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Abstract 43	

The auditory neural code is resilient to acoustic variability and capable of recognizing 44	

sounds amongst competing sound sources, yet, the transformations enabling noise robust abilities 45	

are largely unknown. We report that a hierarchical spiking neural network (HSNN) trained to 46	

maximize word recognition accuracy in noise and multiple talkers approaches human-level 47	

performance. Intriguingly, comparisons with data from auditory nerve, midbrain, thalamus and 48	

cortex reveals that the organization and nonlinear transformations of the optimal network predict 49	

several properties of the ascending auditory pathway including a sequential loss of temporal 50	

resolution, increasing sparseness and selectivity. The optimal organizational scheme is critical for 51	

noise robustness since an identical network arranged to enable high information transfer does not 52	

predict auditory pathway organization and has substantially poorer performance. Furthermore, 53	

conventional linear and nonlinear receptive field-based models fail to achieve similar noise robust 54	

performance. The findings suggest that the auditory pathway hierarchy and its sequential nonlinear 55	

feature extraction computations may form a near optimal code capable of efficiently detecting 56	

sounds in noise impoverished conditions. 57	

Introduction 58	

Being able to identify sounds in the presence of background noise is essential for every-59	

day audition and vital for survival.  Although several cortical mechanisms have been proposed to 60	

facilitate robust coding of sounds 1,2 it is presently unclear how the sequential organization of the 61	

ascending auditory pathway and the resulting nonlinear transformations contribute to robust sound 62	

recognition. 63	

Several hierarchical changes in spectral and temporal selectivity are consistently observed 64	

in the ascending auditory pathway of mammals. Temporal selectivity and resolution change 65	
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dramatically over more than an order of magnitude, from a high-resolution representation in the 66	

cochlea, where auditory nerve fibers synchronize to temporal features of up to ~1000 Hz, to 67	

progressively slower (limited to ~25 Hz) and coarser resolution representation as observed in 68	

auditory cortex 3. Furthermore, although changes in spectral selectivity can be described across 69	

different stages of the auditory pathway, and spectral resolution is somewhat coarser in central 70	

levels, changes in frequency resolution are somewhat more homogeneous and less dramatic 4-6. It 71	

is plausible that such hierarchical transforms across auditory nuclei are essential for feature 72	

extraction and ultimately high-level auditory tasks such as acoustic object recognition. Yet, it is 73	

unclear whether these sequential transformations comprise an optimal computational strategy for 74	

noise robust sound encoding. Here we report that the hierarchical organization of the auditory 75	

pathway and its sequential nonlinear feature extraction transformations form a near-optimal 76	

computation strategy for noise robust sound coding.  77	

 78	

RESULTS 79	

Task optimized hierarchical spiking neural network predicts auditory system organization 80	

We developed a physiologically motivated hierarchical spiking neural network (HSNN) 81	

and trained it on a behaviorally relevant word recognition task in the presence of background noise 82	

and multiple talkers. Like the auditory pathway, the HSNN receives frequency-organized input 83	

from a cochlear stage (Fig. 1a) and maintains its topographic (tonotopic) organization through a 84	

network of frequency organized integrate-and-fire spiking neurons (Fig. 1b). For each sound, such 85	

as the word “zero”, the network produces a dynamic spatio-temporal pattern of spiking activity 86	

(Fig. 1b, right) as observed for peripheral and central auditory structures 7-9. Each neuron is highly 87	

interconnected containing frequency specific and co-tuned excitatory and inhibitory connections 88	
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10-13 that project across six network layers (Fig. 1b). Converging spikes from neurons in a given 89	

layer (Fig 1d) are weighted by frequency localized excitatory and inhibitory connectivity functions 90	

and the resulting excitatory and inhibitory post-synaptic potentials are integrated by the recipient 91	

neuron (Fig. 1d and e, note the variable spike amplitudes). Output spike trains from each neuron 92	

are then weighted by connectivity function, providing the excitatory and inhibitory inputs to the 93	

next layer (Fig. 1e, f). The overall multi-neuron spiking output of the network (Fig. 1b, right) is 94	

then treated as a response feature vector and fed to a Bayesian classifier in order to identify the 95	

original sound delivered (Fig. 1c; see Methods). 96	

Given that key elements of speech such as formants and phonemes have unique spectral 97	

and temporal composition that are critical for word identification 14,15, we first test how the spectro-98	

temporal resolution and sensitivity of each network layer contribute to word recognition 99	

performance in background noise. We optimize the HSNN to maximize word recognition accuracy 100	

in the presence of noise and to identify the network organization of three key parameters that 101	

separately control the temporal and spectral resolution and the overall sensitivity of each network 102	

layer (l=1 … 6). The neuron time-constant (𝜏"), controls the temporal dynamics of each neuron 103	

element in layer l and the resulting temporal resolution of the output spiking patterns. The 104	

connectivity width (𝜎") controls the convergence and divergence of synaptic connections between 105	

consecutive layers and therefore affects the spectral resolution of each layer. Since synaptic 106	

connections in the auditory system are frequency specific and localized 13,16,17 connectivity profiles 107	

between consecutive layers are modeled by a Gaussian profile of unknown connectivity width 108	

parameter 18 (Fig. 1e; specified by the SD, 𝜎"). Finally, the sensitivity and firing rates of each layer 109	

are controlled by adjusting the spike threshold level (𝑁") of each IF neuron 19. This parameter 110	

controls the firing pattern from a high firing rate dense code as proposed for the auditory periphery 111	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2018. ; https://doi.org/10.1101/243915doi: bioRxiv preprint 

https://doi.org/10.1101/243915
http://creativecommons.org/licenses/by-nd/4.0/


	 5	

to a sparse code as has been proposed for auditory cortex 2,20. Because temporal and spectral 112	

selectivities vary systematically and gradually across auditory nuclei3,6,21,  we required that the 113	

network parameters vary hierarchically and smoothly from layer-to-layer according to (see 114	

Methods: Network Constraints and Optimization) 115	

   𝜏" = 𝜏' ∙ 𝛼"*' 116	

   𝜎" = 𝜎' ∙ 𝛾"*'                (Eqn. 1) 117	

   𝑁" = 𝑁' ∙ 𝜆"*' 118	

 119	
where 𝜏', 𝜎', and 𝑁' are the parameters of the first network layer and are chosen so that first layer 120	

responses mimic activity in auditory nerve fibers (see Methods). The scaling parameters 𝛼, 𝜆, and 121	

𝛾 determine the direction and magnitude of layer-to-layer changes for each of the three neuron 122	

parameters. Scaling values greater than one indicate that the neuron parameter increases 123	

systematically across layers, a value of one indicates that the parameter is constant, while a value 124	

less than one indicates that the parameter value decreases systematically across layers. 125	

