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ABSTRACT  42	

Previous positron emission tomography (PET) studies have quantified filamentous tau 43	

pathology using regions-of-interest (ROIs) based on observations of the topographical 44	

distribution of neurofibrillary tangles in post-mortem tissue. However, such approaches 45	

may not take full advantage of information contained in neuroimaging data. The present 46	

study employs an unsupervised data-driven method to identify spatial patterns of tau-PET 47	

distribution, and to compare these patterns to previously published “pathology-driven” 48	

ROIs. Tau-PET patterns were identified from a discovery sample comprised of 123 49	

normal controls and patients with mild cognitive impairment or Alzheimer’s disease 50	

(AD) dementia from the Swedish BioFINDER cohort, who underwent [18F]AV1451 PET 51	

scanning. Associations with cognition were tested in a separate sample of 90 individuals 52	

from ADNI. BioFINDER [18F]AV1451 images were entered into a robust voxelwise 53	

stable clustering algorithm, which resulted in five clusters. Mean [18F]AV1451 uptake in 54	

the data-driven clusters, and in 35 previously published pathology-driven ROIs, was 55	

extracted from ADNI [18F]AV1451 scans. We performed linear models comparing 56	

[18F]AV1451 signal across all 40 ROIs to tests of global cognition and episodic memory, 57	

adjusting for age, sex and education. Two data-driven ROIs consistently demonstrated 58	

the strongest or near-strongest effect sizes across all cognitive tests. Inputting all regions 59	

plus demographics into a feature selection routine resulted in selection of two ROIs (one 60	

data-driven, one pathology-driven) and education, which together explained 28% of the 61	

variance of a global cognitive composite score. Our findings suggest that [18F]AV1451-62	

PET data naturally clusters into spatial patterns that are biologically meaningful and that 63	

may offer advantages as clinical tools. 	64	
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1. INTRODUCTION 65	

Alzheimer’s disease (AD) is neuropathologically defined by the presence of 66	

widespread extracellular plaques containing amyloid-β and intracellular neurofibrillary 67	

tangles consisting of aggregated tau proteins [Braak and Braak, 1991; Masters et al., 68	

1985]. While amyloid-β may be present decades prior to symptom onset [Jansen et al., 69	

2015], the presence of neocortical tau is temporally more closely related to current 70	

cognitive status and degree of neurodegeneration, as convincingly demonstrated by 71	

studies utilizing post-mortem tissue, animal models, cerebrospinal fluid and, more 72	

recently, the positron emission tomography (PET) tracer [18F]AV1451 [Arriagada et al., 73	

1992; Bejanin et al., 2017; Cho et al., 2017; Nelson P. T. et al, 2013; Ossenkoppele et al., 74	

2016; Van Rossum et al., 2012]. [18F]AV1451 binds paired helical filaments of tau with 75	

high affinity and selectivity [Chien et al., 2013; Lowe et al., 2016; Marquié et al., 2015; 76	

Marquié et al., 2017; Xia et al., 2013], and can be used to investigate the distribution of 77	

tau pathology in the living human brain. Several studies have shown strong spatial 78	

resemblance between in vivo tau PET patterns and neuropathological staging of 79	

neurofibrillary tangles as proposed by Braak and Braak [Cho et al., 2016; Schöll et al., 80	

2016; Schwarz et al., 2016], reflecting prototypical progression from (trans)entorhinal 81	

(stage I/II) to limbic (stage III/IV) to isocortical (stage V/VI) regions [Braak and Braak, 82	

1991]. Furthermore, regional [18F]AV1451 retention co-localizes with sites of brain 83	

atrophy or hypometabolism [Ossenkoppele et al., 2016; Xia et al., 2017] and has been 84	

associated with impairments in specific cognitive domains [Bejanin et al., 2017; Cho et 85	

al., 2017; Ossenkoppele et al., 2016]. 	86	

 87	
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Given this strong regional specificity of tau pathology, it is important to consider 88	

how regions-of-interest (ROIs) are defined, as they could potentially impact study 89	

outcomes. To date, most studies employing tau-PET tracers involved ROIs constructed 90	

based on neuropathological studies. For example, some studies mimicked the Braak 91	

stages in vivo [Cho et al., 2016; Schöll et al., 2016; Schwarz et al., 2016], while others 92	

selected specific regions reflecting early (e.g. entorhinal cortex) or more advanced (e.g. 93	

inferior temporal cortex) disease stages [Johnson et al., 2016]. These approaches have 94	

several advantages as they are supported by fundamental research and enhance 95	

generalizability across studies. However, compared to neuroimaging, neuropathological 96	

data typically include only a few slices in a constrained number of brain regions, and 97	

brain tissue is affected by death [Scheltens and Rockwood, 2011]. Additionally, tau PET 98	

signal does not equal presence of tau pathology. There are several sources of 99	

[18F]AV1451 signal and noise, including target binding, off-target binding (e.g. 100	

Monamine oxidase, neuromelanin, vascular lesions, iron), non-specific binding and 101	

imaging related noise (e.g. partial volume effects) [Choi et al., 2017; Harada et al., 2018; 102	

Ikonomovic et al., 2016; Lockhart et al., 2017; Lowe et al., 2016; Marquié et al., 2015; 103	

Ng et al., 2017; Schöll et al., 2016]. An alternative approach could therefore be to select 104	

ROIs based on data-driven approaches [Dickerson et al., 2011; Grothe et al., 2017; 105	

Landau et al., 2011; Pankov et al., 2016], thereby taking full advantage of the abundance 106	

of information contained in neuroimaging data, but also accounting for the idiosyncrasies 107	

of PET imaging data. 	108	

In light of ongoing efforts to define appropriate ROIs and determine tau PET-109	

positivity, it is important to compare data-driven approaches (agnostic, “where is the 110	
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tau?”) with theory-derived ROIs based on post-mortem studies (directed, “is the tau 111	

here?”). In the present study, we applied an unsupervised algorithm to identify clusters of 112	

[18F]AV1451 signal and compared the spatial patterns of these clusters with 113	

neuropathologically derived ROIs described in previous publications. As a secondary 114	

analysis, we tested which ROIs best correlated with global cognition in an independent 115	

cohort of cognitively normal, mild cognitive impairment and AD dementia subjects. We 116	

hypothesized that our data-driven approach would corroborate neuropathological 117	

findings, but would also present novel information leading to enhanced associations with 118	

cognition. 119	

 120	

2. MATERIALS AND METHODS 121	

2.1 Participants 122	

Two separate cohorts were included in this study. Participants from the Swedish 123	

BioFINDER study were used to perform clustering analysis on [18F]AV1451 data, 124	

whereas participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were 125	

used to test associations between the clustering-derived ROIs and cognition. This design 126	

allowed us to not only probe the patterns of spatial covariance of [18F]AV1451, but also 127	

to assess these utility of these patterns as a general [18F]AV1451 biomarker without 128	

concern of overfitting or “double-dipping” (c.f. [Kriegeskorte et al., 2009]). 129	

Demographic, clinical and biomarker information for both cohorts are presented in Table 130	

1. 131	

The BioFINDER cohort is a multi-site study designed for the purpose of 132	

developing biomarkers for neurodegenerative diseases. More information can be found at 133	
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http://biofinder.se. Study participants included 55 subjects with normal cognition, 21 with 134	

mild cognitive impairment (MCI), and 47 with Alzheimer’s dementia, who had complete 135	

