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ABSTRACT  

Objective: Previous positron emission tomography (PET) studies have quantified 

filamentous tau pathology using regions-of-interest (ROIs) based on observations of the 

topographical distribution of neurofibrillary tangles in post-mortem tissue. However, 

such approaches may not take full advantage of information contained in neuroimaging 

data. The present study employs an unsupervised data-driven method to identify spatial 

patterns of tau-PET distribution, and to compare these patterns to previously published 

“pathology-driven” ROIs. Method: Tau-PET patterns were identified from a discovery 

sample comprised of 123 normal controls and patients with mild cognitive impairment or 

Alzheimer’s disease (AD) dementia from the Swedish BioFINDER cohort, who 

underwent [18F]AV1451 PET scanning. Associations with cognition were tested in a 

separate sample of 90 individuals from ADNI. BioFINDER [18F]AV1451 images were 

entered into a voxelwise clustering algorithm, which resulted in five clusters. Mean 

[18F]AV1451 uptake in the data-driven, clusters and 35 previously published pathology-

driven ROIs, was extracted from ADNI [18F]AV1451 scans. We performed linear models 

comparing [18F]AV1451 signal across all 40 ROIs to Mini-Mental State Examination 

(MMSE) scores, adjusting for age, sex and education. Results: Significant relationships 

emerged only in two ROIs, both of which were data-driven. Inputting all regions plus 

demographics into a feature selection routine resulted in selection of three ROIs (two 

data-driven, one pathology-driven) and education, which together explained 25% of 

variance in MMSE scores. These results generalized to other tests of global cognition. 

Interpretation: Our findings suggest that hypothesis-free, data-derived ROIs may offer 
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enhanced clinical utility compared to theory-driven ROIs, by utilizing information 

specific to tau-PET signal. 

 

INTRODUCTION 

Alzheimer’s disease (AD) is neuropathologically defined by the presence of 

widespread extracellular plaques containing amyloid-β and intracellular neurofibrillary 

tangles consisting of aggregated tau proteins 1,2. While amyloid-β may be present decades 

prior to symptom onset 3, the presence of neocortical tau is temporally more closely 

related to current cognitive status and degree of neurodegeneration, as convincingly 

demonstrated by studies utilizing post-mortem tissue, animal models, cerebrospinal fluid 

and, more recently, the positron emission tomography (PET) tracer [18F]AV1451 4–9. 

[18F]AV1451 binds paired helical filaments of tau with high affinity and selectivity 10–14, 

and can be used to investigate the distribution of tau pathology in the living human brain. 

Several studies have shown strong spatial resemblance between in vivo tau PET patterns 

and neuropathological staging of neurofibrillary tangles as proposed by Braak and Braak 

15–17, reflecting prototypical progression from (trans)entorhinal (stage I/II) to limbic 

(stage III/IV) to isocortical (stage V/VI) regions 1. Furthermore, regional [18F]AV1451 

retention co-localizes with sites of brain atrophy or hypometabolism 7,18 and has been 

associated with impairments in specific cognitive domains 7–9.  

 

Given this strong regional specificity of tau pathology, it is important to consider 

how regions-of-interest (ROIs) are defined, as they could potentially impact study 

outcomes. To date, most studies employing tau-PET tracers involved ROIs constructed 
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based on neuropathological studies. For example, some studies mimicked the Braak 

stages in vivo 15–17, while others selected specific regions reflecting early (e.g. entorhinal 

cortex) or more advanced (e.g. inferior temporal cortex) disease stages 19. These 

approaches have several advantages as they are supported by fundamental research and 

enhance generalizability across studies. However, compared to neuroimaging, 

neuropathological data typically include only a few slices in a constrained number of 

brain regions, and brain tissue is affected by death and by the fact that it is non-living 20. 

Additionally, tau PET signal does not equal presence of tau pathology. There are several 

sources of [18F]AV1451 signal and noise, including target binding, off-target binding 

(e.g. Monamine oxidase, neuromelanin, vascular lesions, iron), non-specific binding and 

imaging related noise (e.g. partial volume effects) 14,12,15,21–25. An alternative approach 

could therefore be to select ROIs based on data-driven approaches 26–28, thereby taking 

full advantage of the abundance of information contained in neuroimaging data, but also 

accounting the idiosyncrasies of PET imaging data.  