The optimal network outputs preserve important time-frequency information in speech 126	

despite variability in the input sound. Sounds in the optimization and validation corpus consist of 127	

spoken words for digits from zero to nine from eight talkers (TI46 LDC Corpus 22, see Methods). 128	

As a task we require that the network identify the word (i.e., the digit) that is delivered as input 129	

(10 alternative forced choice task). Example cochlear model spectrograms and the network spiking 130	

outputs are shown in Fig. 1g and h for the words zero, six, and eight in the presence of speech 131	

babble noise (optimal outputs at SNR=20 dB). Analogous to auditory cortex responses for speech7, 132	

the network produces a distinguishable spiking output for each sound that reflects its spectro-133	

temporal composition (Fig. 1g). Furthermore, when a single word is generated by different talkers 134	

in noise (SNR=20 dB) the network produces a relatively consistent firing pattern (Fig. 1g) such 135	

that the response timing and active neuron channels remain relatively consistent. For instance, a 136	
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lack of activity is observed for neurons between ~2-4 kHz within the first ~100-200 ms of the 137	

sound for the word zero and several time-varying response peaks indicative of the vowel formants 138	

are observed for all three talkers (Fig. 1h). 139	

To determine the network architecture required for optimal word recognition in noise and 140	

to identify whether such a configuration is essential for noise robust performance, we searched for 141	

the network scaling parameters (𝛼, 𝜆, and 𝛾) that maximize the network’s word recognition 142	

accuracy in a ten-alternative forced choice task for multiple talkers (8) and in the presence of 143	

speech babble noise (signal-to-noise ratios, SNR=-5, 0, 5, 10, 15, 20 dB; see Methods). For each 144	

input sound, the network spike train outputs are treated as response feature vectors and a Bayesian 145	

classifier (Fig. 1c; see Methods) is used to read the network outputs and report the identified digit 146	

(zero to nine). The network word recognition accuracy is shown in Fig. 2 as a function of each of 147	

the network parameters (𝛼, 𝜆, and 𝛾) and SNR (a, SNR=5 dB; b, SNR=20 dB; c, average accuracy 148	

across all SNRs). At each SNR the word recognition accuracy profiles are tuned with the scaling 149	

parameter (i.e., concave function) which enables us to find an optimal scaling parameters that 150	

maximizes the classifier performance. Regardless of the SNR the optimal HSNN parameters are 151	

relatively constant (Fig. 2d; tested between -5 to 20 dB) implying that the network organization is 152	

relatively stable and invariant of the SNR (Fig. 2a-c; a=5 dB SNR, b=20 dB SNR, c=average 153	

across all SNRs). Intriguingly, several functional characteristics of the optimal network mirror 154	

those observed in the auditory pathway. Like the ascending auditory pathway where synaptic 155	

potential time-constants vary from sub-millisecond in the auditory nerve to tens of milliseconds in 156	

cortex13,23-25, time constants scale in the optimal HSNN (global optimal 𝛼 = 1.9) over more than 157	

an order of magnitude between the first and last layer (1.90 = 24.8 fold increase between the first 158	

and last layer; ~0.5 to 12.5 ms) indicating that temporal resolution becomes progressively coarser 159	
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in the deep network layers. By comparison, the optimal connectivity widths do not change across 160	

layers (𝛾 = 1.0). This result suggests that for the optimal HSNN temporal resolution changes 161	

dramatically while spectral resolution remains relatively constant across network layers, mirroring 162	

changes in spectral and temporal selectivity observed along the ascending auditory pathway 3-6. 163	

 The scaling parameters of the optimal HSNN indicate a substantial loss of temporal (𝛼 =164	

1.9) and no change in connectivity resolution (𝛾 = 1.0) across network layers. This prompted us 165	

to ask how feature selectivity changes across the network layers and whether a sequential 166	

transformation in spectral and temporal selectivity is essential for optimal word recognition in 167	

noise. To quantify the sequential transformations in acoustic processing, we first measure the 168	

spectro-temporal receptive fields (STRFs) of each neuron in the network (see Methods). Example 169	

STRFs are shown for two selected frequencies across the six network layers (Fig. 3a; best 170	

frequency = 1.5 and 3 kHz). As a comparison, example STRFs from the auditory nerve (AN) 26, 171	

midbrain (inferior colliculus, IC) 5, thalamus (MGB) and primary auditory cortex (A1) 6 of cats 172	

are shown in Fig. 3e. Like auditory pathway neurons, STRFs from the optimal HSNN contain 173	

excitatory domains (red) with temporally lagged and surround inhibition/suppression (blue) along 174	

the frequency dimension (Fig. 3a). Furthermore, STRFs are substantially faster in early network 175	

layers lasting only a few milliseconds and mirroring STRFs from the auditory nerve, which have 176	

relatively short latencies and integration times. STRFs have progressively longer integration times 177	

(paired t-test with Bonferroni correction, p<0.01; Fig. 3b) and latencies (paired t-test with 178	

Bonferroni correction, p<0.01; Fig. 3c) across network layers, while bandwidths increase only 179	

slightly from the first to last layer (paired t-test with Bonferroni correction, p<0.01; Fig. 3d). These 180	

sequential transformations mirror changes in temporal and spectral selectivity seen between the 181	

auditory nerve, midbrain, thalamus and ultimately auditory cortex (Fig. 3e-h). As for the auditory 182	
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network model, integration times (Fig. 3f) and latencies (Fig. 3g) increase systematically and 183	

smoothly (paired t-test with Bonferroni correction, p<0.01) while bandwidths show a small but 184	

significant increase between the auditory nerve and cortex (paired t-test with Bonferroni 185	

correction, p<0.01), analogous to results from the computational network. Although the network 186	

trends mirror changes in spectral and temporal selectivity seen between auditory nerve and cortex, 187	

auditory receptive fields tend to be somewhat slower and narrower than the network. Such 188	

disparities may partly be attributed to mechanisms not included in the HSNN such as descending 189	

feedback 27, synaptic and dendritic nonlinearities 28 and adaptive mechanisms such as spike time 190	

dependent plasticity, synaptic depression, and gain normalization 1,29.  191	

 192	

Hierarchical and nonlinear transformations enhance robustness 193	

 It is intriguing that the hierarchical loss of temporal and spectral resolution in the optimal 194	

network mirror changes in selectivity observed in the ascending auditory system, as this ought to 195	

limit the transfer of acoustic information across the network. One plausible hypothesis is that such 196	

a sequential decrease in resolution is necessary to extract invariant acoustic features in speech 197	

while rejecting noise and fine details in the acoustic signal that may contribute in a variety of 198	

hearing tasks (e.g., spatial hearing, pitch perception etc.), but ultimately don’t contribute to speech 199	

recognition performance. This may be expected since human listeners require a limited set of 200	

temporal and spectral cues for speech recognition 14,15 and can achieve high recognition 201	

performance even when spectral and temporal resolution is degraded 30,31. We thus tested the above 202	

hypothesis by comparing the optimal network performance against a high-resolution network that 203	

lacks scaling (𝛼 = 1, 𝜆 = 1, and 𝛾 = 1) and for which we expect a minimal loss of acoustic 204	

information across layers. Unlike the optimal network, STRFs from the high-resolution network 205	
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are relative consistent and change minimally across layers (Supplemental Data, Fig. 1S), which 206	

supports the idea that spectrotemporal information propagates across the high-resolution network 207	

with minimal processing. 208	

Figure 4 illustrates how the optimal HSNN accentuates critical spectral and temporal cues 209	

necessary for speech recognition while the high-resolution network fails to do the same. Example 210	