MRI and [18F]AV1451 PET data (Table 1). Patients with MCI were referred to a memory 136	

clinic and demonstrated objective cognitive impairment that could not be explained by 137	

another condition. AD dementia patients met criteria for the DSM-V [American 138	

Psychiatric Association, 2013] and NINCDS-ADRDA [McKhann et al., 2011] for 139	

probable AD, established by clinicians blinded to PET data. To optimize overlap with the 140	

ADNI cohort, dementia patients were only included if they presented with an amnestic-141	

predominant phenotype. Both dementia and MCI patients were only included in this 142	

study if they demonstrated abnormal Aβ1-42 levels in the CSF (INNOTEST, cut-off: 650 143	

ng/l; Palmqvist et al., 2015). The sample of controls selected for [18F]AV1451 scanning 144	

was intentionally enriched for β-amyloid positivity to include people in the preclinical 145	

stage of AD (see Table 1). This enrichment was achieved by ensuring that 50% of the 146	

cognitively normal participants invited for [18F]AV1451 imaging had shown positive 147	

PET or CSF β-amyloid measurements at previous visits. PET imaging for the study was 148	

approved by the Swedish Medicines and Products Agency and the local Radiation Safety 149	

Committee at Skåne University Hospital, Sweden. All participants provided written 150	

informed consent according to the Declaration of Helsinki, and ethical approval was 151	

given by the Ethics Committee of Lund University, Lund, Sweden. 152	

ADNI is a multi-site open access dataset designed to accelerate the discovery of 153	

biomarkers to identify and track AD pathology (adni.loni.usc.edu/). The current study 154	

included all ADNI individuals with complete [18F]AV1451 scans that were available in 155	
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November, 2016. This included 43 cognitively normal elderly controls, 37 patients with 156	

MCI, and 10 patients with a recent diagnosis of Alzheimer’s dementia (Table 1). 157	

In addition to imaging data, age, sex, education, diagnosis, amyloid-β status on 158	

[18F]florbetapir PET [Landau et al., 2013], and scores from six tests measuring global 159	

cognition or activities of daily living were downloaded from the ADNI-LONI website 160	

(adni.loni.usc.edu). The cognitive tests were as follows: Mini-Mental State Examination 161	

(MMSE) [Folstein et al., 1975]; Clinical Dementia Rating Sum of Boxes (CDRSB) 162	

[Hughes et al., 1982]; Alzheimer’s disease Assessment Scale 11 (ADAS11) [Rosen et al., 163	

1984] and 13 (ADAS13) [Mohs et al., 1997]; Everyday Cognition (ECog) [Farias et al., 164	

2008]; Functional Activities Questionnaire (FAQ) [Pfeffer et al., 1982]. We also 165	

downloaded the ADNI-MEM score, an episodic memory composite score provided by 166	

ADNI [Crane et al., 2012]. 167	

 168	

2.2 Imaging 169	

[18F]AV1451 images were processed using separate but nearly identical pipelines across 170	

the two cohorts. Acquisition and processing procedures for [18F]AV1451 processing in 171	

the BioFINDER cohort has been described elsewhere [Hansson et al., 2017]. Scans were 172	

reconstructed into 5-min frames and motion corrected using AFNI’s 3dvolreg 173	

https://afni.nimh.nih.gov/. Mean [18F]AV1451 images were created over a time-window 174	

of 80-100 minutes post-injection, and these images were coregistered to each subject’s 175	

T1 image in native space. Mean images were then intensity normalized using a complete 176	

cerebellar gray reference region to create standard uptake value ratio (SUVR) images. 177	

Coregistered MRI images were normalized to the MNI-ICBM152 template using 178	
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Advanced Normalization Tools (https://stnava.github.io/ANTs/) and the transformation 179	

parameters were applied to the SUVR images. Finally, SUVR images were smoothed 180	

with an 8mm FWHM Gaussian filter.	181	

For the ADNI cohort, mean 80-100 min [18F]AV1451 images, as well as 182	

MPRAGE images closest to [18F]AV1451 scans, were downloaded from the ADNI-LONI 183	

website. Details on acquisition procedures for these [18F]AV1451 and MRI images can be 184	

found elsewhere (http://adni.loni.usc.edu/methods/documents/). [18F]AV1451 images 185	

were processed in accordance to procedures described in [Schöll et al., 2016]. Briefly, T1 186	

images were processed using Freesurfer v5.3 and [18F]AV1451 images were coregistered 187	

to native T1s using Statistical Parametric Mapping 12 (www.fil.ion.ucl.ac.uk/spm/). 188	

SUVR images were created using a cerebellar gray reference region and images were 189	

normalized to MNI space using the parameters from the coregistered T1. Figure 1 shows 190	

mean [18F]AV1451 SUVR images stratified by diagnosis and amyloid status for each 191	

cohort.	192	

 193	

2.3 Clustering of [18F]AV1451 data 194	

Our primary analysis involved the derivation of data-driven ROIs by using unsupervised 195	

machine learning to elucidate stable patterns of [18F]AV1451 signal covariance across a 196	

cognitively diverse dataset. Cross-subject [18F]AV1451-PET covariance networks were 197	

derived from all 123 BioFINDER [18F]AV1451 images using an open-source 198	

unsupervised consensus-clustering algorithm called Bootstrap Analysis of Stable Clusters 199	

(BASC; Figure 2) [Bellec et al., 2010]. BASC is a two-step consensus-clustering 200	

algorithm that enhances the stability of the clustering process by repeatedly clustering 201	
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bootstrapped samples of the input data, and deriving the final partition from this stability 202	

matrix, rather than the original data (c.f. [Fred and Jain, 2005]). This approach offers two 203	

advantages in the context of this study. First, the stochastic nature of many clustering 204	

algorithms tends to lead to different solutions depending on their initialization state, 205	

whereas BASC performs clustering on a stability matrix generated from many solutions 206	

(and thus many initializations). This leads to greater reproducibility in the clustering 207	

solutions generated by BASC. Second, because the initial set of clustering analyses is 208	

performed on bootstrap samples of the input data, the final solution is less dependent on 209	

the clinical composition of the input data. 	210	

BASC was adapted to 3D [18F]AV1451 data by stacking all 123 BioFINDER 211	

[18F]AV1451 images along a fourth (subject) dimension, creating a single 4D image to be 212	

submitted as input. BASC first reduces the dimensions of the data with a previously 213	

described region-growing algorithm [Bellec et al., 2006], which was set to extract 214	

spatially constrained atoms (small regions of redundant signal) with a size threshold of 215	

1000mm3. In order to reduce computational demands, the Desikan-Killiany atlas 216	

[Desikan et al., 2006] was used as a prior for region constraint, and the data was masked 217	

with a liberal gray matter mask, which included the subcortex but had the cerebellum 218	

manually removed (since this was used as the reference region for [18F]AV1451 images). 219	

The region-growing algorithm resulted in a total of 730 atoms, which were included in 220	

the BASC algorithm. BASC next performs recursive k-means clustering on bootstrapped 221	

samples of the input data. After each clustering iteration, information about cluster 222	

membership is stored as a binarized adjacency matrix. The adjacency matrices are 223	

averaged resulting in a stability matrix representing probabilities of each pair of atoms 224	
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clustering together (Figure 2). Finally, hierarchical agglomerative clustering with Ward 225	

criterion is applied to the stability matrix, resulting in the final clustering solution. The 226	

process is repeated over several clustering solutions (k=1 - 50), and the MSTEPs method 227	

