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Abstract

Background: High throughput sequencing has spurred the development of metagenomics, which
involves the direct analysis of microbial communities in various environments such as soil, ocean
water, and the human body. Many existing methods based on marker genes or k-mers have lim-
ited sensitivity or are too computationally demanding for many users. Additionally, most work in
metagenomics has focused on bacteria and archaea, neglecting to study other key microbes such as
viruses and eukaryotes.
Results: Here we present a method, MiCoP (Microbiome Community Profiling), that uses fast-
mapping of reads to build a comprehensive reference database of full genomes from viruses and
eukaryotes to achieve maximum read usage and enable the analysis of the virome and eukaryome in
each sample. We demonstrate that mapping of metagenomic reads is feasible for the smaller viral
and eukaryotic reference databases. We show that our method is accurate on simulated and mock
community data and identifies many more viral and fungal species than previously-reported results
on real data from the Human Microbiome Project.
Conclusions: MiCoP is a mapping-based method that proves more effective than existing methods
at abundance profiling of viruses and eukaryotes in metagenomic samples. MiCoP can be used to
detect the full diversity of these communities. The code, data, and documentation is publicly
available on GitHub at: https://github.com/smangul1/MiCoP

Keywords: Metagenomics, Virome, Eukaryome, Abundance Estimation, Community Profiling,
Alignment
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Background

Microorganisms are ubiquitous in almost every ecosystem on earth, including soil, ocean water, and
the human body. Single-celled organisms play a number of vital roles in each of these environments
[1, 2]. Identifying the microbes present in a sample is critical to understanding what functions
are carried out by these organisms and characterizing how disturbances in microbial communi-
ties lead to various maladies. Traditionally, microorganisms have been studied via culture-based
techniques, in which the microbial organisms were isolated and studied individually in laboratory
settings. However, it is well-recognized that many microbes are not culturable; hence they cannot
be studied in laboratory settings [3]. In addition, techniques studying microbes in laboratory set-
tings are incapable of capturing the complex relations between hundreds to thousands of different
microbial species in their natural habitats [1, 2]. High-throughput sequencing has revolutionized
microbiome research, enabling the study of thousands of microbial genomes directly from their
host environments and forming the field of metagenomics. This approach bypasses the traditional
culture-dependent bias and allows the study of the composition of microbial communities in their
natural habitats across different human tissues and environmental settings [1, 2]. Metagenomic pro-
filing has proven useful for studying various microbes, including eukaryotic and viral pathogens,
which were previously impossible to study in an unbiased manner with 16S ribosomal RNA gene
sequencing [4–6].

Despite the critical importance of the “virome” and the “eukaryome” in affecting the microbiome
and human health, most metagenomic profiling methods have focused primarily on identifying
bacteria and archaea [7, 8]. Several existing methods for metagenomic profiling have proposed using
‘marker genes’ that uniquely identify a read as coming from a certain species. This method has been
shown to be efficient and accurate at estimating the presence and relative abundances of bacteria
and archaea in a sample [9–11]. However, approaches based on marker genes have some limitations
with identifying viral and eukaryotic genomes. One approach involves comparing differences in genes
that are considered ‘universal’ but differ between species. This approach uses reads that indicate
a certain sequence for that marker gene and thus uniquely identify a species [9]. However, this is
problematic for viruses, which are comprised mostly of novel sequences and do not share any single
common gene [2, 12, 13]. Another approach utilizes sequences that uniquely identify a given clade
[10, 11], but these can only use the relatively small number of reads that map to these specific
regions of the genome [14], leading to poor sensitivity [15]. This is particularly problematic for
eukaryotic genomes, which are usually long and comprised mostly of noncoding regions, leading to
poor read utilization [5, 16, 17]. Recent approaches based on k-mers have overcome these issues and
improved run time dramatically [14, 18]. However, these approaches show decreased sensitivity due
to requiring perfect k-mer matches [15, 19]. In addition, they demand heavy memory usage often in
excess of 100GB, which many users do not have available [20]. Finally, k-mer based methods have
been observed to predict a large number of low-abundance species that are not actually present in
the sample [15].