Bayesian likelihood time-frequency histograms (average firing probability across all excerpts of 211	

each sound at each time-frequency bin) measured at 5 dB SNR are shown for the words “three”, 212	

“four”, “five” and “nine” for both the high-resolution (Fig. 4a) and optimal (Fig. 4b) HSNN along 213	

with selected spiking outputs from a single talker. Intriguingly, the Bayesian likelihood for the 214	

high-resolution network are highly blurred in both the temporal and spectral dimensions and have 215	

similar structure for the example words (Fig. 4a, right panels). This is also seen in the individual 216	

network outputs where the high-resolution network produces a dense and saturated firing pattern 217	

(Fig. 4a) that lacks the detailed spatio-temporal pattern seen in the optimal HSNN (Fig. 4b). The 218	

optimal HSNN preserves and even accentuates key acoustic elements such as temporal transitions 219	

for voice onset timing and spectral resonances (formants) while simultaneously rejecting and 220	

filtering out the background noise (Fig. 4b, right panels).  221	

We next compared the performance of the HSNN models to human subjects in an isolated 222	

monosyllabic word recognition task in speech babble noise 32. The word recognition accuracy of 223	

the optimal HSNN approaches human performance and is significantly higher than the high-224	

resolution network for all of the SNRs tested (Fig. 4 c; green=human subjects32; p<0.001, t-test 225	

with Bonferroni correction). On average there is a 27.6 % improvement in the word accuracy rates 226	

for the optimal HSNN over the high-resolution HSNN. We also compared the accuracy of the 227	

optimal HSNN with the accuracy of a HSNN that was optimized individually at each SNR (SNR-228	
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optimal HSNN). The accuracy of the SNR-optimal HSNN was not significantly different from the 229	

optimal HSNN (p<0.05, t-test) which suggest that the optimal solution produces a stable noise 230	

robust representation. Furthermore, the optimal HSNN is on average within 11.5% of human 231	

performance in an isolated word recognition task and follows a similar performance trend across 232	

signal-to-noise ratios (Fig. 4c) 32. 233	

To characterize the neural transformations enabling noise robust coding, we examine how 234	

acoustic information propagates and is transformed across sequential network layers. For each 235	

layer, the spike train outputs are first fed to the Bayesian classifier in order to measure sequential 236	

changes in word recognition accuracy. In the optimal HSNN, word recognition accuracy 237	

systematically increases across layers with an average improvement of 15.5% between the first 238	

and last layer when tested at 5 dB SNR (p<0.001, t-test; Fig. 5a, blue; 13.7% average improvement 239	

across all SNRs). By comparison, for the high-resolution HSNN, performance degrades 240	

sequentially across layers with an average decrease of 19.8% between the first and last layer 241	

(p<0.001, t-test; Fig. 5a, red; 18.1 % average reduction across all SNRs). Thus, the optimal HSNN 242	

is capable of sequentially extracting high-level acoustic features that enhance word recognition 243	

performance in the presence of noise. In contrast, background noise persists in the spiking activity 244	

of the high-resolution network, which results in a greater performance reduction across network 245	

layers. 246	

Although the classifier performance takes advantage of the hierarchical organization in the 247	

optimal HSNN, a similar trend is not observed for the transfer of acoustic information. First, firing 248	

rates decrease systematically across layers for the optimal HSNN, consistent with a sparser output 249	

representation (Fig. 5b, blue) as proposed for deep layers of the auditory pathway 2,20,33. By 250	

comparison, firing rates are relatively stable across layers for the high-resolution network (Fig. 5b, 251	
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red). We next measure the average mutual information (see Methods) in the presence of noise (5 252	

dB) to identify how incoming acoustic information is sequentially transformed from layer-to-layer. 253	

For the optimal HSNN the information rates (i.e., bits / sec) decreases between the first and last 254	

layer (Fig. 5c, blue) whereas for the high-resolution network information is conserved across 255	

network layers (Fig. 5c, red). Thus, the layer-to-layer increase in word recognition accuracy 256	

observed for the optimal HSNN is accompanied by a loss of total acoustic information in the deep 257	

network layers. We next measure the average information conveyed by individual action potentials 258	

as way of determining how acoustic features are represented by individual precisely timed spikes. 259	

Surprisingly, the information conveyed by single action potentials is higher and increases across 260	

layers (Fig. 5d, blue). This contrast the high-resolution HSNN where information per spike 261	

remains relatively constant across layers (Fig. 5d, red). This indicates that individual action 262	

potentials become increasingly more informative from layer-to-layer in the optimal HSNN despite 263	

a reduction in firing rates. Taken together with the changes in spectro-temporal selectivity (Fig. 264	

3), the findings are consistent with the hypothesis that the optimal HSNN produces a noise resilient 265	

sparse code in which invariant acoustic features are represented with isolated spikes. By 266	

comparison, the high-resolution network produces a dense response pattern that has a tendency to 267	

preserve incoming acoustic information, including the background noise and nonessential acoustic 268	

features, thus suffering in recognition performance. 269	

We next asked whether the sequential layer-to-layer transformations of the optimal HSNN 270	

are required for robust coding of speech. Hypothetically, its plausible that similar performance 271	

could be achieved with a single layer network as long as each neuron accounts for the overall 272	

network receptive field transformations. To test this, we developed single-layer networks 273	

consisting of generalized linear model neurons34 with either a linear receptive field and Poisson 274	
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spike train generator (LP network) or a linear receptive field and nonlinear stage followed by 275	

Poisson spike train generator (LNP network) (Fig. 6a; see Methods). The performance of the LP 276	

network, which accounts for the linear transformations of the optimal HSNN, was on average 277	

21.7% lower than the optimal HSNN indicating that nonlinearities are critical to achieve high word 278	

recognition accuracy (Fig. 6b). Its plausible that this performance disparity can be overcome by 279	

incorporating a nonlinearity that models the rectifying effects in the spike generation process of 280	

neurons (LNP network). Doing so improves the performance to within 2.1% of the optimal HSNN 281	

when there is little background noise (SNR=20 dB, 85.6 % for optimal HSNN versus 82.5 % for 282	