[Bellec, 2013] was implemented to find the most stable clustering solutions at different 228	

resolutions. In the interest of multiple comparisons, and similarity to Braak 229	

neuropathological staging (i.e. six ROIs), we chose the lowest resolution solution for 230	

subsequent analysis (though the other two solutions are visualized). Note that no size 231	

constraints were imposed on clustering solutions (except at the level of atom-size in the 232	

region-growing – see above). Cluster-cores were determined as voxels where cluster 233	

probability membership exceeded 0.5 (BASC default setting), eliminating unstable 234	

voxels from analysis [Bellec et al., 2010; Garcia-Garcia et al., 2018]. After determining 235	

cluster-cores in the BIOFINDER cohort, we extracted the average [18F]AV1451 SUVR 236	

for each cluster core from all ADNI subjects, and these values were used for subsequent 237	

analysis investigating associations with cognition. 238	

 The choice of the k-means algorithm for the initial clustering and hierarchical 239	

clustering with ward criterion for partitioning the stability matrix are somewhat arbitrary. 240	

K-means is a particularly fast algorithm and therefore lends itself well to bootstrapping. 241	

Meanwhile, the hierarchical clustering routine used in BASC is an appropriate algorithm 242	

for the stability matrix, which is a similarity matrix, and it provides solutions at multiple 243	

resolutions making it amenable to the BASC framework [Bellec et al., 2010]. Both 244	

algorithms are standard, well validated, simple and involve few free parameters. This 245	

latter point is important, as BASC itself only has a few principle parameters: namely the 246	

number of clusters to extract (in this case, determined by MSTEPS), the number of 247	
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bootstrap samples (in this case, 500), and the size of the bootstrap sample (in this case, 248	

the length of the input data – 123 cases) [Bellec et al., 2010; Orban et al., 2015]. Other 249	

parameters are associated with some of the steps peripheral to the central BASC 250	

algorithm, namely the region growing preprocessing step and MSTEPS algorithm to 251	

determine the number of clusters, and these parameters were left to their default settings. 252	

Briefly, the region growing includes a threshold parameter limiting the maximum size of 253	

“atoms”, which is mostly related to computational demand. Meanwhile, MSTEPS works 254	

on a sparse grid and includes a parameter specifying the percentage of variance 255	

maintained (similar to PCA). In addition, MSTEPS allows the definition of the size of the 256	

window within which stable clusters are sought [Bellec, 2013].  257	

 258	

2.4 Definition of Braak stage ROIs described in other studies 259	

A number of studies have created ROIs mirroring the Braak stages described from 260	

pathological studies. To test the utility of our data-driven ROIs vis-à-vis those defined in 261	

correspondence to the pathological literature, we recreated the Braak ROIs described in 262	

three different studies [Cho et al., 2016; Schöll et al., 2016; Schwarz et al., 2016]. Schöll, 263	

Lockhart et al. and Cho et al. were constructed using regions from the Desikan-Killiany 264	

atlas, and we recreated these ROIs in direct correspondence to what has been reported in 265	

these two studies. Schwarz et al. instead generated small ROIs designed to mirror the 266	

slabs of cerebral cortex extracted during autopsy for Braak staging. These regions were 267	

constructed with a script generously provided by the authors. For all analyses, Braak 268	

ROIs were included both individually (“single”) and cumulatively (“stage”). For 269	

example, for Braak Stage III, one ROI was created containing all regions from Braak I, 270	
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II, and III included (“stage”), as well as a ROI created including only regions in Braak III 271	

(“single”). Finally, some studies have chosen to use only the bilateral inferior temporal 272	

lobe from the Desikan-Killiany atlas to summarize global tau burden [Johnson et al., 273	

2016], so we included this region in subsequent analysis as well. Studies also frequently 274	

used the bilateral entorhinal cortex from this atlas, and it should be noted that this region 275	

is also included, namely as Stage I from Cho et al. and Schöll, Lockhart et al. Size-276	

weighted average [18F]AV1451 SUVR was extracted for each ROI (35 in total) for each 277	

subject.  	278	

 279	

2.5 Similarity between data-driven clusters, anatomical ROIs and Braak 280	

Stage ROIs 281	

We compiled descriptive information about the similarity between our cluster-282	

derived ROIs and the Braak ROIs from the literature. For comparisons to regions from 283	

Schöll, Lockhart et al. and Cho et al., we used normalized mutual information. Due to the 284	

small size of the Schwarz et al. regions, comparisons involved measuring the percentage 285	

of each Schwarz ROI falling inside of each cluster-derived ROI.  286	

 287	

2.6 Reproducibility of [18F]AV1451 clustering solution 288	

 After clustering [18F]AV1451 data using BASC (section 2.3), we assessed 289	

whether we could reproduce these clusters in a separate dataset. BASC was therefore run 290	

on 90 [18F]AV1451 scans from ADNI with the exact same parameters used for the 291	

BioFINDER dataset. MSTEPS was again used to define the number of clusters. In order 292	

to compare the clustering solution to the solution found in the BioFINDER sample, we 293	
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matched clusters from the ADNI sample to the most spatially similar clusters from the 294	

BioFINDER sample, and harmonized the numeric labels between the two solutions. As a 295	

qualitative analysis, we extracted voxels that were part of the same cluster in both 296	

clustering solutions. The resulting voxels can be thought to represent regions that 297	

demonstrated consistent clustering behavior ([18F]AV1451 signal covariance) across the 298	

two samples. For each cluster, we calculated the Dice coefficient representing within-299	

cluster agreement between the two clustering solutions. We also performed the same 300	

analyses constrained within the cluster-cores from the BioFINDER solution, assuming 301	

the agreement should be higher within the cores. We also calculated both the adjusted 302	

Rand index and adjusted mutual information score (passing the BioFINDER solution as 303	

the “true labels”) as a measurement of overall consistency between the two clustering 304	

solutions. To put these measurements into context, we performed five 50% splits of the 305	

ADNI data and compared clustering solutions between each split. The purpose of this 306	

analysis was to identify whether clustering within the ADNI dataset showed greater or 307	

less stability compared to the stability between the ADNI and BioFINDER datasets.   308	

   309	

2.7 Statistical Analysis 310	

Our secondary analyses were aimed to assess the utility and generalizability of 311	

our data-driven covariance networks. We performed linear models between these 312	

covariance networks and the scores from six different available test scores assessing 313	

global cognition and function (see Table S1). In addition, the scores were summarized 314	

using Principal Components Analysis (PCA) using Singular Value Decomposition. The 315	

PCA was fit to data from the six cognitive test scores, which were scaled to a 0 mean 316	
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with unit variance. The first component explained 72% of the total model variance, and 317	

was used to transform the cognitive data into a single Global Cognition composite score. 318	