In light of ongoing efforts to define appropriate ROIs and determine tau PET-

positivity, it is important to compare data-driven approaches (agnostic, “where is the 

tau?”) with theory-derived ROIs based on post-mortem studies (directed, “is the tau 

here?”). In the present study, we applied an unsupervised algorithm to identify clusters of 

[18F]AV1451 signal. We then compared the spatial patterns of these clusters with 

neuropathologically derived ROIs described in previous publications. Finally, we tested 

which ROI best correlated with global cognition in an independent cohort of cognitively 

normal, mild cognitive impairment and AD dementia subjects. We hypothesized that our 
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data-driven approach would corroborate neuropathological findings, but would also 

present novel information leading to enhanced associations with cognition. 

 

MATERIALS AND METHODS 

Participants 

Two separate cohorts were included in this study. Participants from the Swedish 

BioFINDER study were used to perform clustering analysis on [18F]AV1451 data, 

whereas participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were 

used to test associations between the clustering-derived ROIs and cognition. 

Demographic, clinical and biomarker information for both cohorts are presented in Table 

1. 

 

The BioFINDER cohort is a multi-site study designed for the purpose of 

developing biomarkers for neurodegenerative diseases. More information can be found at 

http://biofinder.se. Study participants included 55 subjects with normal cognition, 21 with 

(MCI), and 47 with Alzheimer’s dementia, who had complete MRI and [18F]AV1451 

PET data (Table 1). Patients with MCI were referred to a memory clinic and 

demonstrated objective cognitive impairment that could not be explained by another 

condition. AD dementia patients met criteria for the DSM-V 29 and NINCDS-ADRDA 30 

for probable AD, established by clinicians blinded to PET data. To optimize overlap with 

the ADNI cohort, dementia patients were only included if they presented with an 

amnestic-predominant phenotype. Both dementia and MCI patients were only included in 

this study if they demonstrated abnormal Aβ1-42 levels in the CSF (INNOTEST, cut-off: 
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650 ng/l; Palmqvist et al., 2015). The sample of controls selected for [18F]AV1451 

scanning was intentionally enriched for β-amyloid positivity to include people in the 

preclinical stage of AD (see Table 1). PET imaging for the study was approved by the 

Swedish Medicines and Products Agency and the local Radiation Safety Committee at 

Skåne University Hospital, Sweden. All participants provided written informed consent 

according to the Declaration of Helsinki, and ethical approval was given by the Ethics 

Committee of Lund University, Lund, Sweden. 

Table 1: Demographic information, MMSE scores and amyloid-positivity rates 

 Controls  MCI  AD  Total 

 BioF ADNI  BioF ADNI  BioF ADNI  BioF ADNI 

n 55 43  21 37  47 10  123 90 

Age  
(SD) 

 

75.0 
(6.2) 

70.3 
(5.9) 

 70.8 
(10.9) 

72.0 
(6.8) 

 70.1 
(8.6) 

73.3 
(4.3) 

 72.4 
(8.4) 

71.3 
(6.1) 

% Male 50.9% 46.5%  57.1% 67.6%  55.3% 60.0%  53.7% 56.7% 

Education 
(SD) 

12.0 
(3.7) 

16.1 
(2.4) 

 11.7 
(3.7) 

16.9 
(2.7) 

 12.2 
(3.2) 

15.0 
(3.0) 

 12.0 
(3.5) 

16.3 
(2.6) 

 
% Amyloid+ 43.6% 33.3%  100% 44%  100% 100%  73.3% 44.8% 

MMSE 
(SD) 

29.1 
(1.1) 

29.0 
(1.3) 

 25.7 
(2.8) 

28.4 
(2.0) 

 21.2 
(5.1) 

25.5 
(5.1) 

 25.5 
(4.9) 

28.3 
(2.5) 

* BOLD text indicates significant difference (p<0.05) between cohorts, as measured by t-
test, or Fisher’s Exact Tests 
ADNI = Alzheimer’s Disease Neuroimaging Initiative; BioF = BioFINDER, MMSE = 
Mini-Mental State Examination; SD = Standard Deviation 
 
 

ADNI is a multi-site open source dataset designed to accelerate the discovery of 

biomarkers to identify and track AD pathology 32. The current study included all ADNI 

individuals with complete [18F]AV1451 scans that were available in November, 2016. 

This included 43 cognitively normal elderly controls, 37 patients with MCI, and 10 
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patients with a recent diagnosis of Alzheimer’s dementia (Table 1). In addition to 

imaging data, age, sex, education, diagnosis, amyloid-β status on [18F]florbetapir PET 33, 

Mini-Mental State Examination (MMSE) 34 scores and other tests measuring global 

cognition or activities of daily living (see Table 2) were downloaded from the ADNI-

LONI website (adni.loni.usc.edu). 