LNP network). However, the performance degraded when background noise was added when 283	

compared to the optimal HSNN, with an overall performance reduction of 13.8 % at -5 dB SNR 284	

(58.4 % for optimal HSNN versus 44.6 % for LNP network). 285	

The robustness of each network was next examined by comparing the performance of each 286	

model against human performance trends. For each condition, we measured the relative accuracy 287	

change (RAC) between the model and human performance (Methods, Fig. 6c). The RAC of the 288	

optimal HSNN was near zero with a small reduction in RAC of only 3.9% at -5 dB SNR. Thus, 289	

the optimal HSNN follows a similar trend as humans across background noise levels. By 290	

comparison, both the LP and LNP performance diverged from human performance with increasing 291	

background noise with an overall RAC reduction of 22.2 % and 15.6% at -5 dB SNR, respectively. 292	

Thus, in contrast to the optimal HSNN trends which mirrors human data, the LP and LNP network 293	

performance diverged from the human trend with increasing background noise.  294	

The average performance of each network was also compared against human word 295	

recognition accuracy. The accuracy for the optimal and SNR optimal HSNNs are not significantly 296	

differences when compared against human accuracy rates with an average reduction of 9.7% and 297	
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11.5%, respectively (p>0.05, t-test). Furthermore, the optimal HSNN outperformed all other 298	

models tested. The LNP, LP, and high-resolution HSNN exhibited a rank order reduction in 299	

performance relative to human accuracy (18.5 %, 33.3%, 37.2% respectively; p<0.05, t-test with 300	

Bonferroni Correction).  301	

Overall, the findings indicate that although the linear and nonlinear receptive field 302	

transformations both contribute to the overall network performance, the sequential layer-to-layer 303	

transformations carried out by the optimal HSNN are critical for maintaining a noise robust 304	

representation that mirrors human performance trends. 305	

 306	

Optimal spiking timing resolution 307	

Finally, we identified the spike timing resolution required to maximize recognition 308	

accuracy as previously identified when “reading out” neural activity in auditory cortex 7,35. To do 309	

so, we synthetically manipulating the temporal resolution of the output spike trains while 310	

measuring the word recognition accuracy at multiple SNRs (see Methods). An optimal spike 311	

timing resolution is identified within the vicinity of 4-14 ms for the optimal network (Fig. 7a and 312	

b) which is comparable to spike timing precision required for sound recognition in auditory cortex 313	

7,35. By comparison, the high-resolution network requires a high temporal resolution of ~2 ms to 314	

achieve maximum word accuracy (46.6% accuracy across all SNRs; Fig. 8c), which is ~ 31.8% 315	

lower on average than the optimal network (78.4 % accuracy for the optimal HSNN across all 316	

SNRs). Taken across all SNRs, the optimal temporal resolution that maximized word accuracy 317	

rates is 6.5 ms, which is comparable to the spike timing resolution reported for optimal speech and 318	

vocalizations recognition in auditory cortex 7,35. 319	

 320	
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Discussion 321	

The results demonstrate that the hierarchical organization of the ascending auditory system 322	

is consistent with a near optimal strategy for feature extraction that maximizes sound recognition 323	

performance and is relatively impervious to noise. Upon optimizing the network organization on 324	

a behaviorally relevant word recognition task, the HSNN achieves high recognition accuracy and 325	

follows a similar noise robust trend that is within ~10% of human performance by sequentially 326	

refining the spectral and temporal selectivity from layer-to-layer. Similar noise robustness is not 327	

replicated with conventional receptive field based networks even when the receptive fields capture 328	

the linear integration of the optimal HSNN and a threshold nonlinearity was imposed. The 329	

sequential nonlinear transformations of the optimal HSNN preserve critical acoustic features for 330	

speech recognition while simultaneously discarding acoustic noise not relevant to the sound 331	

recognition task. These transformations mirror changes in selectivity along the ascending auditory 332	

pathway, including an extensive loss of temporal resolution3, slight loss of spectral resolution 4-6, 333	

and increase in sparsity 2,20. The simulations suggest that the orderly arrangement of receptive 334	

fields and sequential nonlinear transformations of the ascending auditory pathway may be critical 335	

to achieve a noise robust code. 336	

 Critical to our findings is the observation that the optimal network transformations 337	

described here are not expected a priori as a general sensory processing strategy and may in fact 338	

be unique to audition. For instance, changes in temporal selectivity between the retina, visual 339	

thalamus, and visual cortex are generally small and neurons in the visual pathway synchronize 340	

over a relatively narrow range of frequencies (typically < 20 Hz) 36-39. This differs dramatically 341	

from the observed increase in integration times reported here, systematic increase in synaptic 342	

potential time-constants 13,23-25,  and a corresponding reduction in synchronization ability3 343	
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observed between the auditory nerve and auditory cortex.  By comparison, in the spatial domain, 344	

there is substantial divergence in connectivity between the retina and visual cortex since visual 345	

receptive fields sequentially grow in size between the periphery and cortex so as to occupy a larger 346	

area of retinotopic space 40-42. This contrasts changes in frequency receptive fields in which only 347	

a subtle increase in average bandwidth is observed between the auditory nerve and cortex4-6,21,26, 348	

consistent with findings from the optimal sound recognition strategy. 349	

The findings outline a biologically plausible auditory coding strategy capable of efficiently 350	

achieving high recognition accuracy, particularly in the presence of noise. Although the auditory 351	

pathway is substantially more complex than the proposed HSSN, which lacks anatomical elements 352	

such as the binaural circuits in the brainstem and descending feedback, it is nonetheless surprising 353	

that the optimal strategy for speech recognition replicates sequential transformations observed 354	

along the auditory pathway. Furthermore, whereas auditory receptive fields can be more diverse 355	

than those of the HSNN, the receptive fields of the optimal HSSN nonetheless contain basic 356	

features seen across the auditory pathway including lateral inhibition, temporal inhibition or 357	

suppression, and sequentially increasing time-constants along the hierarchy 6,26,43-45. The HSSN 358	

employs several computational principles observed anatomically and physiologically, including 359	

the presence of spiking neurons, inhibitory connections, cotuning between excitation and 360	

inhibition, and a frequency specific localized circuitry, all of which likely contribute to its high 361	

performance. Furthermore, these sequential transformations appear to be critical since single layer 362	

generalized linear models designed to capture the overall transformations of the HSNN did not 363	

achieve comparable levels of performance.   364	

Recent advances in deep neural networks (DNN) have made it possible to achieve high-365	

levels of speech recognition performance approaching human performance limits46,47. Yet, these 366	
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networks typically require tens-of-thousands of neurons and parameters to do so and the 367	

mechanisms leading to high recognition accuracy are based on neuron elements designed on 368	

principles of rate coding. The HSNN developed here, by comparison, employs temporal coding 369	

and organizational principles identified physiologically and approaches human performance levels 370	

with just 600 neurons and three meta-parameters that control the layer-to-layer transformations. 371	