For each of the cognitive tests, as well as the composite score, separate general linear 319	

models for each ROI (40 in total; our five data-driven clusters and 35 ROIs from the 320	

literature) were constructed with cognitive test score as the dependent variable and age, 321	

sex and education as covariates. We repeated this analysis for the ADNI-MEM score to 322	

test the relationship between [18F]AV1451 and episodic memory in all 40 ROIs. Tests 323	

surviving Bonferroni correction for multiple comparisons are reported.  324	

In order to identify a sparse set of non-redundant covariates that best describe the 325	

global cognitive data in ADNI, we submitted all 40 tau ROIs plus age, sex and education 326	

to a Least Absolute Shrinkage and Selection Operator (Lasso) regression-based feature 327	

selection routine. The Lasso uses L1 regularization (coordinate descent) to penalize 328	

regression coefficients based on their maximum likelihood estimates, and is therefore an 329	

optimal approach to select a small number of variables from a large number of collinear 330	

covariates. In the current implementation, the degree of penalization is optimized using 331	

10-fold cross-validation. All tau ROIs and demographics were scaled to be mean-332	

centered with unit variance, and entered into the Lasso regression model with the Global 333	

Cognition composite score as the dependent variable. Features selected by the Lasso 334	

(absolute beta > 0.25) were entered together into a general linear model (GLM) with 335	

MMSE as the dependent variable. Additionally, to ensure our results were representative 336	

of global cognition and not specific to the composite score, the fitted values from this 337	

GLM were used to predict scores of each of the six cognitive tests. Finally, the Lasso was 338	

repeated separately for each of the individual test as well. 339	
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With the exception of BASC, all statistics were implemented using the pandas, 340	

numpy, scipy and scikit-learn [Pedregosa et al., 2012] packages in Python 3.5.2 341	

(https://www.python.org/). 	342	

 343	

3. RESULTS 344	

3.1 Participant Characteristics 345	

Table 1 contains demographic information, MMSE scores and amyloid positivity 346	

rates for both the ADNI and BioFINDER sample. The sample used for clustering 347	

(BioFINDER) demonstrated important differences compared to the sample used for 348	

testing (ADNI). BioFINDER subjects were less highly educated across the whole sample, 349	

and BioFINDER controls were on average older than ADNI controls. Additionally, the 350	

BioFINDER sample demonstrated lower MMSE scores across the whole sample 351	

compared to ADNI, including within MCI and dementia groups. Finally, 45% of ADNI 352	

subjects were amyloid-positive vs. 73% of BioFINDER subjects, which was primarily 353	

related to the fact that only amyloid positive MCI patients were included in the 354	

BioFINDER sample.  355	

 356	

3.2 Data-driven Tau-PET covariance networks 357	

123 BioFINDER [18F]AV1451 scans were entered into an advanced clustering 358	

algorithm in order to identify networks of regional [18F]AV1451 signal covariance across 359	

subjects. The MSTEPS algorithm identified five-, nine- and 32-cluster solutions as 360	

optimal solutions. The parcellations generated from the three stable clustering solutions 361	

are visualized in Supplementary Figure S1. For the purposes of comparing with Braak 362	
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stage ROIs, we chose the lowest-resolution solution (k=5) for subsequent analyses, 363	

visualized in Figure 2. The clusters were interpreted and named as follows: “1: 364	

Subcortical”, “2: Frontal”, “3: Medial/Anterior/Inferior Temporal”, “4: Temporo-365	

parietal” and “5: Unimodal Sensory”. Cluster 3 bore resemblance to regions often 366	

involved in early tau aggregation and atrophy [Braak and Braak, 1991], while Cluster 4 367	

also appeared similar to regions commonly associated with neurodegeneration in AD 368	

[Dickerson et al., 2011; Landau et al., 2011]. Of note, the hippocampus was largely 369	

unrepresented in any of the cluster-cores, though some voxels in the head of the 370	

hippocampus were included in Cluster 3, and a few distributed voxels were included in 371	

Cluster 1 (Subcortex). However, using a winner-takes-all clustering approach, the voxels 372	

in the hippocampus were almost equally distributed between Cluster 1 and Cluster 3. 	373	

 374	

3.3 Similarity to Braak ROIs 375	

Descriptive metrics were used to quantify the spatial similarity between the data-driven 376	

covariance networks and the Braak Stage ROIs introduced in the literature (Figure 3). 377	

Cluster 5 (“Unimodal Sensory”) demonstrated a high degree of overlap with Braak Stage 378	

VI across all region sets. Spatial similarity was also evident between Cluster 3 379	

(“Medial/Anterior/Inferior Temporal”) and Stage I-IV from Cho et al., and this cluster 380	

almost completely circumscribed Stages I-III from Schwarz et al. Cluster 1 (“Subcortex”) 381	

was most similar to Schöll, Lockhart et al. Stage II, due in part to its inclusion of the 382	

hippocampus. Little spatial similarity was evident between Cluster 2 (“Frontal”) and any 383	

of the Braak Stage ROIs, though some similarity was seen with the Stage V region from 384	

Schöll, Lockhart et al. and Cho et al. due to their inclusion of many frontal lobe 385	
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structures. Similarly, Cluster 4 (“Temporo-parietal”) did not demonstrate strong spatial 386	

similarity to any of the Braak ROIs, though it did partially overlap with the Braak single 387	

IV and V regions from Schwarz et al. 388	

 389	

3.4 Associations with cognition in ADNI 390	

General linear models were run in the ADNI dataset assessing associations 391	

separately between each of 40 tau ROIs (our five data-driven clusters established in the  392	

BioFINDER study, and 35 ROIs from the literature) and a Global Cognitive composite 393	

score, controlling for age, sex and education (Figure 4). [18F]AV1451 signal in several 394	

ROIs demonstrated strong associations with global cognition, though only the data-driven 395	

Cluster 4 (“Temporo-parietal”; β = -3.24 [SE=0.91], t = -3.43, p<0.001) survived 396	

multiple comparisons.  397	

To ensure our results were not specific to the Global Cognition composite score, 398	

we repeated this analysis using the six individual measures of global cognition and 399	

function that composed the composite score (Table S1). The data-driven Cluster 4 400	

(“Temporo-parietal”) described global cognition better than all other ROIs using four of 401	

the six cognitive measures, and was in the top five for all of them. Across all cognitive 402	

measures, Clusters 4 and 3 (“Medial/anterior/inferior temporal”) ranked best and second 403	

best, respectively, at describing global cognitive data (Figure 5). Notably, the Schwarz 404	

Stage I ROI also performed well across cognitive measures, except for the MMSE. 405	

Finally, since many ADNI subjects had either MCI or were at early stages of 406	

dementia and may not show great variation in tests of global cognition scores, we 407	

repeated the above analysis substituting global cognition with a composite measure of 408	
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episodic memory. (Table S2) shows the top five ROIs with the strongest associations 409	

with episodic memory. Although none of the associations survived correction for 410	

multiple comparisons, the strongest associations were found with early stage pathological 411	

ROIs (resembling (trans)enthorinal cortex), followed by the data-driven temporo-parietal 412	

ROI. 413	

 414	

3.5 Identifying a combinatorial tau-PET biomarker for cognition 415	

Next, all tau ROIs were entered into a Lasso regression model in order to identify 416	

a sparse set of covariates that best describe global cognitive data (Figure 6). The optimal 417	

penalization value was defined through cross-validation as 0.019. The Lasso reduced all 418	

coefficients except Cluster 4 (“Temporo-parietal”), Braak Stage VI from Schwarz et al., 419	

and education. These three variables were entered together into a general linear model, 420	

and together explained a much greater proportion of variance in global cognitive data 421	

(r2[4:81] = 0.28, p<0.0001; Figure 6) compared to the individual effect sizes of each 422	

covariate (highest r2 = 0.12). The earlier negative association between Cluster 4 and 423	