 

Imaging 

[18F]AV1451 images were processed using separate but nearly identical pipelines 

across the two cohorts. Acquisition and processing procedures for [18F]AV1451 

processing in the BioFINDER cohort has been described elsewhere 35. Scans were 

reconstructed into 5-min frames and motion corrected using AFNI’s 3dvolreg 

https://afni.nimh.nih.gov/. Mean [18F]AV1451 images were created over a time-window 

of 80-100 minutes post-injection, and these images were coregistered to each subject’s 

T1 image in native space. Mean images were then intensity normalized using a complete 

cerebellar gray reference region to create standard uptake value ratio (SUVR) images. 

Coregistered MRI images were normalized to the MNI-ICBM152 template using 

Advanced Normalization Tools (https://stnava.github.io/ANTs/) and the transformation 

parameters were applied to the SUVR images. Finally, SUVR images were smoothed 

with an 8mm FWHM Gaussian filter. 

For the ADNI cohort, mean 80-100 min [18F]AV1451 images, as well as 

MPRAGE images closest to [18F]AV1451 scans, were downloaded from the ADNI-LONI 

website. Details on acquisition procedures for these [18F]AV1451 and MRI images can be 

found elsewhere (http://adni.loni.usc.edu/methods/documents/). [18F]AV1451 images 
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were processed in accordance 

to procedures described in 15. 

Briefly, T1 images were 

processed using Freesurfer 

v5.3 and [18F]AV1451 images 

were coregistered to native T1s 

using Statistical Parametric 

Mapping 12 

(www.fil.ion.ucl.ac.uk/spm/). 

SUVR images were created 

using a cerebellar gray reference region and images were normalized to MNI space using 

the parameters from the coregistered T1. Figure 1 shows mean [18F]AV1451 SUVR 

images stratified by diagnosis and amyloid status for each cohort. 

 

Clustering of [18F]AV1451 data 

Cross-subject [18F]AV1451-PET covariance networks were derived from all 123 

BioFINDER [18F]AV1451 images using an open-source unsupervised consensus-

clustering algorithm called Bootstrap Analysis of Stable Clusters (BASC; Figure 2) 36. 

The algorithm was adapted to 3D [18F]AV1451 data by stacking all 123 BioFINDER 

[18F]AV1451 images along a fourth (subject) dimension, creating a single 4D image to be 

submitted as input. BASC first reduces the dimensions of the data with a previously 

described region-growing algorithm 37, which was set to extract spatially constrained 

atoms (small regions of redundant signal) with a size threshold of 1000mm3. In order to  

Figure 1. Mean [18F]AV1451 uptake according to 
diagnosis, amyloid status and cohort 
Mean [18F]AV1451 SUVR images stratified by amyloid 
status and disease stage, across both the ADNI (top) and 
BioFINDER (bottom) cohorts. 
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reduce computational 

demands, the Desikan-

Killainy atlas 38 was used as a 

prior for region constraint, 

and the data was masked with 

a liberal gray matter mask, 

which included the subcortex 

but had the cerebellum 

manually removed (since this 

was used as the reference 

region for [18F]AV1451 

images). The region-growing 

algorithm resulted in a total 

of 730 atoms, which were 

included in the BASC 

algorithm. BASC next 

performs recursive k-means 

clustering on bootstrapped 

samples of the input data. After each clustering iteration, information about cluster 

membership is stored as a binarized adjacency matrix. The adjacency matrices are 

averaged resulting in a stability matrix representing probabilities of each pair of atoms 

clustering together (Figure 2). Finally, hierarchical agglomerative clustering with Ward 

criterion is applied to the stability ma trix, resulting in the final clustering solution. The 
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Figure 2. Bootstrap analysis of stable clusters on 
[18F]AV1451 data. [18F]AV1451 scans were entered into a 
voxelwise clustering algorithm. The optimal solutions were 
determined using the M-STEPS approach. This resulted in five 
[18F]AV1451 covariance networks. These networks were 
masked with a stability threshold of 0.5, and are shown in the 
Figure above. 
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process is repeated over several clustering solutions (k=1 - 50), and the M-STEPs method 

39 was implemented to find the most stable clustering solutions at different resolutions. In 

order to maintain relative similarity to Braak neuropathological staging (i.e. six ROIs), 

we chose the lowest resolution solution for subsequent analysis. Note that no size 

constraints were imposed on clustering solutions. Voxels were only included in a cluster 

when cluster probability membership exceed 0.5 (BASC default setting), eliminating 

unstable voxels from analysis 36,40. After determining clusters in the BIOFINDER cohort, 

we extracted the (size-weighted) average [18F]AV1451 SUVR for each cluster from all 

ADNI subjects, and these values were used for subsequent analysis investigating 

associations with cognition.  