Like the auditory pathway, the auditory HSNN is inherently temporal as it contains spiking 372	

neurons capable of precisely synchronizing to the sound features and exhibit hierarchical changes 373	

in time-scale across layers observed physiologically3. Furthermore, whereas DNNs rely on strictly 374	

excitatory connection weights between neuron, feature extraction in the HSNN is shaped by both 375	

excitatory and inhibitory circuitry as observed in central auditory structures 10-13. A challenge for 376	

future studies is to further reveal biologically realistic strategies for auditory signal processing, 377	

feature extraction, and classification, including descending feedback 27 and adaptive mechanisms 378	

1,29, that together endow perceptual capabilities for sound recognition and promote robust coding. 379	

 380	

Materials and Methods 381	

Speech Corpus: Sounds in the experimental dataset consist of isolated digits (zero to nine) from 382	

eight male talkers from LDC TI46 corpus22. Ten utterances for each digit are used for a total of 383	

800 sounds (8 talkers x 10 digits/subject x 10 utterances/digit). Words are temporally aligned based 384	

on the waveform onset (first upward crossing that exceeds 2 SD of the background noise level) 385	

and speech babble noise (generated by adding 7 randomly selected speech segments) is added at 386	

multiple signal-to-noise ratios (SNR=-5, 0, 5, 10, 15 and 20 dB). This range of SNR was selected 387	

to allow comparisons with human isolated word recognition performance in the presence of speech 388	

babble noise32. 389	
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  390	

Auditory Model and Hierarchical spiking neural Network (HSNN): We developed a multi-391	

layer auditory network model consisting of a cochlear model stage containing gamma tone filters 392	

(0.1-4kHz; center frequencies 1/10th octave separation; critical band resolution), envelope 393	

extraction  and nonlinear compression48 followed by a HSNN as illustrated in Fig. 1. Several 394	

architectural and functional constraints are imposed on the spiking neural network to mirror 395	

auditory circuitry and physiology. First, the network contains six layers as there are six principal 396	

nuclei between the cochlea and cortex. Second, connections between consecutive layers contain 397	

both excitatory and inhibitory projections since long-range inhibitory projections between nuclei 398	

are pervasive in the ascending auditory system 10,49. Each layer in the network contains 53 399	

excitatory and 53 inhibitory frequency organized neurons per layer which allows for 1/10th octave 400	

resolution over the frequency range of the cochlear model (0.1-4 kHz). Furthermore, since 401	

ascending projections in the central auditory pathway are spatially localized and frequency specific 402	

18,49,50, excitatory and inhibitory connection weights are modeled by co-tuned Gaussian profiles of 403	

unspecified connectivity width (Fig. 1e):  404	

 405	

𝑤",4,56 =
1
2𝜋𝜎69

∙ 𝑒* ;<,=*;<>?,@
A 9BC

A
 406	

𝑤",4,5D =
1
2𝜋𝜎D9

∙ 𝑒* ;<,=*;<>?,@
A 9BE

A
 407	

 408	

where  𝑤",4,5D  and 𝑤",4,56  are the inhibitory and excitatory connection weights between the m-th 409	

and n-th neuron from layer l and l+1, 𝑥",4 and 𝑥"G',5 are the normalized spatial positions (0-1) 410	

along the frequency axis of the m-th and n-th neurons in layers l and l+1, and 𝜎D and 𝜎6 are the 411	
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inhibitory and excitatory connectivity widths (i.e., SD of Gaussian connection profiles), which 412	

determine the spatial spread and ultimately the frequency resolution of the ascending connections.  413	

Each neuron in the network consists of a modified leaky integrate-and-fire (LIF) neuron 51 414	

receiving excitatory and inhibitory presynaptic inputs (Fig. 1e). Given a presynaptic spike trains 415	

from the m-th neurons in network layer-l (𝑠",4 𝑡 ) the desired intracellular voltage of the n-th 416	

neuron in network layer l+1 is obtained as 417	

 418	

𝑣"G',5 𝑡 = 𝑤",4,56 ∙ ℎ6LML 𝑡 ∗
4

𝑠",4 𝑡 − 𝛽 𝑤",4,5D ∙ ℎDLML 𝑡 ∗
4

𝑠",4 𝑡  419	

 420	

where * is the convolution operator, 𝛽 is a weighting ratio between the injected excitatory and 421	

inhibitory currents, ℎ6LML 𝑡  and ℎDLML 𝑡  are temporal kernels that model excitatory and 422	

inhibitory post synaptic potentials generated for each incoming spike as an alpha function (Fig. 1e, 423	

red and blue curves)51. Since central auditory receptive fields often have extensive lateral 424	

inhibition/suppression beyond the central excitatory tuning area and inhibition is longer lasting 425	

and weaker 5,6 we require that 𝜎D = 1.5 ∙ 𝜎6, 𝜏D = 1.5 ∙ 𝜏6, and 𝛽 = 2/3, as this produced realistic 426	

receptive field measurements.  For simplicity, we use 𝜎 and 𝜏 interchangeably with 𝜎6 and 𝜏𝐸, 427	

since these determine the overall spectral and temporal resolution of each neuron. 428	

Because the input to an LIF neuron is a current injection, we derived the injected current 429	

by deconvolving the LIF neuron time-constant from the desired membrane voltage 430	

 431	

𝑖"G',5 𝑡 = 𝑣"G',5 𝑡 ∗ ℎ*' 𝑡 + 𝑧 𝑡 . 432	

 433	
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where 𝑖"G',5 𝑡  is the injected current for the n-th neuron in layer l+1 and 𝑣"G',5 𝑡  is the 434	

corresponding output voltage and 𝑧 𝑡  is a noise current component. As we demonstrated 435	

previously 19, this procedure removes the influence of the cell membrane integration prior to 436	

injecting the current in the IF neuron compartment and allows us to precisely control the 437	

intracellular voltage delivered to each LIF neuron. Above ℎ 𝑡 = '
X
𝑒*Y Z𝑢(𝑡) is the impulse 438	

response of the cell membrane (𝑢 𝑡  is the step function), C is the membrane capacitance, 𝜏, is the 439	

membrane time-constant and ℎ*' 𝑡  is the inverse kernel (i.e., ℎ 𝑡 ∗ ℎ*' 𝑡 = 𝛿 𝑡  where	𝛿 𝑡  440	

is the Diract function). Because the EPSP time constant and the resulting temporal resolution of 441	

the intracellular voltage are largely influenced by the cell membrane integration, we require that 442	