In this paper, we present MiCoP (MIcrobiome COmmunity Profiling), a computational method
capable of profiling viruses and eukaryotes with high precision and sensitivity. We overcome the
issues mentioned above by utilizing a fast mapping-based approach, which is capable of high read us-
age, avoids bias against viruses and eukaryotes, and is sensitive to low-abundance species. Mapping-
based approaches have been observed to have even higher sensitivity than Megablast [21], a common
gold standard method, but there have traditionally been concerns with the speed and memory usage
of a mapping-based approach [22]. We demonstrate that, when using smaller viral and eukaryote
reference databases, a mapping-based approach is both feasible and preferable.
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We first map reads to reference genomes using BWA, and we then apply a two-step read assign-
ment process. From the BWA mapping results, uniquely-mapped reads are immediately assigned,
and, subsequently, multi-mapped reads are probabilistically assigned to genomes based on the dis-
tribution of uniquely-mapped reads. We perform species abundance estimation by calculating the
number of reads mapped to each genome and normalizing by genome length. Since MiCoP maps
reads to specific genomes in a reference database, it is capable of detecting microbes at a finer
granularity than the species level, for instance if different strains or chromosomes from a species
are listed separately in the reference database. We validate MiCoP by comparing its abundance
estimation performance with two of the most popular methods, MetaPhlAn2 [11] and Kraken [14].
We demonstrate improved results on simulated reads from viral and eukaryotic genomes, and we
show that MiCoP can identify more viruses and eukaryotes in Human Microbiome Project data
than previously-used methods.

Results

Methods overview

MiCoP utilizes a mapping-based approach to perform highly sensitive and precise read classifica-
tion and accurate abundance estimation of viruses and eukaryotes in metagenomic samples. MiCoP
starts with mapping reads to whole genomes in a reference database using BWA [23], keeping all
multi-mapped reads. Our approach then use a two-stage process to classify the reads. In the first
stage, all uniquely-mapped reads are classified, and we compute the abundance of each genome
in the sample based on these reads. In the second stage, multi-mapped reads are probabilistically
assigned to one of the genomes that they mapped to, with probabilities proportional to the abun-
dance of those genomes among uniquely-mapped reads. We remove species for which there is limited
evidence, based on the number of reads assigned to that species. Relative abundances of the present
genomes are then computed. These steps are discussed in further detail in the methods section.
Figure 1 illustrates the MiCoP workflow.

Performance Metrics

We evaluate the performance of different methods using several different metrics, which are designed
to encompass both performance in the binary classification task of predicting species presence or
absence and in the estimation of relative abundances. For species presence and absence, a “True
Positive” (TP) indicates that a species that is actually present in a sample is correctly predicted as
being present by a method, while a “False Positive” (FP) indicates that the method predicted the
presence of a species that is not actually in a sample and a “False Negative” (FN) indicates that
a species was actually present in a sample but a method did not predict its presence. We use two
metrics to assess the performance of a method in species presence/absence, precision and recall,
defined below. Precision measures the percentage of predicted species that are actually present,
while recall measures the percentage of species actually in a sample that were predicted by a
method. Additionally, we report the F1-Score, which is defined as the harmonic mean of precision
and recall. All three of these metrics range from 0 to 1, or 0% to 100%.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
F1− Score =

2 ∗ Precision ∗Recall

Precision + Recall

We use the L1 Error as a measure of how accurately a method computes the relative abundances
of species in a sample. The L1 Error is the sum of absolute value differences between predicted
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species abundances and actual species abundances, and ranges from 0 (completely correct) to 2
(completely incorrect). An L1 Error of 0 indicates that the exact set of actual species and their
actual abundances is predicted perfectly, while a score of 2 indicates that the set of predicted species
is completely incorrect. The L1 Error can be described mathematically as:

L1 Error =
S∑

i=1

|Predictedi −Actuali|

where S is the set of species that are predicted or actually present and i is the summation index.