 

Definition of Braak stage ROIs described in other studies 

A number of studies have created ROIs mirroring the Braak stages described from 

pathological studies. To test the utility of our data-driven ROIs vis-à-vis those defined in 

correspondence to the pathological literature, we recreated the Braak ROIs described in 

three different studies 15–17. Schöll, Lockhart et al. and Cho et al. were constructed using 

regions from the Desikan-Killainy atlas, and we recreated these ROIs in direct 

correspondence to what has been reported in these two studies. Schwarz et al. instead 

generated small ROIs designed to mirror the slabs of cerebral cortex extracted during 

autopsy for Braak staging. These regions were constructed with a script generously 

provided by the authors. For all analyses, Braak ROIs were included both individually 

(“single”) and cumulatively (“stage”). For example, for Braak Stage III, one ROI was 

created containing all regions from Braak I, II, and III included (“stage”), as well as a 
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ROI created including only regions in Braak III (“single”). Finally, some studies have 

chosen to use only the bilateral inferior temporal lobe from the Desikan-Killainy atlas to 

summarize global tau burden 19, so we included this region in subsequent analysis as 

well. Studies also frequently used the bilateral entorhinal cortex from this atlas, and it 

should be noted that this region is also included, namely as Stage I from Cho et al. and 

Schöll, Lockhart et al. Size-weighted average [18F]AV1451 SUVR was extracted for each 

ROI (35 in total) for each subject.   

 

Similarity between data-driven clusters, anatomical ROIs and Braak Stage 

ROIs 

We compiled descriptive information about the similarity between our cluster-

derived ROIs and the Braak ROIs from the literature. For comparisons to regions from 

Schöll, Lockhart et al. and Cho et al., we used normalized mutual information. Due to the 

small size of the Schwarz et al. regions, comparisons involved measuring the percentage 

of each Schwarz ROI falling inside of each cluster-derived ROI.  

   

Statistical Analysis 

In order to test the utility of our data-driven covariance networks, we performed 

linear models between these covariance networks and MMSE scores. The MMSE was 

chosen because it is a measure of global cognition, and because it is commonly employed 

in clinical practice, clinical trials and in many scientific studies. Separate general linear 

models for each ROI (40 in total; our five data-driven clusters and 35 ROIs from the 

literature) were constructed with MMSE score as the dependent variable and age, sex and 
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education as covariates. High collinearity was expected between ROIs so no multiple 

comparisons correction was performed. Rather, we aimed to establish whether regions 

generated from the clustering sample (BioFINDER) effectively described cognitive data 

in the test sample (ADNI), and whether it did so optimally in comparison to regions 

constructed based on pathological studies.  

In order to identify a sparse set of non-redundant covariates that best describe the 

MMSE data in ADNI, we submitted all 40 tau ROIs plus age, sex and education to a 

Least Absolute Shrinkage and Selection Operator (Lasso) regression-based feature 

selection routine, implemented using scikit-learn 41 in Python 3.5.2 

(https://www.python.org/). The Lasso uses an L1 regularization (coordinate descent) to 

penalize regression coefficients based on their maximum likelihood estimates, and is 

therefore an optimal approach to select a small number of variables from a large number 

of collinear covariates. In the current implementation, the degree of penalization (alpha 

parameter) is optimized using 10-fold cross-validation. All tau ROIs and demographics 

were scaled to be mean-centered with unit variance, and entered into the Lasso regression 

model with MMSE score as the dependent variable. Features selected by the Lasso (beta 

> 0.25) were entered together into a general linear model with MMSE as the dependent 

variable. Finally, to ensure our results were representative of global cognition and not 

specific to the MMSE, we repeated all of the previous analyses with several other tests of 

global cognition and function available in ADNI (see Table 2).  

 

RESULTS 

Participant Characteristics 
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Table 1 contains demographic information, MMSE scores and amyloid positivity 

rates for both the ADNI and BioFINDER sample. The sample used for clustering 

(BioFINDER) demonstrated important differences compared to the sample used for 

testing (ADNI). BioFINDER subjects were less highly educated across the whole sample, 

and BioFINDER controls were on average older than ADNI controls. Additionally, the 

BioFINDER sample demonstrated lower MMSE scores across the whole sample 

compared to ADNI, including within MCI and dementia groups. Finally, 45% of ADNI 

subjects were amyloid-positive vs. 73% of BioFINDER subjects, which was primarily 

related to the fact that only amyloid positive MCI patients were included in the 

BioFINDER sample.  