𝜏 = 𝜏6. Finally, Gaussian white noise, 𝑧 𝑡 , is added to the injected current in order to generate 443	

spike timing variability (signal-to-noise ratio=15 dB) 19. Upon injecting the current, the resulting 444	

intracellular voltage follows 𝑣"G',5 𝑡 + 𝑧(𝑡) ∗ ℎ 𝑡  and the IF model generates spikes whenever 445	

the intracellular voltage exceeds a normalized threshold value19. The normalized threshold is 446	

specified for each network layer (l) as 447	

 448	

𝑁" = 𝑉 − 𝑉a 𝜎b," 449	

 450	

where 𝑉 = −45 mV is the threshold voltage, 𝑉a = −65 mV is the membrane resting potentials, 451	

and 𝜎b," is the standard deviation of the intracellular voltages for the population of neurons in layer 452	

l. As demonstrated previously, this normalized threshold represents the number of standard 453	

deviations the intracellular activity is away from the threshold activation and serves as a way of 454	

controlling the output sensitivity of each network layer. Upon generating a spike, the voltage is 455	
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reset to the resting potential, a 1 ms refractory period is imposed, and the membrane temporal 456	

integration continues. 457	

 458	

Decision model: The neural outputs of the network consist of a spatio-temporal spiking pattern 459	

(e.g., Fig. 1g and h, bottom panels), which is expressed as a NxM matrix R with elements 𝑟5,f 460	

where N=53 is the number of frequency organized output neurons and M is the number of time 461	

bins. The number of time bins is dependent on the temporal resolution for each bin, Δ𝑡, which is 462	

varied between 0.5 – 100 ms. Each response (𝑟5,f; 	𝑛 − th	neuron	and	𝑖 − th	time	bin) is assigned 463	

a 1 or 0 value indicating the presence or absence of spikes, respectively. 464	

A modified Bernoulli Naïve Bayes classifier52 is used to read out the network spike trains 465	

and categorize individual speech words. The classified digit (y) is the one that maximizes posterior 466	

probability for a particular response according to  467	

 468	

𝑦 = argmax
yz{|…~}

𝑝y,5,f
a@,� ∙ 1 − 𝑝y,5,f

'*a@,�

5,f

 469	

 470	

where d=0 … 9 are the digits to be identified, 𝑝y,5,f is the Bayesian likelihood, i.e. the probability 471	

that a particular digit, d, generates a spike (1) in a particular spatio-temporal bin (n-th neuron and 472	

i-th time bin). 473	

 474	

Network Constraints and Optimization: The primary objective is to determine the spectral and 475	

temporal resolution of the network connections as well as the network sensitivity necessary for 476	

robust speech recognition. Specifically, we hypothesize that the temporal and spectral resolution 477	

and sensitivity of each network layer need to be hierarchically organized across network layers in 478	
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order to maximize speech recognition performance in the presence of noise. We thus optimize 479	

three key parameters, the time constant (𝜏𝑙), connectivity widths (𝜎𝑙), and normalized threshold 480	

(𝑁𝑙) that separately control these functional attributes of the network, where the index l designates 481	

the network layer (1-6).  Given that spectro-temporal selectivity changes systematically and 482	

gradually between auditory nuclei, we constrained the parameters to vary smoothly from layer-to-483	

layer according to the power law rules of Eqn. 1. The initial parameters for the first network layer, 484	

𝜏' = 0.4 ms, 𝜎' = 0.0269 (equivalent to ~1/6 octave), and 𝑁' = 0.5, are selected to allow for 485	

high-temporal and spectral resolution and high firing rates, analogous to physiological 486	

characteristics of auditory nerve fibers 3,4,26 and inner hair cell ribbon synapse23. We optimize for 487	

the three scaling parameters 𝛼, 𝜆, and 𝛾, which determine the direction and magnitude of layer-to-488	

layer changes and ultimately the network organization rules for temporal and spectral resolution 489	

and network sensitivity.  490	

 The optimization is carried using a cross-validation grid search procedure in which we 491	

maximized word accuracy rates (WAR). Initial tests are performed to determine a suitable search 492	

range for the scaling parameters and a final global search is performed over the resulting search 493	

space (𝛼 = 0.9 − 2.3, 𝜆 = 0.5 − 1.6 and 𝛾 = 0.8 − 1.5; 0.1 step size for all parameters). For each 494	

parameter combination, the network is required to identify the digits in the speech corpus with a 495	

ten-alternative forced choice task. For each iteration we select one utterance from the speech 496	

corpus (1 of 800) for validation and use the remaining utterances (799) to train the model by 497	

deriving the Bayesian likelihood functions (i.e., 𝑝y,5,f). The Bayesian classifier is then used to 498	

identify the validation utterances and compute WAR for that iteration (either 0 or 100% for each 499	

iteration). This procedure is iteratively repeated 800 times over all of the available utterances and 500	

the overall WAR is computed as the average over all iterations. This procedure is also repeated for 501	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2018. ; https://doi.org/10.1101/243915doi: bioRxiv preprint 

https://doi.org/10.1101/243915
http://creativecommons.org/licenses/by-nd/4.0/


	 22	

five distinct signal-to-noise ratios (SNR=-5, 0, 5, 10, 20 dB). Example curves showing the WAR 502	

as a function of scaling parameters and SNR are shown in Fig. 2 (a and b, shown for 5 and 20dB). 503	

The global optimal solution for the scaling parameters is obtained by averaging WAR across all 504	

SNRs and selecting the scaling parameter combinations that maximize the WAR (Fig. 2c). 505	

 506	

Receptive Field and Mutual Information Calculation: To characterize the layer-to-layer 507	

transformations performed by the network, we compute spectro-temporal receptive fields (STRFs) 508	

and measure the mutual information conveyed by each neuron in the network. First, STRFs are 509	

obtained by delivering dynamic moving ripple sounds (DMR), which are statistically unbiased, 510	

and cross-correlating the output spike trains of each neuron with the DMR spectrotemporal 511	

envelope 53. For each STRF, we estimate the temporal and spectral resolution by computing the 512	

integration time and bandwidths, as described previously 5. Mutual information is calculated by 513	

delivering a sequence of digits (0 to 9) at 5 dB SNR to the network. The procedure is repeated 50 514	

trials with different noise seeds and the spike trains from each neuron are converted into a dot-515	

raster sampled at 2 ms temporal resolution. The mutual information is calculated for each neuron 516	

in the network using the procedure of Strong et al. 54 as described previously 19. 517	

 518	

Auditory System Data: Previously published data from single neurons in the auditory nerve 519	

(n=214) 26, auditory midbrain (Central Nucleus of the Inferior Colliculus, n=125)48, thalamus 520	

(Medial Geniculate Body, n=88) and primary auditory cortex (n=83)6 is used to quantify 521	

transformations in spectral and temporal selectivity between successive auditory nuclei. Using the 522	

measured spectro-temporal receptive fields of each neuron (Fig. 3), the spectral and temporal 523	

selectivity are quantified by computing integration times, response latencies, and bandwidths as 524	
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described previously 5. Sequential changes in selectivity across ascending auditory nuclei are 525	

summarized by comparing the neural integration parameters of each auditory structure (Fig. 3f-h). 526	

