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Abstract 

Aim: An early characterization of drug-induced cardiotoxicity may be possible by combining 

comprehensive in vitro pro-arrhythmia assay and deep learning techniques. The goal of this study 

was to develop a deep learning method to automatically detect irregular beating rhythm as well 

as abnormal waveforms of field potentials in an in vitro cardiotoxicity assay using human 

pluripotent stem cell (hPSC) derived cardiomyocytes and multi-electrode array (MEA) system.  

Methods and Results: We included field potential waveforms from 380 experiments which 

obtained by application of some cardioactive drugs on healthy and/or patient-specific induced 

pluripotent stem cells derived cardiomyocytes (iPSC-CM). We employed convolutional and 

recurrent neural networks, in order to develop a new method for automatic classification of field 

potential recordings without using any hand-engineered features. In the proposed method, a 

preparation phase was initially applied to split 60-second long recordings into a series of 5-second 

long windows. Thereafter, the classification phase comprising of two main steps was designed. 

In the first step, 5-second long windows were classified using a designated convolutional neural 

network (CNN). In the second step, the results of 5-second long window assessments were used 

as the input sequence to a recurrent neural network (RNN). The output was then compared to 

electrophysiologist-level arrhythmia (irregularity or abnormal waveforms) detection, resulting in 

0.84 accuracy, 0.84 sensitivity, 0.85 specificity, and 0.88 precision.  

Conclusion: A novel deep learning approach based on a two-step CNN-RNN method can be 

used for automated analysis of “irregularity or abnormal waveforms” in an in vitro model of 

cardiotoxicity experiments. 
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Introduction 

Cardiotoxicity is one of the major reasons for drug attrition from the market which may impose 

tremendous costs to pharmaceutical companies 1. Comprehensive in vitro pro-arrhythmia assay 

(CiPA) using the IPSC-CM/MEA system have been proposed to be a robust, efficient, and 

sensitive platform for cardiotoxicity screenings 2-8. While industry standard assays are based on 

using immortalized cell lines or animal models, CiPA takes the advantage of cardiomyocytes 

obtained from cardiogenic differentiation of hPSCs, literally representing the most similar 

physiology to human heart 9. Therefore, this platform may provide an advanced complementary 

method with great potential for reducing the costs of drug development and cardiotoxicity-related 

drug attrition.  

Field potentials recorded from iPSC-CMs using MEA system is well correlated to action potentials 

recorded from single cardiomyocytes and electrocardiogram (ECG) recorded from the whole heart 
10. Furthermore, IPSC-CM/MEA platform could reliably demonstrate the cardiotoxicity of drugs 

which are known to be arrhythmogenic, according to the previous experiments 11-13. Based on 

these findings, efforts have been made to generate a quantitative system in order to predict drugs 

with pro-arrhythmic risk 11, 14, 15.  

By developing diverse experimental platforms and their quantitative readouts, scientists face large 

datasets which required extensive human resource and time to be analyzed and interpreted. Last 

few decades have been the golden age for the development of automated tasks to help experts 

and improve performance in the field of medical data analysis 16-20.  

Especially, recent studies have proposed deep learning methods to overcome drawbacks of 

employing hand-engineering features to describe data characteristics. In fact, the deep learning 

methods do not explicitly require any type of feature design by human experts, and instead, the 

features are implicitly learned from data through an automatic learning procedure 21. More 

recently, a few studies have investigated the task of analysis and classification of 

electrocardiogram (ECG) signals with deep learning methods 22, 23. Rajpurkar et al. 22, 23 introduced 

a deep learning model to classify ECG samples and could exceed the average cardiologists 

performance in both sensitivity and precision measures 23. In another study, a personalized 

monitoring and warning system based on deep learning methods was designed for cardiac 

arrhythmia prediction 22.  

Despite the development of new methods for automation of arrhythmia detection on surface ECG, 

the interpretation of data obtained from IPSC-CM/MEA system and the translation of findings for 

risk assessment is still in its infancy. Advanced machine learning methods can play an important 

role on creating computer-aided diagnosis (CAD) tools for IPSC-CM/MEA data analysis. In this 

study, we hypothesized that the deep learning approach can be exploited to create a model for 

irregularity or abnormal waveform detection in the field potentials recorded from healthy and/or 

patient-specific iPSC-CMs, which have been subjected to some cardioactive drugs. Our model is 

comprised of two different deep learning models, namely CNN 24 and RNN 25. Our results showed 

high performance of the proposed method for irregularity or abnormal waveform detection.   
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Methods 