 

Data-driven Tau-PET covariance networks 

123 BioFINDER [18F]AV1451 scans were entered into an advanced clustering 

algorithm in order to identify networks of regional [18F]AV1451 signal covariance across 

subjects. The M-STEPS algorithm identified five-, nine- and 32-cluster solutions as 

optimal solutions. For the purposes of comparing with Braak stage ROIs, we chose the 

lowest-resolution solution (n=5) for subsequent analyses, visualized in Figure 2. The 

clusters were interpreted and named as follows: “1: Subcortical”, “2: Frontal”, “3: 

Medial/Anterior/Inferior Temporal”, “4: Temporo-parietal” and “5: Unimodal Sensory”. 

Cluster 3 bore resemblance to regions often involved in early tau aggregation and atrophy 

1, while Cluster 4 also appeared similar to regions commonly associated with 

neurodegeneration in AD 26,27. Of note, the hippocampus was largely unrepresented in 

any of the cluster-cores, though some voxels in the head of the hippocampus were 
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included in Cluster 3, and a few distributed voxels were included in Cluster 1 

(Subcortex). However, using a winner-takes-all clustering approach, most of the 

hippocampus clustered with other subcortical and periventricular regions.  

 

Similarity to Braak ROIs 

Descriptive metrics were used to quantify the spatial similarity between the data-

driven covariance networks and the Braak Stage ROIs introduced in the literature (Figure 

3). Cluster 5 (“Unimodal Sensory”) demonstrated a high degree of overlap with Braak 

Stage VI across all region sets. Spatial similarity was also evident between Cluster 3 

(“Medial/Anterior/Inferior Temporal”) and Stage I-IV from Cho et al., and this cluster 

almost completely circumscribed Stages I-III from Schwarz et al. Cluster 1 (“Subcortex”) 

was most similar to Schöll, Lockhart et al. Stage II, due in part to its inclusion of the 

hippocampus. Little spatial similarity was evident between Cluster 2 (“Frontal”) and any 

of the Braak Stage ROIs, though some similarity was seen with the Stage V region from 

Schöll, Lockhart et al. and Cho et al. due to their inclusion of many frontal lobe 

structures. Similarly, Cluster 4 (“Temporo-parietal”) did not demonstrate strong spatial 

similarity to any of the Braak ROIs, though it did partially overlap with the Braak Stage 

VI and Stage V regions from Schwarz et al. 

 

Associations with global cognition in ADNI 
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 General linear models were run in the ADNI dataset assessing associations 

separately between each of 40 tau ROIs (our five data-driven clusters established in the 

 

Figure 3. Comparison between data-driven and hypothesis-driven ROIs. Data-driven 
[18F]AV1451 covariance networks were compared to previously existing Braak Stage 
ROIs from the literature using descriptive statistics. The clusters were compared to ROIs 
from Schöll, Lockhart et al. and Cho et al using Normalized Mutual Information (top 
left), and were compared to regions from Schwarz et al. using the percentage of Schwarz 
ROI voxels within each data-driven cluster. 
 
 
BioFINDER study, and 35 ROIs from the literature) and MMSE scores, controlling for 

age, sex and education. Uncorrected effect sizes can be found in Figure 4. The highest 

effect sizes were seen with Cluster 4 (“Temporo-parietal”; β = -3.27 [SE=1.33], t = -2.45, 

p=0.016) and Cluster 3 (“Medial/Anterior/Inferior Temporal”; β = -2.75 [SE=1.37], t = -

2.00, p=0.049). Only these two ROIs met the uncorrected threshold for significance, 

while several others reach trend level of significance (Figure 4).  
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Next, all tau ROIs were 

entered into a Lasso regression 

model in order to identify a 

sparse set of covariates that best 

describe the MMSE data (Figure 

5). The optimal penalization 

value was defined through 

cross-validation as 2.11. The 

Lasso reduced all coefficients to 

zero except Cluster 4 

(“Temporo-parietal”), Cluster 1 

(“Subcortical”), Braak Stage VI 

from Schwarz et al., and 

education. These four variables 

were entered together into a 

general linear model, and together explained a much greater proportion of variance in 

MMSE data (r2[4:81] = 0.25, p<0.0001; Figure 5) compared to the individual effect sizes 

of each covariate (highest r2 = 0.064; see Table 2). The earlier negative association 

between Cluster 4 and MMSE was strengthened (t=-3.86, p<0.001), although positive 

associations were seen for the other three covariates (Cluster 1: t = 1.43, p = 0.15; 

Schwarz Single 6: t = 3.24, p = 0.002; Education: t = 2.53, p = 0.049).  