Global Cognition was strengthened (t=-4.98, p<0.001), although positive associations 424	

were seen for the other two covariates (Schwarz Single 6: t = 3.61, p = 0.001; Education: 425	

t = 2.53, p = 0.013). In addition, the fitted values of this GLM explained 18.7 – 26.2% of 426	

the variance in the six individual cognitive tests composing the composite score (all p 427	

<0.001), indicating the model generalizes well to individual cognitive tests (Table S3). 428	

Finally, the Lasso feature selection analysis was repeated for the six individual tests of 429	

global cognition. The data-driven Cluster 4 was selected across all six analyses, and was 430	

the only ROI selected for two analyses (Table S4). 431	
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 432	

3.6 Reproducibility of tau-PET clusters across datasets 433	

 BASC analysis was run a second time on the 90 ADNI [18F]AV1451 scans to 434	

establish whether patterns of tau-PET covariance are reproducible across different 435	

datasets. MSTEPS identified a six-cluster solution as the lowest resolution solution in the 436	

ADNI dataset. Five of these clusters demonstrated similar spatial patterns to the five 437	

clusters identified in the BioFINDER sample, while a sixth cluster emerged which 438	

uniformly encircled the entire cerebral cortex (Figure S2). This sixth cluster labeled 18% 439	

of brain voxels, and the average within-cluster [18F]AV1451 SUVR was 0.88 (SD = 440	

0.16). The cluster most likely represents a partial volume or non tau-related atrophy 441	

effect, possibly driven by the high proportion of amyloid-negative MCI subjects or the 442	

low number of subjects with extensive isocortical tau in the ADNI cohort.  443	

 Despite the existence of this sixth cluster and the distinct clinical composition of 444	

the two datasets, some agreement between the two clustering solutions could be observed 445	

(Figure 7). Overall, 35% of brain voxels showed similar clustering patterns between the 446	

two datasets (adjusted Rand index = 0.112; adjusted mutual information score = 0.189). 447	

Figure 7A shows a cortical projection of voxels demonstrating similar clustering behavior 448	

across both datasets. Across datasets, [18F]AV1451 spatial covariance was consistent in 449	

the medial and inferior temporal lobes, the primary visual cortex, the temporo-parietal 450	

cortex, the medial frontal lobe, and most acutely in the subcortex. The subcortex formed 451	

its own cluster in both datasets, both including the hippocampus, and overall showed 452	

excellent agreement (Dice coefficient = 0.87). The Dice coefficients in the other clusters 453	

ranged from 0.33 – 0.46 (Figure 4B), indicating that around one third to one half of 454	
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voxels within clusters showed agreement between the two datasets. Notable regions of 455	

disagreement included the precuneus and posterior cingulate (clustered with the temporal 456	

lobes in ADNI), the insula (clustered with the medial frontal lobe in ADNI), the 457	

sensorimotor cortex and the lateral frontal lobes (distributed across multiple clusters in 458	

ADNI). When restricting the analysis only to voxels contained within the BioFINDER 459	

cluster-cores, the agreement between the two datasets improved (Figure 7B). This 460	

observation was consistent across all clusters except the temporo-parietal cluster, and 461	

provides evidence supporting the notion that voxels that covary stably within datasets 462	

may also show more stable covariance across datasets.  463	

 For the purposes of comparison, BASC was performed on five random 50% splits 464	

of the ADNI sample, and the resulting partitions were compared to one another. The 465	

average adjusted Rand index across these five within-ADNI train/test splits was 0.166 466	

(SD = 0.031) and the average adjusted mutual information score was 0.225 (SD = 0.021). 467	

These within-dataset scores were equivalent to the between-dataset scores when restricted 468	

to cluster-cores (adjusted Rand index = 0.164; adjusted mutual information score = 469	

0.233). 470	

 471	

4. DISCUSSION 472	

In the present study, we applied an advanced unsupervised algorithm to identify 473	

clusters of [18F]AV1451 signal in 123 subjects ranging from cognitively normal to AD 474	

dementia in the Swedish BioFINDER study. Our approach yielded clusters in the 475	

temporoparietal, medial/inferior/anterior temporal, unimodal sensory and frontal cortex, 476	

as well as the subcortex. In an independent sample of 90 subjects (ADNI), we performed 477	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2018. ; https://doi.org/10.1101/244574doi: bioRxiv preprint 

https://doi.org/10.1101/244574
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

general linear models between tests of global cognition and each [18F]AV1451 cluster, 478	

adjusting for age, sex and education. In addition, we ran similar models using 35 479	

neuropathologically derived ROIs from previous publications [Cho et al., 2016; Johnson 480	

et al., 2016; Schöll et al., 2016; Schwarz et al., 2016]. Several ROIs exhibited strong 481	

relationships with cognition, though certain data-driven clusters (temporoparietal and 482	

medial/inferior/anterior temporal cortex) appeared to perform slightly but consistently 483	

better than other ROIs in ADNI. Supporting this notion, the temporoparietal data-driven 484	

cluster was among the three most important features (identified by a Lasso regression 485	

model) for predicting global cognition scores. Unsupervised clustering of [18F]AV1451 486	

PET data thus revealed the data to self-assemble into stable ROIs resembling well 487	

described vulnerable regions in AD, some of which actually enhanced description of 488	

cognitive data in an independent dataset. This suggests that data-driven approaches to 489	

delineate ROIs may improve clinical utility of [18F]AV1451 PET data. 490	

The tau-PET covariance networks derived from our clustering approach exhibited 491	

a fair degree of overlap with Braak ROIs derived from autopsy studies, thereby 492	

demonstrating biological relevance. Particularly, Cluster 3 (“Medial/Anterior/Inferior 493	

Temporal”) was reminiscent of regions involved in early tau accumulation, whereas 494	

Cluster 5 (“Unimodal Sensory”) demonstrated a high degree of similarity to regions 495	

involved only in the latest stages of AD. In contrast, Cluster 4 (“Temporo-parietal”) did 496	

not strongly resemble any of the Braak regions, while its pattern, together with the pattern 497	

of Cluster 3, spatially overlapped with cortical regions most vulnerable to 498	

neurodegeneration in AD [Dickerson et al., 2011; Landau et al., 2011]. Furthermore, 499	

signal in the hippocampus was heterogeneous, adding additional evidence that 500	
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[18F]AV1451 signal in this structure should be interpreted with caution [Cho et al., 2016] 501	

[Choi et al., 2017; Ikonomovic et al., 2016]. Similarly, our data-driven approach 502	

suggested that most (but not all) frontal lobe structures exhibited [18F]AV1451 signal 503	

patterns unique to the rest of the cortex. This is notable considering the original Braak 504	

Stage V aggregates frontal lobe structures with many of the temporo-parietal structures 505	

captured in our Cluster 4. Part of the successful description of cognitive data by the data-506	

driven ROI may be due to its isolation from many of these frontal lobe structures, which 507	

may be contributing signal less informative to AD progression, particularly in early 508	

disease stages. Finally, our data-driven ROIs provide information that may reconcile 509	

some differences between existing Braak ROIs. For example, in our study, [18F]AV1451 510	

signal in the putamen and insula covaried with other regions involved in early tau 511	

accumulation, which was similar to the ROIs described by Schöll, Lockhart et al., but not 512	