MiCoP shows order of magnitude improvement in abundance estimation

We validated the accuracy of our method by using simulated data, so that our results could be
compared to a known ground truth. We sampled 1 million reads from 544 viral genomes obtained
from an NCBI RefSeq reference file database 5808 viral genomes. Our simulation was designed
using the “high complexity” microbial community parameters specified by the CAMI consortium,
as described in the methods section [15]. While 1 million reads is a fairly small metagenomic sample,
in our case the coverage was reasonable because viral genomes are much shorter than bacterial
genomes. We compared the results of our method with two of the most popular metagenome
profiling methods, MetaPhlAn2 [11] and Kraken [14]. For this initial simulation, we used the default
MetaPhlAn database and Kraken’s pre-built Minikraken database, since these databases reflect the
most common conditions under which these methods are applied. For MiCoP, we use a database
composed of the genomes available from NCBI’s RefSeq Viral and Fungal databases. In our next
simulation, we examine the effect of the choice of reference database. Results are shown in Table 1.

We found that all three methods had high precision, but MiCoP had perfect precision. In other
words, every species MiCoP predicted as present in the sample was actually present according to
the ground truth. Results from MetaPhlAn2 reported only 37% sensitivity, indicating that it only
identified just over a third of the species present in the sample, while Kraken identified about
91% and MiCoP identified about 98%. The total L1 error was only about 0.09 for MiCoP, while
MetaPhlAn2’s error was over 1.24. Kraken also reported a high L1 error, but its authors present
Kraken as a read classification method, not a relative abundance estimation method, so this metric
may be misleading for Kraken.

Clearly, MetaPhlAn2’s performance was limited by the fact that their standard database did
not contain marker genes for many of the NCBI virus genomes present in the sample. When using
MetaPhlAn2’s provided database, researchers may fail to identify many of the species present in a
sample, simply because they are not in this database. While Kraken’s default Minikraken database
seems more comprehensive, it is still known to have lower sensitivity when compared to a more
complete reference [14]. The problem of reference bias can significantly impact the performance of
these methods, particularly when applied to real datasets in which the set of expected genomes is
not known in advance.

However, for the purposes of comparing MiCoP to MetaPhlAn2 and Kraken without the results
being affected by reference bias, we constructed a dataset composed only of genomes that all three
of these methods identified in the high complexity dataset. Out of these 173 genomes, we selected
40 according to the “low complexity” microbial community parameters established by the CAMI
consortium [15]. We also simulated errors in these reads, with the error rate linearly increasing from
1% at the start of reads to 5% at the end, with 2/3 of errors being substitutions and the other 1/3
being indels; these numbers were chosen to be roughly equal to the error rates used in the Kraken
paper [14]. Results are shown in Table 2.
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We observed that MiCoP and MetaPhlAn2 both identified the exact set of genomes present
in the sample, leading to perfect precision and recall scores. However, MiCoP’s L1 error of about
0.0091 was less than a tenth of MetaPhlAn2’s L1 error of about 0.098. We speculate that the poor
read utilization of MetaPhlAn2 (about 5% of reads used) leads to less accurate abundance estima-
tion. Kraken’s sensitivity was almost perfect, with only three genomes out of 40 left unidentified.
Surprisingly, Kraken’s precision was surprisingly slightly worse in comparison to its performance
on the high complexity dataset. We observed that Kraken reported many low-abundance false pos-
itive predictions, resulting from no more than a few mispredicted reads. This phenomenon was
also reported by the CAMI consortium when testing on bacterial data [15]. By excluding genomes
that were reported in less than 0.01% of reads by Kraken, we were able to raise precision from
the original 0.39362 to 0.82222 without reducing recall. With higher cutoffs, the recall dropped
rapidly, so the choice of 0.01% appeared to be optimal. Even with this improved precision, Kraken
still produces several false positives whereas the other methods do not. These results suggest that
MiCoP is highly effective at accurately predicting the species present in a sample and estimating
their relative abundances, even when a significant amount of errors are present in the reads.

We generated a low complexity fungi community simulation dataset using the procedure de-
scribed above: first we simulated a high complexity dataset, and then sampled 40 genomes out of
the genomes detected by all methods on the high complexity dataset. Unlike the viral simulation,
in which each sampled genome belongs to a different viral species, this simulation’s 40 genomes
derived from only 7 different fungal species (some genomes in the reference database were contigs
from the same species). Results are shown in Table 3.

Due to the relatively small number of species present, with several genomes sampled from
each species, all methods were able to predict almost the exact set of species present. MetaPhlAn
generated one false positive and Kraken generated one false negative. However, MiCoP achieved
an L1 error that was more than 10 times lower than that of Kraken or MetaPhlAn2. This result
demonstrates that MiCoP is effective at estimating the relative abundance of eukaryotes in a sample
more accurately than existing methods, even when those methods predict almost the exact set of
species in the sample correctly.