 

Sensitivity analyses 

FIGURE 4. Associations between [18F]AV1451 ROIs 
and MMSE scores. General linear models comparing 
[18F]AV1451 signal to MMSE were run, adjusting for age, 
sex and education. For each model, a different 
[18F]AV1451 ROI was used. ROIs included the five 
clusters identified in our analysis, as well as Braak stage 
regions taken from three different papers: Schöll, Lockhart 
et al., 2016 Neuron; Cho et al., 2016 Ann. Neurol.; 
Schwarz et al., 2016 Brain. Two versions of each Braak 
ROIs were created, one using regions from that stage only 
(e.g. Stage 3), and one combining all regions from that 
stage with all regions from previous stages (e.g. Stage 
1+2+3). The effect size (t-value) of each tau ROI is 
shown. Only the data-driven Medial/Inferior Temporal 
region and Temporo-parietal region demonstrate 
significant relationships with MMSE. 
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To ensure our results were not 

specific to the MMSE, we repeated this 

analysis using five other measures of 

global cognition and function available 

in ADNI. The data-driven Cluster 4 

(“Temporo-parietal”) described global 

cognition better than all other ROIs 

using three of the five cognitive 

measures, and was in the top five for all 

of them (Table 2). Across all cognitive 

measures, Clusters 4 and 3 

(“Medial/anterior/inferior temporal”) 

ranked best and second best 

respectively at describing global 

cognitive data (Figure 6). Notably, the 

Schwarz Stage I ROI also performed 

quite well across cognitive measures, 

except for the MMSE. The Lasso analysis was also repeated for the other five tests of 

global cognition. The data-driven Cluster 4 was selected across all six analyses, and was 

the only ROI selected for two analyses (data not shown). 

 

DISCUSSION 

FIGURE 5. Lasso regression selects data-driven 
ROIs. All [18F]AV1451 ROIs plus age, sex and 
education were entered into a L1-penalized Lasso 
regression feature selection routine. The Lasso 
selected education and three ROIs: the data-driven 
Temporo-parietal region, data-driven subcortical 
region and the Schwarz Single VI region. Together, 
these features explained 25% of the variance in 
MMSE data. 
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Figure 6. Cumulative ranking of ROI performance across all measures of global 
cognition and function. For each measure of global cognition (see Table 2), 
[18F]AV1451 ROIs were ranked from worst to best (such that the worst region would 
have rank of 1) with respect to the effect size of the association between [18F]AV1451 in 
that region and the cognitive score. The ranks were then summed across all cognitive 
measurements and are displayed here. The data-driven Cluster 4 (“Temporo-parietal”) 
ranked the best cumulatively across cognitive tests, with the data-driven Cluster 3 
(“Medial/Inferior/Anterior temporal”) ranking second best. 
 

In the present study, we applied an advanced unsupervised algorithm to identify clusters 

of [18F]AV1451 signal in 123 subjects ranging from cognitively normal to AD dementia 

in the Swedish BioFINDER study. Our approach yielded clusters in the temporoparietal, 

medial/inferior/anterior temporal, unimodal sensory and frontal cortex, as well as the 

subcortex. In an independent sample of 90 subjects (ADNI), we performed general linear 

models between tests of global cognition and each [18F]AV1451 cluster, adjusting for 
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age, sex and education. In addition, we ran similar models using 35 neuropathologically 

derived ROIs from previous publications 15–17,19.  

Table 2. Best-ranking AV1451 ROIs at describing global cognition across different 
cognitive tests 

 
MMSEa 

  
CDRSBb 

 

Rank Study ROI t Study ROI t 

1 Data-driven Temporo-parietal -2.45*  Schwarz Stage I 3.60*** 

2 Data-driven Temporal -2.00*  Data-driven Temporo-parietal 3.49*** 

3 Cho Single IV -1.97  Cho/Scholl Stage I 3.49*** 

4 Cho Stage IV -1.83  Data-driven Temporal 3.33*** 

5 Other Inferior Temporal -1.80  Cho Stage IV 3.18*** 

    

 
 
    

 
ADAS11c 

  
ADAS13d 

 

Rank Study ROI t  Study ROI t 

1 Data-driven Temporo-parietal 4.10***  Data-driven Temporo-parietal 3.02** 

2 Schwarz Stage I 3.50***  Schwarz Stage I 2.57* 

3 Cho Single IV 3.43***  Data-Driven Temporal 2.35* 

4 Data-driven Temporal 3.39**  Cho/Scholl Stage I 2.34* 

5 Cho Stage IV 3.33** Cho Single IV 2.34* 
 
 
   

 
 