Cho et al. (see Table S5 for a summary). However, this pattern was not fully reproduced 513	

within the ADNI sample, and so the staging of different ROIs may require further study 514	

with larger samples.	515	

 Despite the clusters being derived from a sample with several important and 516	

disease-relevant differences compared to the testing sample, these data-driven ROIs 517	

described global cognitive data slightly better than regions derived from autopsy studies. 518	

While the improvement over the other regions was subtle, the increasing movement 519	

toward the development of biomarkers demands optimization of ROIs to summarize 520	

[18F]AV1451 signal [Frisoni et al., 2017; Maass et al., 2017; Mishra et al., 2017]. As 521	

such, even small improvements are important for studies assessing more subtle effects of 522	

cortical tau accumulation and studies seeking optimal biomarkers for multimodal 523	
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classification or disease progression [Ota et al., 2015]. The improvement observed is 524	

likely due to the data-driven nature of the method used for derivation of the clusters. 525	

[18F]AV1451 may be binding to several off-target agents, such as (neuro)melanin, iron, 526	

vascular pathology and MAO-A/B [Choi et al., 2017; Lowe et al., 2016; Marquié et al., 527	

2015; Ng et al., 2017], and as such, [18F]AV1451 signal is likely a mix of true tau 528	

pathology and other off-target and non-specific signals. Deriving the clusters from a 529	

sample representing a wide breadth of disease stages and additionally including subjects 530	

unlikely to have significant cortical tau pathology enhances the likelihood of isolating 531	

true tau signal, which covaries strongly and in a regionally specific pattern across disease 532	

stages. Additionally, deriving the clusters voxelwise allows freedom from anatomical 533	

borders, which may impose unnecessary constraints irrelevant to the spread of tau. 534	

Finally, despite its many limitations, multi-subject automatic whole-brain sampling is a 535	

distinct advantage of [18F]AV1451-PET over pathological studies. This advantage may 536	

further enhance the efficacy of data-driven approaches to ROI generation, which evaluate 537	

regions equally that may otherwise be overlooked.  538	

Still, ROIs based on pathology remain important in understanding relationships 539	

between tau burden and cognition. In our study, ROIs representing the earliest stages of 540	

tau pathology, especially the entorhinal cortex, showed the strongest association with 541	

episodic memory in a cohort of individuals with normal cognition, mild cognitive 542	

impairment and early AD dementia. This finding supports previous literature highlighting 543	

relationships between medial temporal lobe tau pathology and decline in episodic 544	

memory [Maass et al., 2018]. However, it is noteworthy that the data-driven temporo-545	
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parietal ROI was again among the top performing ROIs in describing episodic memory, 546	

despite the absence of medial temporal lobe structures within this ROI. 	547	

 The results of this study thus suggest a possible advantage of data-driven 548	

approaches in evaluating [18F]AV1451 PET data as a biomarker for AD. This study adds 549	

to a rapidly growing body of data-driven [18F]AV1451-PET studies that have helped to 550	

characterize features of this tracer in the context of AD. Sepulcre and colleagues 551	

employed a similar unsupervised clustering approach on a set of cognitively intact elderly 552	

individuals, which, similar to our study, revealed [18F]AV1451-PET covariance between 553	

regions of early- and later- stage tau accumulation [Sepulcre et al., 2017]. This suggests 554	

these patterns of signal covariance are stable even in the earliest disease stages, lending 555	

credence to the use of data-driven biomarkers in multiple contexts. Meanwhile, Jones et 556	

al. used a data-driven Independent Components Analysis approach to summarize 557	

[18F]AV1451 data [Jones et al., 2017]. While the authors concluded the resulting ROIs 558	

represented functional brain networks, three of the ROIs bore a striking similarity to 559	

those generated by our clustering approach. Our approach builds on these previous 560	

studies by assessing relationships between data-driven ROIs and cognition, and by 561	

comparing them with other existing ROIs. Maass et al. employed a series of a priori and 562	

supervised data-driven methods to generate [18F]AV1451 ROIs and found a relative 563	

equivalence between these ROIs in their association with cognition and a number of other 564	

disease markers [Maass et al., 2017]. However, consistent with our study, Maass et al. 565	

found [18F]AV1451 signal to covary most strongly within a specific set of AD 566	

vulnerable-regions, and conclude that these regional measures may perform better than 567	

whole-brain ROIs, particularly regarding associations with cognition.  568	
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The consistencies across these studies are also underscored by the consistent 569	

patterns of cross-subject [18F]AV1451 spatial covariance found across the two datasets in 570	

the current study. Despite the fact that the ADNI cohort had many fewer subjects with 571	

extensive tau burden, and despite differences in the demographic and clinical 572	

characteristics between the ADNI and BioFINDER cohorts, unsupervised clustering of 573	

[18F]AV1451 data revealed a level of consistency between these two datasets that rivaled 574	

the consistency of clustering within the ADNI dataset alone. Certain patterns of tau-PET 575	

accumulation emerged in key regions across both cohorts. However, the patterns of tau-576	

PET covariance were not entirely consistent between the two datasets, which could 577	

reflect true heterogeneity across samples, or could be a matter of instability due to the 578	

relatively small sample sizes (particularly in ADNI). However, better consistency 579	

between datasets was found within the cluster-cores – regions of greatest clustering 580	

stability within the BioFINDER dataset. This finding, alongside the performance of these 581	

cluster-cores as biomarkers in ADNI, suggests some degree of cluster stability may be 582	

achieved with the BASC approach, even with smaller sample sizes.	583	

 We employed a widely used feature selection routine to identify those regions 584	

most informative in describing association between [18F]AV1451 signal and cognitive 585	

data. The feature most strongly associated with global cognition was the data-driven 586	

temporo-parietal cluster, which harbored a strong negative relationship when included 587	

with the other selected features (p<0.001). The feature selection also resulted in the 588	

selection of Schwarz et al. Stage VI and education, both of which associated positively 589	

with MMSE in a general linear model. The finding of an association between education 590	

and MMSE controlling for tau pathology is consistent with the concept of cognitive 591	
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reserve [Stern, 2012], and suggests that more highly educated subjects may experience 592	

preserved cognition in the face of tau pathology [Hoenig et al., 2017]. While the selection 593	

of Schwarz Stage VI is less obvious, possible explanations include partial volume effects 594	

and age-related off-target or non-specific signal. Because very few ADNI subjects 595	

demonstrate strong [18F]AV1451 signal in this ROI, higher [18F]AV1451 signal may be 596	

related to the presence of more cortex (and thus more off-target or non-specific binding) 597	

rather than increased tau pathology. Similarly, off-target [18F]AV1451 signal in the 598	

cortex and subcortex has been shown to increase with age [Choi et al., 2017; Schöll et al., 599	

2016; Smith et al., 2016], possibly representing binding to reactive astrocytes [Harada et 600	

al., 2018] or iron deposits [Choi et al., 2017]. Since age was not selected by the Lasso and 601	

therefore was not included in the multivariate model, this may explain the positive 602	

association between these regions and global cognition when accounting for 603	

[18F]AV1451 signal in the temporoparietal region. However, the fact that these ROIs 604	

were selected instead of age suggests they may carry additional cognition-relevant 605	

information, which may demand further exploration. Regardless, the negative 606	

relationship between Cluster 4 (“Temporo-parietal”) and global cognition was 607	

substantially increased after regressing out these other variables. This suggests that 608	

