT3_A and 2OT3_B are in 

both SubHCMD and Docking Benchmark 5.0; 1AOX_A, 2BOV_A, 2BOV_B, 1M63_E, 

2C0L_A, 2C0L_B, 1MHW_A, 3BS5_A and 3BS5_B are in both SubHCMD and 

DOCKGROUND).

Identification of alternate interfaces different from the reference experimental interfaces 

Even using the BI score, i.e. the score accounting the best for multiple binding sites, the 

quality of prediction associated with some proteins was very low. A systematic visual 

inspection of the proteins, realized by coloring the proteins residues according to their PIP 

values, highlighted 188 cases where the predictions led to the identification of alternate 

binding sites. We could define a threshold of FDR (computed at the optimal PIP cut-off of 

0.15) equal to 0.67 that could be used to replace the systematic visual inspection to detect 
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proteins with predicted alternate binding site. For 78% of the proteins for which we could 

visualize a predicted alternate binding site, we identified an alternate partner, not included in 

the SubHCMD dataset, which fits the corresponding interface. For most cases, this alternate 

partner is a protein, but more surprisingly, the alternate partner can also consist of nucleic 

acids. Since our docking protocol was tuned for protein-protein docking and only protein 

structures were included in the calculations, our ability to predict nucleic acid binding site 

was unexpected. We could highlight differences between NAI and PPI in terms of amino acid 

composition, particularly for charged residues, positively charged residues being favoured in 

NAI and negatively charged residues being favoured in PPI, in agreement with earlier studies 

(see for examples 59-63). The NAI also presented higher global charge and ASA values. The 

higher global charge observed in NAI (linked to the higher abundance of positively charged 

residues) could be an explanation of the ability of our CC-D protocol to identify NAI, since 

we used the first version of the Zacharias coarse-grain model’s force field that overestimates 

the contribution of the electrostatic term to the overall interaction energy. Even if JET is able 

to identify DNA and RNA binding sites 44, we did not identify an overall correlation between 

<PIP> and JET score values for residues in proteins presenting nucleic acid binding sites, 

even if the mean value of <PIP> was the lowest in the JET score=0 group, and the highest in 

the JET score=10 group. Thus, the identification of nucleic acid binding sites cannot be 

explained only by the JET binding site predictions pre-filtering. Finally, for only 22% of the 

188 proteins presenting an alternate predicted binding site, we could not find an experimental 

partner binding on the alternate interaction site, but we cannot rule out the fact that the current 

available experimental data are yet insufficient. For all the proteins for which alternate 

partners were found, taking into account all the experimental interfaces residues (both from 

the reference experimental interface and the alternate experimental interface) for the 
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evaluation of the binding site predictions via cross-docking leads to a significant increase of 

the overall AUC (from 0.732 to 0.801), and of the method’s sensitivity, specificity and 

precision, that were similar to those obtained in previous studies 21,24. Furthermore, for only 

10 proteins the binding site predictions were associated with individual AUC values below the 

random threshold of 0.5, which represents a significant improvement compared to the case 

where only reference experimental interfaces are taken into account (68 proteins with 

individual AUC values < 0.5). For a protein with multiple binding sites on its surface, one 

binding site (which we defined as “PrimI”) could be targeted preferentially compared to the 

others (called “SecI”). To understand why some interfaces were more targeted than others 

during our docking protocol, we used structural descriptors to compared both type of 

interfaces and we showed that the “PrimI” were larger, more hydrophobic, more planar and 

characterized by a larger number of contacts between the 2 partners than the “SecI”. 

Interestingly, these findings give some insights regarding structural determinants preferences 

in protein-protein interactions linked to our docking protocol, and can be compared with the 

structural features characterizing protein-protein interaction sites identified in previous studies 

64-68. According to the protein-protein interfaces size classification established by Lo Conte et 

al. 65, “PrimI” size median value is typical of the large interface category (3359.5 Å²) whereas 

the “SecI” size median value (1349.3 Å²) is similar to the sizes observed in the standard-size 

interfaces. Moreover, De et al. 68 showed that nonobligatory protein-protein interfaces, i.e. 

interfaces observed in transient protein-protein complexes, present generally smaller interface 

areas associated with weaker interactions than the obligatory protein-protein interfaces (i.e. 

permanent complexes interfaces). Thus, the ability of our docking protocol to preferentially 

predict large protein-protein interfaces makes it relevant for the determination of permanent 

interfaces. Focusing on the hydrophobicity parameter, different trends were observed in the 
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studies, some interfaces being more hydrophobic (homodimers 67, standard-size protease-

inhibitor interfaces 65) and other relatively polar (antibody-antigen interfaces 65). 64 Finally, 

the relative flatness of protein-protein interfaces has already been described 64, Chakrabati and 

Janin 66 however, found that this flatness was variable. For example antibody-antigen 

interfaces are more planar than average, whereas protease-inhibitor interfaces are less planar 

than average. Finally, we showed that the cross-docking protocol is essential for accurate 

binding site predictions by comparing the results of single docking and cross-docking 

calculations. If one selects a single random protein as a partner for single docking, one may 

fail to correctly predict interface residues, and only the large number of proteins used during 

the cross-docking simulations can ensure the statistical robustness of the predictions. 