 
    

 
ECOGe 

  
FAQf 

 

Rank Study ROI t  Study ROI t 

1 Data-driven Temporo-parietal 3.68**  Schwarz Stage I 2.91** 

2 Cho Stage IV 3.48**  Data-driven Temporal 2.69** 

3 Schwarz Stage I 3.40*  Cho/Scholl  Stage I 2.68** 

4 Cho Single IV 3.40*  Data-driven Temporo-parietal 2.67** 

5 Data-Driven Temporal 3.40*  Cho Stage III 2.63* 
 * p<0.05 ** p<0.01 *** p<0.001 
MMSE = Mini-Mental State Examination; CDRSB = Clinical Dementia Rating Sum of 
Boxes; ADAS = Alzheimer’s disease Assessment Scale; ECog = Everyday Cognition; 
FAQ = Functional Activities Questionnaire 
a 34 , b 51 , c 52 , d 53 , e 54 ,f 55  
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Across all ROIs, only two were significantly associated with MMSE score, and they were 

both data-driven clusters (temporoparietal and medial/inferior/anterior temporal cortex). 

In addition, the temporoparietal data-driven cluster was among the most important 

features (identified by a Lasso regression model) for predicting MMSE scores. These 

findings were generalizable to other measures of global cognition and function. 

Unsupervised clustering of [18F]AV1451 PET data thus revealed ROIs resembling well 

described vulnerable regions in AD, which enhanced description of cognitive data in an 

independent dataset. This suggests that data-driven approaches to delineate ROIs may 

improve clinical utility of [18F]AV1451 PET data. 

The tau-PET covariance networks derived from our clustering approach exhibited 

a fair degree of overlap with Braak ROIs derived from autopsy studies, thereby 

demonstrating biological relevance. Particularly, Cluster 3 (“Medial/Anterior/Inferior 

Temporal”) was reminiscent of regions involved in early tau accumulation, whereas 

Cluster 5 (“Unimodal Sensory”) demonstrated a high degree of similarity to regions 

involved only in the latest stages of AD. In contrast, Cluster 4 (“Temporo-parietal”) did 

not strongly resemble any of the Braak regions, while its pattern, together with the pattern 

of cluster 3, spatially overlapped with cortical regions most vulnerable to 

neurodegeneration in AD 26,27. Furthermore, signal in the hippocampus was 

heterogenous, adding additional evidence that [18F]AV1451 signal in this structure should 

be interpreted with caution 17 21,24. Similarly, our data-driven approach suggested that 

most (but not all) frontal lobe structures exhibited [18F]AV1451 signal patterns unique to 

the rest of the cortex. This is notable considering the original Braak Stage V aggregates 

frontal lobe structures with many of the temporo-parietal structures captured in our 
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Cluster 4. Part of the successful description of cognitive data by the data-driven ROI may 

be due to its isolation from many of these frontal lobe structures, which may be 

contributing signal less informative to AD progression, particularly in early disease 

stages. Finally, our data-driven ROIs provide information that may reconcile some 

differences between existing Braak ROIs. For example, in our study, [18F]AV1451 signal 

in the putamen and insula covaried with other regions involved in early tau accumulation, 

which was similar to the ROIs described by Schöll, Lockhart et al., but not Cho et al.  

 Despite the clusters being derived from a sample with several important and 

disease-relevant differences compared to the testing sample, these data-driven ROIs 

described global cognitive data better than regions derived from autopsy studies. While 

the improvement over the other regions was subtle, the increasing movement toward the 

development of biomarkers demands optimization of ROIs to summarize [18F]AV1451 

signal 42–44. As such, even small improvements are important for studies assessing more 

subtle effects of cortical tau accumulation and studies seeking optimal biomarkers for 

multimodal classification or disease progression 45. The improvement observed is likely 

due to the data-driven nature of the method used for derivation of the clusters. 

[18F]AV1451 may be binding to several off-target agents, such as (neuro)melanin, iron, 

vascular pathology and MAO-A/B 14,12,21,22, and as such, [18F]AV1451 signal is likely a 

mix of true tau pathology and other off-target and non-specific signals. Deriving the 

clusters from a sample representing a wide breadth of disease stages and additionally 

including subjects unlikely to have significant cortical tau pathology enhances the 

likelihood of isolating true tau signal, which covaries strongly and in a regionally specific 

pattern across disease stages. Additionally, deriving the clusters voxelwise allows 
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freedom from anatomical borders, which may impose unnecessary constraints irrelevant 

to the spread of tau. Finally, despite its many limitations, multi-subject automatic whole-

brain sampling is a distinct advantage of [18F]AV1451-PET over pathological studies. 