MiCoP detects greater diversity of viruses and eukaryotes in real world data

The Human Microbiome Project (HMP) is an ongoing large-scale effort to understand and charac-
terize the human microbiome across a variety of body sites [24–26]. One of the main HMP studies
took 4788 samples from 300 patients across 18 body sites [26]. Notably, this study used MetaPhlAn
to profile their metagenomic samples [26]. As our simulations indicate, it is possible that analyses
using MetaPhlAn have failed to capture the diversity and prevalence of the human virome and
eukaryome due to a functional bias towards bacteria. We have previously shown MiCoP’s supe-
rior performance to MetaPhlAn on simulated datasets. However, real data may not be as clean as
simulated data, due to factors such as library preparation, mutations in organisms in real world
environments, horizontal gene transfer, etcetera. We have shown that Kraken leads to a number of
false positives even in the simulated data, and thus we do not assess its results on real data where
ground truth is not available.

In order to compare the performance of MiCoP against MetaPhlAn2 on real world data, we
applied both methods to publicly-available mock community data. Mock communities have the
advantage of being examples of real live microbiomes, but with the community composition con-
trolled and known in advance, providing an effective means for evaluating performance on real world
data. Additionally, because classic mapping methods such as BWA were not originally designed for
metagenomics [22], they can occasionally assign reads incorrectly when applied to noisier real world
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data, especially when organisms in the sample are not in the reference database but closely related
organisms are. Mock communities thus provide an opportunity to establish parameter settings for
species filtering that perform well on real data. Several large scale and high profile metagenomics
studies have applied BLAST or other alignment methods with a variety of different parameter
settings with little to no explanation [27–29], so establishing a standard for these settings for our
method is useful and illustrative. We focus on the precision and recall metrics for the mock com-
munity comparisons, as the studies that the communities were taken from report the abundances
of the species in ways that could not be reliably translated into normalized relative abundances.
As with our simulation studies, we use a database composed of the genomes available from NCBI’s
RefSeq Viral and Fungal databases. We focus on fungi in particular because RefSeq’s databases for
non-fungal eukaryotes are currently very limited. For MetaPhlAn2, we use their provided marker
gene reference database.

We first applied MiCoP and MetaPhlAn2 to a viral mock community consisting of 9 species that
was released by Conceio-Neto et al. in 2015 [30]. We empirically found that the optimal parameter
settings for MiCoP required at least 10 reads with 60% of bases mapped to the reference genome
to consider a species present. Results are shown in Table 4. MetaPhlAn only detected 1 of the
9 species in the sample, with no false positives, while MiCoP detected 7 of the 9 species in the
sample with 1 false positive. The one false positive that MiCoP detected occurred due to the
previously-mentioned reference bias problem. The species that was actually present in the sample,
Feline panleukopenia virus, was not in the NCBI viral reference database, while the closely-related
[31] Canine parvovirus was, leading to many of the reads from Feline panleukopenia virus mapping
well to the Canine parvovirus genome. While very stringent parameter settings could filter out this
false positive, they would also filter out many truly present species from the results. This result
highlights both the reference bias problem and the inherent tradeoff between false positive and
false negative rates. Regardless, MiCoP represented the viral community much more accurately
than MetaPhlAn2, which failed to capture the community diversity. Finally, in terms of speed,
MetaPhlAn2 processed the reads about twice as quickly as MiCoP, although MiCoP still processed
the 12.4 million reads in 2 hours and 22 minutes.