 527	

Generalized Linear Model (GLM) Networks: To identify the role of linear and nonlinear 528	

receptive field transformations for noise robust coding, we developed two single-layers networks 529	

containing GLM neurons34 (Fig. 6a) that are designed to capture linear and nonlinear 530	

transformations of the HSNN.  531	

First, we developed a single-layer LP (linear Poisson) network consisting of model neurons 532	

with linear spectro-temporal receptive fields followed by a Poisson spike train generator (Fig. 6a).  533	

For each output of the optimal network (m-th output) we measured the STRF and fitted it to a 534	

Gabor model (𝑆𝑇𝑅𝐹4(𝑡, 𝑓�))43. On average the fitted Gabor model accurately replicated the 535	

structure in the measured STRFs and on average accounted for 99% of the STRF variance (range 536	

94-99.9%). The output firing rate of the m-th LP model neuron is obtained as 537	

 538	

𝜆4 𝑡 = 𝜆| + 𝐺 ∙ 𝑆 𝑡, 𝑓� ∗ 𝑆𝑇𝑅𝐹4(𝑡, 𝑓�)
�

�z'

 539	

 540	

where 𝑆 𝑡, 𝑓�  is the cochlear model output, * is the convolution operator, G is a gain term, and 𝜆| 541	

is required to assure that the spike rates are strictly positive and the firing maintains a linear 542	

relationship with the sound. G and 𝜆| are chosen so that the average firing rate taken across all 543	

output neurons and sounds matches the average firing rate of the optimal network and are strictly 544	

greater than zero. The firing rate functions for each channel, 𝜆4 𝑡 ,	 are then passed through a 545	

nonhomogenous Poisson point process in order to generate the spike trains for each output channel.  546	
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 Next we explored the role of nonlinear rectification by incorporating a rectification stage 547	

in the LP model. The firing of the m-th neuron in the LNP (linear nonlinear Poisson) network is 548	

 549	

𝜆4 𝑡 = 𝐺 ∙ 𝑚𝑎𝑥 0, 𝑆 𝑡, 𝑓� ∗ 𝑆𝑇𝑅𝐹4(𝑡, 𝑓�)
�

�z'

 550	

 551	

where the gain term, G, was chosen so that the average firing rate taken across all output neurons 552	

and all words matches the average firing rate of the optimal HSNN.  553	

 554	

Human Subject Data Comparison: Data was obtained from human subjects in an isolated 555	

monosyllabic word recognition task in the presence of speech babble noise 32. To enable 556	

comparison with the HSNN model conditions that we optimized for and tested (-5, 0, 5, 10, 20 dB 557	

SNR), human data (-6, -3, 0, 3, 6 dB SNR and quite) was fit to sigmoidal function and word 558	

accuracy rate values were estimated for human subjects at the model conditions tested. The 559	

sigmoid function fit accurate accounted for the human performance data with an average error of 560	

0.9%. The average performance and trends with SNR of each model was compared against human 561	

performance set as a reference benchmark. The robustness of each model was also assessed by 562	

comparing how the word accuracy versus SNR trends deviate from human performance. The 563	

relative accuracy change RAC=(Amodel-Ahuman) – (A20dB
model-A20dB

 human) was used to measure the 564	

divergence of each model across SNR when compared against human accuracy rates (i.e., Fig. 6c). 565	

An RAC of 0 indicates that the model performance follows a similar noise robust trend when 566	

compared to humans. Values <0 indicate that the model accuracy deviated (in units of %) from the 567	

human trend.   568	

  569	
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726	
Figure 1. Auditory pathway hierarchical spiking neural network (HSNN) model. The model 727	
consists of a (a) cochlear model stage that transforms the sound waveform into a spectrogram (time 728	
vs. frequency), (b) a central hierarchical spiking neural network containing frequency organized 729	
spiking neurons and a (c) Bayesian classifier that is used to read the spatio-temporal spike train 730	
outputs of the HSNN. Each dot in the output represents a single spike at a particular time-frequency 731	
bin. (d-f) Zoomed in view of the HSNN illustrates the pattern of convergent and divergent 732	
connections between network layers for a single leaky integrate-and-fire (LIF) neuron. (d-e) Input 733	
spike trains from the preceding network layer are integrated with excitatory (red) and inhibitory 734	
(blue) connectivity weights that are spatially localized and model by Gaussian functions (f). The 735	
divergence and convergence between consecutive layers is controlled by the connectivity width 736	
(SD of the Gaussian model, 𝜎"). Each incoming spike generates excitatory and inhibitory post-737	
synaptic potentials (EPSP and IPSP, red and blue kernels in e). The integration time constant (𝜏") 738	
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of the EPSP and IPSP kernels can be adjusted to control the temporal integration between 739	
consecutive network layers while the spike threshold level (𝑁") is independently adjusted to control 740	
the output firing rates and the overall neuron layer sensitivity. (g, h) Example cochlear model 741	
outputs and the corresponding multi-neuron spike train outputs of the HSNN under the influence 742	
of speech babble noise (at 20 dB SNR). (g) HSNN response pattern for one sample of the words 743	
zero, six, and eight illustrate output pattern variability that can be used to differentiate words. (h) 744	
Example response variability for the word zero from multiple talkers in the presence of speech 745	
babble noise (20 dB SNR). 746	

  747	
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748	
Figure 2. Hierarchical scaling is predicted by a global optimal solution that maximizes word 749	
recognition accuracy in the presence of background noise (-5, 0, 5, 10, 15 and 20 dB SNR). Cross-750	
validated word recognition accuracy (see Methods) is measured using the network outputs as a 751	
function of the three scaling parameters (𝛼, 𝜆, and 𝛾). Word recognition accuracy curves are shown 752	
at 5 and 20 dB SNR (a and b, respectively) as well as for the global solution (c, average accuracy 753	
between -5 and 20 dB SNR). In all cases shown, word recognition accuracy curves are tuned for 754	
the different scaling parameters and exhibit a similar optimal solution (green circles). (d) The 755	
optimal scaling parameters are relatively stable across SNRs and similar to the solution that 756	
maximize average performance across all SNRs (optimal solution 𝛼 = 1.9, 𝜆 = 1.0, and 𝛾=1.0). 757	
 758	
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759	
Figure 3. Receptive field transformations of the optimal HSNN predicts transformations observed 760	
along the ascending auditory pathway. (a) Example spectro-temporal receptive field (STRF) 761	
measured for the optimal network change systematically between consecutive network layers. All 762	
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STRFs are normalized to the same color scale (red=increase in activity or excitation;  763	
blue=decrease in activity or inhibition/suppression; green tones=lack of activity). In the early 764	
network layers STRFs are relatively fast with short duration and latencies, and relatively narrowly 765	
tuned. STRFs become progressively slower, slightly broader, and have longer and more varied 766	
patterns of inhibition across the network layers, mirroring changes in spectral and temporal 767	
selectivity observed in the ascending auditory pathway. The measured (b) integration times, (c) 768	
latencies, and (d) bandwidths increase across the six network layers. (e) Examples STRFs from 769	
the auditory nerve (AN)26, inferior colliculus (IC)5, thalamus (MGB) and primary  auditory cortex 770	
(A1)6 become progressively longer and have progressively more complex spectro-temporal 771	
sensitivity along the ascending auditory pathway. Average integration times (f), latencies (g) and 772	
bandwidths (h) between AN and A1 follow similar trends as the optimal HSNN (b-d). Asterisks 773	
(*) designate significant comparisons (t-test with Bonferroni correction, p<0.01) relative to layer 774	
1 for the optimal network (b-d) or relative to the auditory nerve for the neural data (f-h) while 775	
error bars designate SD. 776	
 777	
  778	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2018. ; https://doi.org/10.1101/243915doi: bioRxiv preprint 