Additionally, a previous cross-docking experiment conducted with a different docking 

algorithm 69 was analyzed to explore possible binding site predictions discrepancies between 

docking of experimental partners and docking of non-interactors. The results showed that in 

some cases the individual partner preferentially targets the experimental binding site whereas 

the non-interactors bind to another location, but in the majority of cases, both the individual 

partner and the non-interactors target the same site. We also show that using the JET score to 

pre-filter the starting conformations of the docking did not bias the binding site predictions 

obtained with the cross-docking calculations. It is to note that in our protocol, the threshold of 

the JET score we used (corresponding to the number of time a residue was predicted as 

interface residue by an iteration of iJET) was defined as 7. However, lower values of JET 

score can still be meaningful for binding site predictions, as mentioned in the ref. 44. 

Conclusion 

In this work, we evaluate the ability of our cross-docking protocol to lead to the identification 
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of interaction sites on proteins surfaces by using the PIP index computed for each protein 

residue. Unlike previous studies, the SubHCMD dataset of 358 proteins used is not a 

benchmarking dataset developed for protein docking evaluation, but a subgroup from a larger 

database (2246 proteins) built around about 400 proteins known to be involved in 

neuromuscular diseases. The SubHCMD proteins thus represent more challenging test cases 

for binding sites prediction, particularly for those presenting multiple binding sites on their 

surface. We first compared the use of two scores accounting for proteins with multiple 

binding sites: the GI score that compares PIP values to a single global reference experimental 

interface and the BI score that treats separately each known experimental interface and keeps 

only the one that is best predicted. Overall, high quality binding sites predictions are obtained 

using the BI score, which is best suited for proteins presenting multiple binding sites. 

However, some proteins were associated with very low performance. In particular, 68 proteins 

(19 % of the complete set) presented an individual AUC below the random threshold of 0.5. 

For these 68 proteins and 120 more, alternate interfaces different from the expected reference 

experimental interfaces were predicted. For about 80% of them, we could identify hidden 

partners, i.e. a partner not included in the SubHCMD dataset and that binds in the predicted 

interaction site. An unexpected result was the prediction of nucleic acid binding sites, 

probably linked to the force field used, which overestimates the electrostatic interactions 

between charged residues. The ability of the cross-docking simulations to guide towards the 

identification of these alternate binding sites (and thus of alternate potential partners) is a very 

promising result since the final aim of the project is to understand the function, and to identify 

binding sites and potential binding partners for the 400 proteins involved in neuromuscular 

diseases included in the HCMD (Help Cure Muscular Dystrophy) dataset. We also showed 

that for proteins with multiple binding sites on their surface, one binding site can attract the 
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majority of the docking partners, and we could identify some interface structural determinants 

linked to our docking protocol. This study demonstrates that our cross-docking simulations 

protocol enables to identify accurately and efficiently binding sites on proteins surfaces and 

defines a first step in the analysis of the whole HCMD dataset of 2246 proteins.  
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Figure legends 

Figure 1. Overall ROC curves of the PIP prediction obtained using the Global Interface score 

using only the reference experimental interfaces (REI) (blue line), using the Best Interface 

score with the REI (red line), and using the BI score with both the REI and the alternate 

experimental interfaces (AEI) identified with other protein partners or with nucleic acid 

molecules (green line). The diagonal dotted line corresponds to random prediction. See Figure 

S4 for a schematic description of how the BI and GI scores are calculated. 

Figure 2. Enrichment of the interface residues from the 358 proteins of our CC-D dataset 

using the PIP index shown by comparing the fraction of true interface residues detected 

(sensitivity, solid line) with the total fraction of residues detected (coverage, dashed line) as a 

function of the PIP cutoff using the GI score (a) or the BI score (b). The vertical dotted lines 

correspond to the position of the optimal PIP cutoff leading to the minimal error function. 

Precision as a function of the PIP cutoff, the dotted horizontal line corresponds to random 

predictions : (c) GI score, (d) BI score) 

Figure 3. Mapping the PIP values on a protein's surface, high PIP residues are shown in blue 

and low PIP residues are shown in red. The reference experimental partner (ref) is shown in a 

black or grey cartoon representation, while the alternate partner (alt) is shown in green.  

(a)  The collagen alpha 2 (IV) (1LI1_F) with collagen alpha 1 (IV) (1LI1_B (ref) in grey), and 

other collagen alpha 2 (IV) monomers (1LI1_C (ref) in black, 1LI1_D (alt) in smudge 

green and 1LI1_E (alt) in green). 

(b)  Beclin 1 (2P1L_B) with Bcl-X (2P1L_A(ref)) and another monomer of Beclin 1 

identified using the PiQSi webser (alt).  

(c)  RalA protein (2BOV_A) with C3 ribosyltransferase (2BOV_B(ref)) and Sec5 protein 
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(1UAD_C(alt)).  

(d)  Transcription factor SOX-2 (1GT0_D) with the octamer-binding transcription factor 1 

(1GT0_C(ref)) and DNA (1GT0_A/B(alt)). 

Figure 4. Boxplot of the distribution of <PIP> values as a function of JET score for the 

complete SubHCMD dataset. The red dot and its corresponding label indicate the mean value 

of <PIP> for each JET score. 

Figure 5. Individual AUC value for each protein in the CC-D dataset obtained with the BI 

score. The black dots represent the individual AUC values obtained with the reference 

experimental interfaces (REI). The red dots represent the individual AUC values obtained 

when including the alternate experimental interfaces (AEI) identified with other protein 

partners or with nucleic acid molecules to the reference experimental interfaces. The blue 

circles highlight the 10 proteins that present individual AUC values below the random 

threshold of 0.5 (blue line) after including the alternate experimental interfaces. 
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Figure 1 
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Figure 2  

!45

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2018. ; https://doi.org/10.1101/244913doi: bioRxiv preprint 

https://doi.org/10.1101/244913
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3  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Figure 4 
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Figure 5
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