We also applied MiCoP and MetaPhlAn2 to a fungal mock community consisting of 20 species
from 4 genera that was released by Tonge et al. in 2014 [32]. NCBI’s fungal RefSeq database
contains far fewer species than its viral counterpart, and was missing many of the species in the
mock community. Thus, species-level results identified several false but closely-related species in
the sample, similarly to the previously explored Canine parvovirus example, and we determined
that classification of real fungal communities can generally only be done accurately at the genus
level. We applied somewhat stricter parameter settings than were applied for viruses, owing to the
greater amount of shared genomic sequence between different fungi as compared with viruses. In
particular, we considered a genus present if at least 100 reads matched at least 99% with any of
the reference genomes for that genus with a maximum of 1 indel or substitution per read. Results
are shown in Table 5. MetaPhlAn2 did not detect any fungal genera, while MiCoP detected 3 of
the 4 genera in the sample. The genus that MiCoP did not detect was not present in the NCBI
RefSeq fungal database, so MiCoP did as well as possible given the state of the NCBI database. In
terms of speed, MetaPhlAn2 processed the reads significantly faster than MiCoP, but MiCoP still
processed the 4.9 million reads in a reasonable time of 2 hours and 55 minutes.

We then compared the performance of MetaPhlAn2 and MiCoP on the HMP data, using the
parameter settings validated on the mock community datasets. Following an example provided by
the MetaPhlAn authors, we downloaded 20 samples from the HMP, 10 from buccal mucosa and 10
from tongue dorsum. We analyzed each sample using MiCoP and MetaPhlAn2. Figures 2 to 5 show
the results for MiCoP and MetaPhlAn2 for the relative abundances of fungi and viruses. Note that
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the relative abundances of fungi were computed with respect to the reads that could be identified
as coming from fungi, and likewise for viruses, not with respect to the entire sample. MetaPhlAn2
estimates relative abundances for the entire sample; here, we recomputed the relative abundances
for fungi and viruses relative to themselves. Results are shown in Figures 2, 3, 4, and 5.

We found that MiCoP consistently identified a more diverse virome and eukaryome than
MetaPhlAn across all samples and both body sites. For fungi, MetaPhlAn2 identified two genera
in the HMP samples, Candida and Aspergillaceae, while MiCoP identified 6 genera, including the
two identified by MetaPhlAn2. Additionally, while the Candida genus dominated the MetaPhlAn2
results with 96.3% abundance, genera identified by MiCoP were distributed in a more balanced
manner. For viruses, MetaPhlAn identified 12 species present while MiCoP identified 34 species.
Both results were dominated by Streptococcus phages, but MetaPhlAn’s results were dominated by
Streptococcus phage EJ1, while MiCoP identified a diverse group of Streptococcus phages. As the
human oral virome and eukaryome are known to be highly diverse [33–35], our results indicate that
MiCoP is capturing more of the community diversity than MetaPhlAn. MiCoP can be used as an
effective alternative to popular general-purpose metagenomic abundance estimation tools when a
more comprehensive characterization of the human virome and eukaryome is desired.

Discussion and Conclusion

MiCoP illustrates the benefits of a mapping-based approach for metagenomic analyses, especially of
viral and eukaryotic species. Methods that are infeasible for the largest bacterial reference databases
can be leveraged for smaller reference databases due to increased sensitivity. The mapping-based
approach is a particular example of this, as it is more sensitive to viral and eukaryotic species and
gives valuable coverage information that other methods do not provide. Generally speaking, we
observe that different mapping methods tend to be optimized for different types of microbes, and
many existing methods are less effective for non-bacterial species. We also note the issue of reference
bias, which our simulations showed can significantly impact the performance of profiling methods. If
users attempt to use existing methods with their default databases, they may not accurately detect
non-bacterial species. Our real data analysis supports this view, as MiCoP identified more species
than previous studies had reported. In terms of run time, MiCoP trades off speed for sensitivity,
so Kraken and MetaPhlAn2 run faster. However, this difference is relatively minor (significantly
less than an order of magnitude) when using viral reference databases such as the NCBI RefSeq
viral genomes due to their small size. The difference is more pronounced with eukaryote reference
databases, due to the large genome size of eukaryotes, and can be more than an order of magnitude.
Thus, MiCoP is likely to scale better for viral data than for eukaryotes.