Data set creation 

 Generation of iPSC-CMs   

In order to induce CMs differentiation of human iPSCs in a suspension culture system, the 5-day-

old iPSC size-controlled spheroids (average size: 175 ± 25 µm) were cultured for 24 hours in 

differentiation medium (RPMI 1640 medium; Gibco) supplemented with 2% B-27 supplement 

without vitamin A (12587-010; Gibco), 2 mM L-glutamine (25030-024; Gibco), 0.1 mM β-

mercaptoethanol (M7522; Sigma-Aldrich) and 1% nonessential amino acids (11140-035; Gibco) 

containing 12 µM of CHIR99021 (a small molecule activating canonical Wnt/β-catenin pathway) 

(CHIR; 041-0004; Stemgent). The spheroids were subsequently washed with Dulbecco’s 

phosphate-buffered saline (DPBS) and maintained in fresh differentiation medium without small 

molecule (SM) for one day. Thereafter, the medium was exchanged for new differentiation 

medium that contained 5 µM IWP2 (3533; Tocris Bioscience) as a Wnt antagonist, 5 µM 

SB431542 (S4317; Sigma-Aldrich) as an inhibitor of transforming growth factor-β superfamily type 

I activin receptor-like kinase receptors, and 5 µM purmorphamine (Pur; 04-0009; Stemgent) as a 

sonic hedgehog (SHH) agonist. The spheroids were cultured for 2 days in this medium, after 

which they were washed with DPBS and further cultured in a fresh differentiation medium without 

SMs. This medium was refreshed every 2–3 days. 

 Application of cardioactive drugs  

We used a multi-electrode array (MEA) data acquisition system (Multichannel Systems) for 

extracellular field potential recordings. The MEA plates contained a matrix of 60 titanium nitride 

electrodes (30 µm) with an inter-electrode distance of 200 µm. MEA plates were sterilized with 70 

% ethanol solution and hydrophilized with fetal bovine serum for 30 minutes, washed with sterile 

water, and then coated with an ECM gel from Engelbreth-Holm-Swarm mouse sarcoma (catalog 

no. E1270; Sigma-Aldrich). Beating spheroids were plated in differentiation medium on the middle 

of sterilized MEA plates for at least 48 hours. On the day of the experiment, the MEA plates were 

connected to a head stage amplifier. The recordings were performed for 60 seconds at baseline 

and 5 minutes after drug application. Verapamil hydrochloride (Sigma-Aldrich), Nifedipine (Sigma-

Aldrich), Propranolol hydrochloride (Sigma-Aldrich) and Sotalol hydrochloride (Sigma-Aldrich) 

were used. All recordings were performed at 37°C. The extracellular field potentials were sampled 

at 2 KHz in Cardio2D software (V 2.6.2; Multichannel Systems) and saved for further analysis.  

Data analysis 

A novel approach for automated assessment of irregularity and/or abnormal waveforms in the 

field potentials recorded from iPSC-CMs was proposed. The recorded field potentials were 

classified into normal or arrhythmic by utilizing a specific deep learning approach. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2018. ; https://doi.org/10.1101/244442doi: bioRxiv preprint 

https://doi.org/10.1101/244442


4 
 

 Data preparation 

To prepare input signals from field potential recordings of iPSC-CMs, preprocessing (denoising 

and splitting) steps were required. First, each raw signal was normalized and filtered using a 

moving average filter to reduce noise. Then, the preprocessed 60-second long signals were 

divided into random 5-second windows, each started at a particular R-peak and continued to the 

fixed length of five seconds (Figure 1). 

 
Figure 1. Splitting a 60-second long recording into a sequence of 5-second long windows. To split a record, R 
peaks are detected all over the recording. Each 5-second long window starts from a particular R point and continues 
to the fixed length of five seconds. 

 Classification model 

After the preparation phase, the preprocessed input signals were classified into normal or 

arrhythmic by using a two-step deep learning architecture (Figure 2). In the first step, we designed 

a specific 1-D CNN architecture which used the preprocessed signals as its input without 

employing any hand-engineered feature. The input layer size was 5000, which was obtained from 

5-second long signals at 1 KHz sampling frequency. Our network contained three layers of 

convolution, each had 16 filters with the kernel size of 80. Moreover, batch normalization 26 was 

adopted right after each convolution and before the activation function that was chosen to be 

Scaled Exponential Linear Unit (SELU) 27. We also used dropout 28 at each convolution layer to 

improve the generalization capability of the proposed algorithm. The network ended with one fully-

connected layer and the sigmoid activation function that produced one output specifying the 