This advantage may further enhance the efficacy of data-driven approaches to ROI 

generation, which evaluate regions equally that may otherwise be overlooked. 

 The results of this study thus suggest a possible advantage of data-driven 

approaches in evaluating [18F]AV1451 PET data as a biomarker for AD. This study adds 

to a rapidly growing body of data-driven [18F]AV1451-PET studies that have helped to 

characterize features of this tracer in the context of AD. Sepulcre and colleagues 

employed a similar unsupervised clustering approach on a set of cognitively intact elderly 

individuals, which, similar to our study, revealed [18F]AV1451-PET covariance between 

regions of early- and later- stage tau accumulation 46. This suggests these patterns of 

signal covariance are stable even in the earliest disease stages, lending credence to the 

use of data-driven biomarkers in multiple contexts. Meanwhile, Jones et al. used a data-

driven Independent Components Analysis approach to summarize [18F]AV1451 data 47. 

While the authors concluded the resulting ROIs represented functional brain networks, 

three of the ROIs bore a striking similarity to those generated by our clustering approach. 

Our approach builds on these previous studies by assessing relationships between data-

driven ROIs and cognition, and by comparing them with other existing ROIs. Maass et al. 

employed a series of a priori and supervised data-driven methods to generate 

[18F]AV1451 ROIs and found a relative equivalence between these ROIs in their 

association with cognition and a number of other disease markers 43. However, consistent 

with our study, Maass et al. found [18F]AV1451 signal to covary most strongly within a 
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specific set of AD vulnerable-regions, and conclude that these regional measures may 

perform better than whole-brain ROIs, particularly regarding associations with cognition.  

 We employed a widely used feature selection routine to identify those regions 

most informative in describing association between [18F]AV1451 signal and cognitive 

data. The feature most strongly associated with MMSE was the data-driven temporo-

parietal cluster, which harbored a strong negative relationship when included with the 

other selected features (p<0.001). However, the feature selection also resulted in the 

selection of somewhat unexpected features, namely the data-driven Cluster 1 

(“Subcortex”), Schwarz et al. Stage VI and education, all of which associated positively 

with MMSE in a general linear model. The finding of an association between education 

and MMSE controlling for tau pathology is consistent with the concept of cognitive 

reserve 48, and suggests that more highly educated subjects may experience preserved 

cognition in the face of tau pathology 49. While the selection of Cluster 1 and Schwarz 

Stage VI are less obvious, possible explanations include partial volume effects and age-

related off-target or non-specific signal. Because very few ADNI subjects demonstrate 

strong [18F]AV1451 signal in either of these ROIs, higher [18F]AV1451 signal may be 

related to the presence of more cortex (and thus more off-target or non-specific binding) 

rather than increased tau pathology. Similarly, off-target [18F]AV1451 signal in the 

cortex and subcortex has been shown to increase with age 15,21,50, possibly representing 

binding to reactive astrocytes 25 or iron deposits 21. Since age was not selected by the 

Lasso and therefore was not included in the multivariate model, this may explain the 

positive association between these regions and MMSE. However, the fact that these ROIs 

were selected instead of age suggests they may carry additional cognition-relevant 
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information, which may demand further exploration. Regardless, the negative 

relationship between Cluster 4 (“Temporo-parietal”) and MMSE was substantially 

increased after regressing out these “noisy” variables. This suggests that [18F]AV1451-

cognition relationships may be enhanced by regressing out off-target or non-specific 

signal sources. 

Our study comes with a number of limitations. First, there were several 

differences in characteristics between the two samples. We decided to use the 

BioFINDER cohort for clustering given the broad range of both [18F]AV1451 uptake 

(Figure 1) and MMSE scores (Table 1). As a consequence, validation of the clusters was 

performed in subjects from the ADNI cohort with more restricted [18F]AV1451 uptake 

and cognitive scores. Second, in the trade-off between precise psychometric tracing of 

cognition and use of simpler but widely available tests, we selected a rather crude 

outcome measure for cognition (i.e. MMSE) to enhance reproducibility of our results. We 

partially addressed this concern by validating our results with other available measures of 

global cognition. Third, contrary to other studies, we did not make an attempt to classify 

individuals according to stages of tau pathology. Finally, we chose not to apply partial 

volume correction on our data. Investigating the impact of such corrections is certainly 

important, but we were interested in the natural behavior of tau-PET signal before any 

corrections.  

In order to aid future studies, we have made the [18F]AV1451 clusters from this 

study available on FigShare (doi = 10.6084/m9.figshare.5758374). 
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