https://doi.org/10.1101/243915
http://creativecommons.org/licenses/by-nd/4.0/


	 34	

779	
Figure 4.  Optimal HSNN outperforms a high-resolution HSNN designed to preserve incoming 780	
acoustic information.  Sample network spike train outputs and Bayesian likelihood histograms for 781	
the words three, four, five, and nine are shown for the (a) high-resolution and (b) optimal HSNN 782	
at 5 dB SNR. The Bayesian likelihood histograms correspond to the average probability of firing 783	
at each time-frequency bin for each digit (averaged across all trials and talkers). The firing patterns 784	
and Bayesian likelihood of the high-resolution network are spatio-temporally blurred compared to 785	
the hierarchical network. (b) Details such as spectral resonances (e.g., formants) and temporal 786	
transitions resulting from voicing onset are accentuated in the hierarchical network output. (c) The 787	
optimal HSNN (maximize performance across all SNRs) outperforms the high-resolution network 788	
in the word recognition task at all SNRs tested (blue=optimal; red=high-resolution) with an 789	
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average accuracy improvement of 25.6 %. The optimal HSNN word recognition accuracy also 790	
closely matches the performance when the network is optimized and tested individually at each 791	
SNR (black, SNR optimal HSNN) indicative of a stable network representation. Finally, the 792	
optimal HSNN is within ~10% of human performance in a similar word recognition task (dotted-793	
green curve 32). 794	
 795	
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797	
Figure 5. Hierarchical transformation between consecutive network layers enhances word 798	
recognition performance and robustness of the optimal HSNN. (a) The average word accuracy at 799	
5 dB SNR systematically increases across network layers for the optimal HSNN (a, blue) whereas 800	
the high-resolution HSNN exhibits a systematic reduction in word recognition accuracy (a, red). 801	
For the high-resolution HSNN average firing rates (b, red), information rates (c, red), and 802	
information per spike (d, red) are relatively constant across layers indicating minimal 803	
transformations of the incoming acoustic information. In contrast, average firing rates (b, blue) 804	
and information rates (c, blue) both decrease between the first and last network layers of the 805	
optimal network, consistent with a sequential sparsification of the response and a reduction in the 806	
acoustic information encoded in the output spike trains. However, the information conveyed by 807	
single action potentials (d, blue) in the optimal HSNN sequentially increase between the first and 808	
last layer so that individual action potentials become progressively more informative across layers. 809	
Continuous curves show the mean whereas error contours designate the SD.   810	
 811	
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813	
Figure 6. Optimal HSNN enhances robustness and outperforms single-layer generalized linear 814	
model networks with matched linear and nonlinear receptive field transformation. (a) Linear 815	
STRFs obtained at the output of the HSNN are used as to model the linear receptive field 816	
transformation of each neuron (see Methods). The LP network consists of an array of linear STRFs 817	
followed by a Poisson spike generator. The LNP network additionally incorporates a rectifying 818	
output stage following each STRF. (b) The optimal HSNN outperformance the LP network with 819	
an average performance improvement of 21.7% across SNRs. Nonlinear output rectification in the 820	
LNP network improves the performance to within 2% of the HSNN at 20 dB SNR. However, the 821	
average LNP performance was 7% lower than the optimal HSNN and performance degraded 822	
systematically with increasing noise levels (13.75 % performance reduction at -5 dB SNR) 823	
demonstrating enhanced robustness of the optimal HSNN. (c) The relative accuracy change 824	
(RAC=(Amodel-Ahuman) – (A20dB

model-A20dB
 human)) was used to measure the divergence of each model 825	

across SNR when compared against human accuracy rates 32. An RAC of 0 across SNRs indicates 826	
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that the model performance follows a similar noise robust trend when compared to humans.  For 827	
the optimal HSNN, RACs were near zero across SNRs. RACs diverged substantially relative to 828	
human accuracy rates with increasing SNR for the LP and LNP networks. (d) Average accuracy 829	
difference between human and model data (Ahuman -Amodel). Average performance of the SNR 830	
optimal (optimized for each SNR) and optimal HSNN (optimized across all SNRs) are within ~10 831	
% of the human word accuracy rates. The LNP (18.5 %), LP (33.3%) and high-resolution HSNN 832	
(37.2%) performance are substantially lower relative to humans. Asterisks designate significant 833	
differences (p<0.05, t-test with Bonferroni correction) and error bars designate SEM. 834	
 835	
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 837	
 838	
Figure 7. Optimal temporal resolution that maximize word recognition accuracy in noise. (a) Word 839	
accuracy rate as a function of spike train temporal resolution (bin widths 0.5-100 mms) and SNR 840	
(-5 to 20 dB) for the optimal (a) and high resolution networks (c). Each curve is computed by 841	
selecting the optimal scaling parameters for each SNR and measuring the word accuracy rate from 842	
the network outputs at multiple temporal resolutions. (b) Same as (a), except that global optimal 843	
scaling parameters were used for all SNRs tested. The temporal resolution that maximizes the word 844	
accuracy rate of the global optimal HSNN is 6.5 ms. (c) Word accuracy rate as a function of 845	
temporal resolution and SNR for the high-resolution network. The optimal temporal resolution for 846	
the high-resolution HSNN is 2 ms. 847	
 848	
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850	
Figure 1S. Receptive field transformations of the high-resolution network indicate that spectro-851	
temporal information propagates with minimal processing across network layers.  (a) Example 852	
spectro-temporal receptive field (STRF) measured for the optimal network maintain high-853	
resolution and change minimally across network layers. Unlike the optimal network, the measured 854	
(b) integration times and (c) latencies change minimally and are relatively constant across the six 855	
network layers.  (d) Bandwidths, by comparison, increase slightly across the six network layers 856	
and follow a similar trend as the optimal HSNN. The figure format follows the same convention 857	
as in Figure 3. 858	
 859	
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