probability of abnormality for the corresponding window.  
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Figure 2. Representation of the two-step deep learning-based classification model. a) The general architecture of the proposed 
method: To classify a field potential recording of iPSC-CMs, a primary denoising followed by splitting of the 60-second long recording 
into the set of 5-second signals is applied. Each 5-second-long window is fed into the trained CNN (the details of the CNN architecture 
was shown in (b)) which produces output results for that window. Then, the sequence of CNN outputs is used as the input for the trained 
RNN (its components were presented in (c)). The RNN output determined our final result given the decisions of CNN on the 5-second 
signals, classifying the 60-second long filed potential recording as normal or arrhythmic. Abbreviations: N; Normal and A; Arrhythmic. 
b) The CNN architecture that takes 5-second long window as input and provides assessment of that window (probability of being normal 
or arrhythmic for 5-second long window). c) The RNN architecture that takes the sequence of 5-second long windows assessments as 
the input and provide the final result (probability of being normal or abnormal for 60-second long recording). 
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The second step was dedicated to classification of the whole field potential recording, based on 

the sequence of evaluation results obtained on the 5-second long windows. For this purpose, the 

well-known Long Short Term Memory (LSTM), 29 as an RNN architecture, was employed. The 

designed network contained one recurrent layer with three neurons and one fully-connected layer 

with the sigmoid activation function. In addition, batch normalization and dropout were applied in 

the recurrent layer. 

To train the proposed model composed of the CNN and RNN networks, we used our previously 

generated dataset which includes both normal and arrhythmic field potential recordings of iPSC-

CMs that was previously labeled by electrophysiology experts.  

 

 
Figure 3. Deep learning based proarrythmia analysis for cardiac safety pharmacology. We constructed a 
dataset from FP recordings of iPSC-CMs using MEA system. The dataset contained 380 samples of 60-second long 
recordings. Each record was labeled as normal or abnormal by electrophysiology experts. Using the provided 
dataset, we trained the proposed deep architecture composed of CNN and RNN networks that was designed for 
binary classification of data. This trained deep CNN-RNN system can be further used for classification of new FP 
recordings into normal and abnormal categories specially in comprehensive in vitro proarrhythmia assay. 
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Results 

In this study, we developed a new classification model to automatically identify normal and 

abnormal field potential waveforms of human cardiomyocytes differentiated from iPSCs of healthy 

or patient individuals as well as their cardioactive drugs experiments (Figure 3). The healthy and 

patient-specific iPSC-CMs were generated using a small molecule-based differentiation protocol 
30-32. The spheroids of 30-day old iPSC-CMs were plated on the electrodes of a multielectrode 

array system and their filed potential recordings were performed (Supplementary movie 1) 30, 32. 

The field potentials recorded from multi-cellular spheroids of iPSC-CMs resembled the surface 

ECG recorded from the whole heart (Supplementary Figure 1) and provided valuable information 

on the excitability and functionality of differentiated cardiomyocytes. The field potential waveform 

included data on the duration of a beating cycle (R-R interval), the field potential duration (FPD) 

which corresponds to repolarization phase of the action potential and QT interval of ECG, and the 

field potential rhythmicity (Supplementary Figure 2). We also applied some known cardioactive 

drugs with acute effects on healthy and patient-specific iPSC-CMs in order to experimentally 

mimic arrythmogenesis and to provide raw data for the development of classifier. Therefore, we 

are not going to discuss the drug effects in this paper. These experiments helped the formation 

of a large dataset with valuable information but time-consuming and difficult to be manually 

analyzed. Furthermore, the in vitro cardiotoxicity assay using iPSC-CMs and MEA system is a 

novel approach which lacks sufficient and appropriate analysis software. Although efforts have 

been made to develop analysis tools 14, 15, to the best of our knowledge, there has not been any 

published results on the automatic classification of field potential recordings from iPSC-CMs into 

normal or arrhythmic. 

We collected a dataset of 380 field potential recordings obtained from healthy and patient-specific 

iPSC-CMs as well as their cardioactive drugs experiments to train the proposed classifier. These 

380 recordings were labeled as normal and abnormal waveforms by electrophysiology experts. 

The abnormal waveforms included long FPD, bradycardia, tachycardia and polymorphic (Figure 

4). We used 20% of this dataset as the test set and 80% for training and validation of the 

classification method. The 60-second long recordings were preprocessed and converted to small 

windows of 5-second long field potential recordings (Figure 1). The preprocessing resulted in 

about 7000 input signals. Following the training of CNN by these 5-second long recordings, the 

RNN was trained to aggregate output results of CNN for each waveform. The final trained 

networks were saved for further classification of test signals as well as any other input signal 

(Figure 2). The results of classification by deep learning-based classifier showed the performance 

metrics of 0.84 accuracy (Equation 1), 0.84 sensitivity (Equation 2), 0.85 specificity (Equation 3), 

and 0.88 precision (Equation 4) on the test dataset. In addition, the F-score as a harmonic mean 

of sensitivity and precision (Equation 5), was evaluated to be 0.86. Performance metrics were 

calculated by using the following formula: 

    

Accuracy =
#𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

#𝐴𝑙𝑙 𝑖𝑛𝑝𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                

Sensitivity (Recall) =
#𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

#𝐴𝑙𝑙 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                                

Specificity =
#𝑁𝑜𝑟𝑚𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

#𝐴𝑙𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                                             

Equation (2) 

Equation (3) 

Equation (1) 
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Precision =
#𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

#𝐴𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙
 

F score =
2 ×  𝑟𝑒𝑐𝑎𝑙𝑙 ×  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

Therefore, the proposed classification method has resulted in a considerable performance without 

using the expert knowledge for designing the features and the classification system.   