There are several potential future directions for MiCoP. One possible extension would be to add a
precomputation method that reduces the reference database size by removing genomes that have no
chance of being in a set of reads, using k-mer or MinHash based methods. This would enable MiCoP
to run faster and use less memory, perhaps making it feasible to analyze large bacterial reference
databases. Another possible direction involves assembly of sequences that were not mapped to
any reference genome. This would allow for the detection of species that are not available in a
reference database, but caution would have to be taken to avoid false discoveries. MiCoP promises
to help researchers more comprehensively and accurately identify viral and eukaryotic species in
metagenomic samples.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/243188doi: bioRxiv preprint 

https://doi.org/10.1101/243188
http://creativecommons.org/licenses/by-nd/4.0/


7

Methods

Reference database and mapping method

Any metagenomic profiling method that aims to classify sequence reads as belonging to certain
reference genomes is dependent to a large extent on the reference database used [15]. We show
empirical evidence of this reference bias in our results section. Choosing the reference database
involves a tradeoff between smaller databases that result in lower sensitivity but can be searched
faster, and larger databases that take longer to search but enable more accurate results. In general,
increasingly powerful computer hardware and fast mapping algorithms have enabled searching of
large reference databases in a reasonable amount of time [19, 36]. Additionally, viral and eukaryotic
reference databases are currently much smaller than bacterial reference databases, making mapping-
based approaches feasible. We therefore performed analysis using the full NCBI RefSeq Viral and
Fungal databases. In addition to database selection, the selection of the mapping algorithm used
in a mapping-based approach heavily affects results. We evaluated several new and established
mapping methods, including Megablast [21], BWA [23], Bowtie2 [37], and Diamond [38]. We found
that BWA produced the best results overall, comparable in accuracy to Megablast but with a much
faster run time that was feasible for large modern metagenomic sequencing datasets.

Probabilistic assignment of multi-mapped reads

While classifying uniquely-mapped reads is trivial, proper assignment of multi-mapped reads has a
major impact on results. BWA’s default setting randomly chooses which genome to assign multi-
mapped reads to; this setting led to a large amount of false positives in our simulated datasets.
However, simply discarding all multi-mapped reads leads to poor read utilization and negatively
affects sensitivity and abundance estimation. Thus, a method for accurately assigning multi-mapped
reads is of critical importance in read classification.

In the first stage of our two-stage approach, uniquely-mapped reads are classified according to
the genome that they map to, and the relative read counts for each genome are then calculated. All
multi-mapped reads, and the list of the genomes that they map to, are set aside during this stage.
During the second stage, we assign multi-mapped reads to a genome with probability equal to the
relative uniquely-mapped read counts for each of those genomes. A consequence of this approach
is that genomes whose only mapped reads are multi-mapped will have no chance of reads being
mapped to them, and reads that map only to species bearing no uniquely-mapped reads will not
be mapped at all. We also filter out genomes with fewer than 10 uniquely-mapped reads, as there
is insufficient evidence to indicate their presence; this heuristic technique has been successfully
employed in previous studies [19]. In comparison to letting BWA randomly choose multi-mapped
read classification, we observed that these filtering steps have a minor-to-negligible impact on the
sensitivity and vastly increase precision on the species level by eliminating many false positives.

Relative abundance estimation

Following the classification of reads to genomes, we estimate the relative abundances of each or-
ganism in the sample. Many read classification methods do not support this step, even though
indicating the actual pervasiveness of different species in a sample is more informative than pure
read counting. To do this, we normalize the read counts for each genome by the length of the
genome. We then normalize the adjusted counts of each genome by the sum of the adjusted counts,
so that all species abundances sum up to 100%.
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Simulated datasets

Simulated reads from viral and eukaryotic genomes were generated using Grinder [39]. We used
two different settings of simulated microbial communities, low complexity communities and high
complexity communities. The parameters for these communities were set in accordance with the
simulations performed by the CAMI consortium benchmark [15]. Low complexity communities
consisted of 40 genomes with abundances selected from a lognormal distribution with mean 1 and
standard deviation 2, then normalized such that they total 100%. High complexity communities
were similarly produced, except with 544 genomes, mean 1.5, and standard deviation 1. All viral
and eukaryotic genome simulations consisted of 1 million reads with lengths picked from a normal
distribution with mean 150 and standard deviation 15.