[18F]AV1451-cognition relationships may be enhanced by regressing out off-target or 609	

non-specific signal sources.	610	

Our study comes with a number of limitations. First, there were several 611	

differences in characteristics between the two samples. We decided to use the 612	

BioFINDER cohort for clustering given the broad range of both [18F]AV1451 uptake 613	

(Figure 1) and cognitive scores (Table 1). As a consequence, our secondary (cognitive) 614	
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analysis was performed in subjects from the ADNI cohort with more restricted 615	

[18F]AV1451 uptake and cognitive scores. On a related note, our cluster and results could 616	

be influenced by the composition of our samples. However, voxels are only included in 617	

the clusters derived for our analysis if the clustering occurs across >50% of bootstrap 618	

samples, so it is unlikely that the clustering solution would be strongly driven by, for 619	

example, the high proportion of late-stage (i.e. AD) subjects in the BioFINDER sample. 620	

Third, contrary to other studies, we did not make an attempt to classify individuals 621	

according to stages of tau pathology. Finally, we chose not to apply partial volume 622	

correction on our data. Investigating the impact of such corrections is certainly important, 623	

but we were interested in the natural behavior of tau-PET signal before any corrections.  624	

In order to aid future studies, we have made the [18F]AV1451 clusters from this 625	

study available on FigShare (doi = 10.6084/m9.figshare.5758374). 626	
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TABLES 899	
 900	
Table 1: Demographic information, MMSE scores and amyloid-positivity rates 901	

 Controls  MCI  AD  Total 

 BioF ADNI  BioF ADNI  BioF ADNI  BioF ADNI 

n 55 43  21 37  47 10  123 90 

Age  
(SD) 

 

75.0 
(6.2) 

70.3 
(5.9) 

 70.8 
(10.9) 

72.0 
(6.8) 

 70.1 
(8.6) 

73.3 
(4.3) 

 72.4 
(8.4) 

71.3 
(6.1) 

% Male 50.9% 46.5%  57.1% 67.6%  55.3% 60.0%  53.7% 56.7% 

Education 
(SD) 

12.0 
(3.7) 

16.1 
(2.4) 

 11.7 
(3.7) 

16.9 
(2.7) 

 12.2 
(3.2) 

15.0 
(3.0) 

 12.0 
(3.5) 

16.3 
(2.6) 

 
% Amyloid+ 43.6% 33.3%  100% 44%  100% 100%  73.3% 44.8% 

MMSE 
(SD) 

29.1 
(1.1) 

29.0 
(1.3) 

 25.7 
(2.8) 

28.4 
(2.0) 

 21.2 
(5.1) 

25.5 
(5.1) 

 25.5 
(4.9) 

28.3 
(2.5) 

• * BOLD text indicates significant difference (p<0.05) between cohorts, as 902	
measured by t-test, or Fisher’s Exact Tests 903	

• ADNI = Alzheimer’s Disease Neuroimaging Initiative; BioF = BioFINDER, 904	
MMSE = Mini-Mental State Examination; SD = Standard Deviation 905	

 906	
FIGURES LEGENDS 907	
 908	
Figure 1. Mean [18F]AV1451 uptake according to diagnosis, amyloid status and 909	

cohort 910	

Mean [18F]AV1451 SUVR images stratified by amyloid status and disease stage, across 911	

both the ADNI (top) and BioFINDER (bottom) cohorts. 912	

	913	

Figure 2. Bootstrap analysis of stable clusters on [18F]AV1451 data. [18F]AV1451 914	

scans were entered into a voxelwise clustering algorithm. The optimal solutions were 915	

determined using the MSTEPS approach. This resulted in five [18F]AV1451 covariance 916	
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networks. These networks were masked with a stability threshold of 0.5, and are 917	

displayed in the lower half of the figure. 918	

	919	

Figure 3. Comparison between data-driven and hypothesis-driven ROIs. Data-driven 920	

[18F]AV1451 covariance networks were compared to previously existing Braak Stage 921	

ROIs from the literature using descriptive statistics. The clusters were compared to ROIs 922	

from Schöll, Lockhart et al. and Cho et al using Normalized Mutual Information (top 923	

left), and were compared to regions from Schwarz et al. using the percentage of Schwarz 924	

ROI voxels within each data-driven cluster. 925	

	926	

Figure 4. Associations between [18F]AV1451 ROIs and global cognition. General 927	

linear models comparing [18F]AV1451 signal to Global Cognition composite scores were 928	

run, adjusting for age, sex and education. For each model, a different [18F]AV1451 ROI 929	

was used. ROIs included the five clusters identified in our analysis, as well as Braak 930	

stage regions taken from three different papers: Schöll, Lockhart et al., 2016 Neuron; Cho 931	

et al., 2016 Ann. Neurol.; Schwarz et al., 2016 Brain. Two versions of each Braak ROI 932	

were created, one using regions from that stage only (e.g. Stage 3), and one combining all 933	

regions from that stage with all regions from previous stages (e.g. Stage 1+2+3). The 934	

effect size (t-value) of each tau ROI is shown. [18F]AV1451 binding in several ROIs 935	

demonstrated strong relationships with Global Cognition, though only the data-driven 936	

Temporo-parietal region survived multiple comparisons. 937	

	938	
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Figure 5. Cumulative ranking of ROI performance across all measures of global 939	

cognition and function. For each measure of global cognition, [18F]AV1451 ROIs were 940	

ranked from worst to best (such that the worst region would have rank of 1) with respect 941	

to the effect size of the association between [18F]AV1451 in that region and the cognitive 942	

score. The ranks were then summed across all cognitive measurements and are displayed 943	

here. The data-driven Cluster 4 (“Temporo-parietal”) ranked the best cumulatively across 944	

cognitive tests, with the data-driven Cluster 3 (“Medial/Inferior/Anterior temporal”) 945	

ranking second best. 946	

	947	

Figure 6. Lasso regression selects most important features related to cognition. All 948	

[18F]AV1451 ROIs plus age, sex and education were entered into a L1-penalized Lasso 949	

regression feature selection routine with the Global Cognitive composite score as the 950	

dependent variable. The Lasso selected education and two ROIs: the data-driven 951	

Temporo-parietal region, and the Schwarz Single VI region. Together in a general linear 952	

model, these features explained 28% of the variance in the Global Cognition score. 953	

 954	

Figure 7. Assessing reproducibility of clusters across cohorts. BASC clustering was 955	

performed on ADNI [18F]AV1451 data and was compared to the original clustering 956	

solution from BioFINDER data. Panel A. represents the surface rendering of voxels that 957	

shared the same cluster in both BioFINDER and ADNI solutions. Each cluster is 958	

represented as a different color. Panel B. shows the dice coefficients representing the 959	

correspondence between similar clusters in the BioFINDER and ADNI samples. The left 960	

graph represents correspondence across the whole brain, while  the right graph represents 961	
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correspondence between clusters within BioFINDER cluster-core masks. RI = adjusted 962	

Rand index; AMI = adjusted mutual information score   963	

 964	
 965	
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FIGURES 1006	
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	1014	
Figure 4 1015	
	1016	

	1017	
	1018	
	1019	
	1020	
 1021	

Frontal
Temporal
Subcortex
Temporo-parietal
Unimodal Sensory

Braak ROI Stage

Data-driven ROI

Schöll, 
Lockhart 

et al.

Cho 
et al.

Schwarz 
et al.

Data-drivenJohnson
et al.