 
Figure 4. Representative extracellular field potential recordings of iPSC-CMs. A) 5-second long recordings 
labeled as normal. B) 5-second long traces labeled as arrhythmic due to the observed phenotypes such as long FPD, 
bradycardia, and polymorphic waveforms. 

Equation (5) 

Equation (4) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2018. ; https://doi.org/10.1101/244442doi: bioRxiv preprint 

https://doi.org/10.1101/244442


9 
 

 

Discussion 

The CiPA proposes a cardiotoxicity screening schema which will result in a more robust, efficient, 

and sensitive system avoiding a late drug attrition from the market 9. The iPSC-CMs constituted 

a valuable tool for validating in silico reconstruction of pro-arrythmic risk throughout the process 

of drug development. Therefore, the functional assays representing the excitability or contractile 

function of these cells as well as advanced techniques for data analysis would be an important 

complement to CiPA.  

To find a classifier for field potential recordings, we exploited a two-step deep learning model 

composed of CNN and RNN which resulted in the identification of normal and abnormal 

waveforms with high accuracy. Moreover, the F-score results as well as other metrics confirmed 

the capability of the model in classification of the recordings.   

The introduction of combined iPSC-CMs technology and MEA system for drug discovery and 

cardiotoxicity assays has encouraged many scientists to test this platform and analyze its output 

signals 32-37. Especially, this system is developing to a high-throughput drug screening platform, 

highlighting the necessity for generation of automated and sensitive analysis tools. Over the last 

few years, the majority of analysis tools were developed for calculating the field potential 

parameters. Pradhapen and coworkers developed a semi-automatic software for analysis of field 

potentials recorded from iPSC-CMs 15. Their offline software called cardioMD had correlation 

analysis and ensemble averaging features which were used to reliably analyze the field potential 

durations and providing an output waveform for the expert to manually determine various 

morphology changing signals. In another approach, the waveforms obtained from impedance 

measurements of iPSC-CMs were subjected to a mathematical model (hCAR) for arrhythmic risk 

assessment 14. The hCAR model could successfully bridge the gap between hERG screening 

system and in vivo QT prolongation as well as arrhythmia assessment in preclinical and clinical 

studies. Furthermore, cytotoxic factors could be identified and rank-ordered using hCAR model. 

However, it employed some defined parameters and mathematical equations to predict 

proarrhythmia risk, thus limiting the power of analysis to the proposed features. In contrast, we 

developed a deep learning-based analysis tool by using a broad range of field potential features 

which resulted in arrhythmia assessment by monitoring morphological changes rather than 

application of any preselected features. The proposed CNN model showed the ability to process 

raw data directly, and did not require to use hand-designed features. Therefore, it may overcome 

the drawbacks of using hand-engineered features that restricts the accuracy of classification to 

the comprehensiveness and the quality of the designed features. In other words, CNNs have 

integrated the feature extraction and classification phases by learning both the representation and 

the classifier jointly to produce superior results. In agreement to our finding, deep CNNs have 

achieved spectacular results and are known as state-of-the-art methods for many tasks of medical 

image analysis 20 and biological data analysis 38. Furthermore, our deep learning method enables 

the analysis of recordings with various lengths (>5 seconds) by incorporating the designed RNN 

in the second stage. Today, RNN is one of the most promising methods to analyze sequential 

data. RNNs not only can take sequential inputs with various lengths, but also can process each 

element of the input sequence while maintaining a history of previous inputs in their hidden states. 
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By using these networks, we are able to process the sequence of results obtained from the small 

windows as the output of the first step of our model with no limit on the length of field potential 

recordings. Additionally, the performance of the proposed model can be improved by increasing 

the size of dataset since the deep learning methods can show their real capability when they are 

trained on large datasets. Moreover, the binary classification can be extended to multi-class 

classification if larger datasets are used. 

In conclusion, the proposed two-step CNN-RNN model provides an efficient, sensitive, and 

accurate platform for analysis and interpretation of IPSC-CM/MEAs datasets which may facilitate 

the preclinical cardiac safety pharmacology through CiPA.  
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Supporting information 

 

Supplementary figure1. Representative field potential recordings with various morphologies. 

 

Supplementary figure 2. The field potential parameters used for the analysis of recordings 

from iPSC-CMs. 

 

Supplementary movie 1. Spontaneously beating iPSC-CMs spheroid plated on the electrodes 

of an MEA plate. 
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