T-
va

lu
e 

fo
r A

ss
so

ci
at

io
n 

w
ith

 G
lo

ba
l C

og
ni

tio
n 1

2
1+2
3
1+2+3
4
1+2+3+4
5
1+2+3+4+5
6
1+2+3+4+5+6
Inferior Temporal

-4

-3

-1

0

1

p<0.05 
(uncorrected)

p<0.05 
(Bonferroni)

-2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2018. ; https://doi.org/10.1101/244574doi: bioRxiv preprint 

https://doi.org/10.1101/244574
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

Figure 5 1022	

	1023	
Figure 6 1024	
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	1063	
SUPPLEMENTARY	1064	
	1065	
Table S1. Best-ranking [18F]AV1451 ROIs at describing global cognition across 1066	
different cognitive tests 1067	

 
MMSE 

  
CDRSB 

 
Rank Study ROI t  Study ROI t 

1 Data-driven Temporo-parietal -2.45*  Schwarz Stage I 3.60** 
2 Data-driven Temporal -2.00*  Data-driven Temporo-parietal 3.49** 
3 Cho Single IV -1.97  Cho/Scholl Stage I 3.49** 
4 Cho Stage IV -1.83  Data-driven Temporal 3.33** 
5 Other Inferior Temporal -1.80  Cho Stage IV 3.18* 

    

 
 
    

 
ADAS11 

  
ADAS13 

 
Rank Study ROI t  Study ROI t 

1 Data-driven Temporo-parietal 4.10**  Data-driven Temporo-parietal 3.02* 
2 Schwarz Stage I 3.50**  Schwarz Stage I 2.57* 
3 Cho Single IV 3.43**  Data-Driven Temporal 2.35* 
4 Data-driven Temporal 3.39**  Cho/Scholl Stage I 2.34* 
5 Cho Stage IV 3.33**  Cho Single IV 2.34* 

 
 
   

 
 

 
    

 
ECOG 

  
FAQ 

 
Rank Study ROI t  Study ROI t 

1 Data-driven Temporo-parietal 3.68**  Schwarz Stage I 2.91* 
2 Cho Stage IV 3.48**  Data-driven Temporal 2.69* 
3 Schwarz Stage I 3.40**  Cho/Scholl  Stage I 2.68* 
4 Cho Single IV 3.40**  Data-driven Temporo-parietal 2.67* 
5 Data-Driven Temporal 3.40**  Cho Stage III 2.63* 
 * p<0.05  **	p[Bonf.]<0.05	1068	
ROI = Region of Interest; MMSE = Mini-Mental State Examination; CDRSB = Clinical 1069	
Dementia Rating Sum of Boxes; ADAS = Alzheimer’s disease Assessment Scale; ECog 1070	
= Everyday Cognition; FAQ = Functional Activities Questionnaire 1071	
	1072	
	1073	
 1074	
 1075	
 1076	
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Table S2. Best-ranking [18F]AV1451 ROIs at describing episodic memory 1077	

  ADNI_MEM 

Rank Study ROI t 
1 Schwarz Stage I -3.27* 
2 Cho/Schöll Stage I -2.99* 

3 Data-driven Temporo-
parietal -2.85* 

4 Schwarz Stage II -2.58* 
5 Cho Stage III -2.54* 

* p<0.05, ** p[Bonf.]<0.05 1078	
	1079	
	1080	
Table S3. Fitted values from the General Linear Model comparing selected [18F]AV1451 1081	
ROIs to Global Cognition composite also explains variance in individual cognitive tests. 1082	

Test R2 
CDRSB 0.214 
ADAS11 0.261 
ADAS13 0.215 

FAQ 0.221 
ECog 0.196 

MMSE 0.219 
MMSE = Mini-Mental State Examination; CDRSB = Clinical Dementia Rating Sum of 1083	
Boxes; ADAS = Alzheimer’s disease Assessment Scale; ECog = Everyday Cognition; 1084	
FAQ = Functional Activities Questionnaire 1085	
 1086	
	1087	
	1088	
	1089	
	1090	
	1091	
	1092	
	1093	
	1094	
	1095	
	1096	
	1097	
	1098	
	1099	
	1100	
	1101	
	1102	
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Table S4. Variables selected by Lasso regression that optimally described global cognition across different cognitive tests 1103	
MMSE 

 
CDRSB 

 
ADAS11 

Study ROI 
 

Study ROI 
 

Study ROI 
Data-driven Temporo-parietal 

 
Data-driven Temporo-parietal 

 
Data-driven Temporo-parietal 

Data-driven Subcortical 
    

Schwarz Single VI 
Schwarz Stage VI 

    
Schwarz Stage I 

Demographic Education 
    

Demographic Education 

        
        ADAS13 

 
ECOG 

 
FAQ 

Study ROI 
 

Study ROI 
 

Study ROI 
Data-driven Temporo-parietal 

 
Data-driven Temporo-parietal 

 
Data-driven Temporo-parietal 

Schwarz Single VI 
    

Schwarz Single VI 
Schwarz Stage I 

    
Schwarz Stage I 

Schöll Single II 
    

Demographic Education 
Demographic Education 

      Demographic Age 
       1104	

 1105	
MMSE = Mini-Mental State Examination; CDRSB = Clinical Dementia Rating Sum of Boxes; ADAS = Alzheimer’s disease 1106	
Assessment Scale; ECog = Everyday Cognition; FAQ = Functional Activities Questionnaire 1107	
	1108	
	1109	
	1110	
 1111	
 1112	
 1113	
 1114	
 1115	
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Table S5. Disparities in Braak stage regions-of-interests across studies 1116	

Brain Region 

Schöll, 
Lockhart et 

al. Cho et al. Schwarz et al. Data-driven 
Hippocampus Included Not included Head only Head only 
Lingual Gyrus Stage 3 Stage 5 Stage 6 TP/US 
Thalamus Stage 4 Not included Not Included SCN 
Putamen Stage 5 Not included Not Included MAIT 
Lateral Occipital Stage 5 Stage 5 Stage 4 TP/US 
PCC Stage 4 Stage 5 Not Included TP 
Insula Stage 4 Stage 5 Not Included MAIT 
Frontal Lobe All stage 5 All stage 5 Not Included F/TP 

 1117	
TP = Temporo-parietal; US = Unimodal Sensory; SCN = Subcortical/Noise; MAIT = 1118	
Medial/Anterior/Inferior Temporal; F = Frontal 1119	
	1120	
	1121	
Supplementary	Figures	1122	
Figure	S1	1123	

	1124	
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Figure	S1:	BASC	was	run	on	123	[18F]AV1451	images	from	the	BioFINDER	cohort.	1125	
MSTEPS	suggested	three	different	resolutions	(k=5,	k=9	and	k=32)	to	capture	the	1126	
stable	patterns	of	covariance	across	multiple	resolutions.	Cluster-core	maps	were	1127	
created	by	setting	voxels	with	cluster	stability	<0.5	to	0.	The	cluster-cores	from	1128	
these	three	solutions	are	projected	onto	a	cortical	surface.	1129	
	1130	
Figure	S2	1131	

	1132	
Figure	S2:	When	running	BASC	in	ADNI,	a	cluster	emerged	that	uniformly	1133	
surrounded	the	cerebral	cortex,	likely	representing	partial	volume	effects	that	could	1134	
be	driven	by	cortical	atrophy	in	older,	amyloid-negative	subjects.	1135	
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