List of Abbreviations

MiCoP: Microbial Community Profiling
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L1 Error Precision Recall/Sensitivity F1-Score

MiCoP 0.09124 1.0 0.98155 0.99069

Kraken 1.15834* 0.85147 0.90959 0.87957

MetaPhlAn2 1.24357 0.84388 0.369 0.51348

Table 1. Abundance estimation performance results on a simulated viral community with 544 species. Kraken is
considered by its authors to be a read classification tool, not abundance estimation tool, so we put an asterisk next
to its results. However, we note that abundance estimation is a common application for Kraken in practice. Overall,
MiCoP outperforms the other two methods across all metrics. Kraken and especially MetaPhlAn are limited by the
poor representation of viruses in their standard databases. L1 error is the sum of the absolute values of the differences
between the computed species abundances and the ground truth species abundances. MiCoP’s L1 error was more
than an order of magnitude better than the other tools, and MiCoP had the best precision and recall.

L1 Error Precision Recall/Sensitivity F1-Score

MiCoP 0.00909 1.0 1.0 1.0

Kraken 1.15466* 0.82222 0.925 0.87059

MetaPhlAn2 0.09844 1.0 1.0 1.0

Table 2. Abundance estimation performance results on a simulated viral community with 40 species. These species
were sampled from the intersect of the species detected by all three tools in the previous simulation. Thus, this
simulation consisted of only the species that were present in all three reference databases, eliminating reference
bias. MetaPhlAn’s performance dramatically improved, predicting the exact set of species in the sample, but its
abundance estimation was an order of magnitude worse than MiCoP’s. Kraken’s results did not markedly improve in
this simulation.

L1 Error Precision Recall/Sensitivity F1-Score

MiCoP 0.09124 1.0 0.98155 0.99069

Kraken 1.15834* 0.85147 0.90959 0.87957

MetaPhlAn2 1.24357 0.84388 0.369 0.51348

Table 3. Abundance estimation performance results on a simulated fungal community consisting of 40 genomes
derived from 7 different species. These species were sampled in the same way as in the previous table: by taking
the intersect of species detected by all three tools on a higher-complexity community. MiCoP detected the exact
set of species present in the sample, while Kraken had one false negative and MetaPhlAn had one false positive.
Additionally, MiCoP’s abundance estimation was more than an order of magnitude better than the other tools.
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Precision Recall F1-Score Reads per
minute

MiCoP 0.875 0.77778 0.82353 87629

MetaPhlAn2 1.0 0.11111 0.19999 162845

Table 4. Comparison of the performance of MiCoP
and MetaPhlAn2 on a mock viral community consist-
ing of 9 species. MetaPhlAn2 only detects 1 of 9 species,
with no false positives, while MiCoP detects 7 of 9
species with one false positive, thus profiling the com-
munity much more accurately. MetaPhlAn2 processed
the reads about twice as fast as MiCoP.

Precision Recall F1-Score Reads per
minute

MiCoP 1.0 0.75 0.85714 6934

MetaPhlAn2 NaN (0/0) 0.0 NaN 187961

Table 5. Comparison of the genus-level performance of
MiCoP and MetaPhlAn2 on a mock fungal community
consisting of 4 genera. MiCoP detects 3 of the 4 gen-
era with no false positives, while MetaPhlAn2 detects
nothing. Because MetaPhlAn2 has 0 true and false pos-
itives, precision cannot be computed. MetaPhlAn2 was
faster, but MiCoP still finished in less than 3 hours.
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Fig. 1. MiCoP workflow. Reads are first aligned to viral or eukaryotic genomes in a reference database using BWA. The
results provide coverage and read mapping quality information that can be examined. In the abundance estimation
stage, uniquely-mapped reads are assigned to species and species abundances are estimated based on these. Multi-
mapped reads are then assigned to genomes with probability proportional to their abundances among uniquely-
mapped reads. Species with not enough reads mapped are filtered out, and then the final species abundances are
computed.
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Fig. 2. Abundance estimation for viruses when applying MiCoP to 20 Human Microbiome Project samples, 10 from
buccal mucosa and 10 from tongue dorsum. MiCoP detects a total of 34 species present, with the sample being
dominated by bacterial phages, particularly Streptococcus phages.
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Fig. 3. Abundance estimation for viruses when applying MetaPhlAn2 to 20 Human Microbiome Project samples,
10 from buccal mucosa and 10 from tongue dorsum. MetaPhlAn finds a much lower virome diversity than MiCoP,
with only 12 species identified. The sample is again dominated by Streptococcus phages, but MetaPhlAn’s results
suggest that there is only a single type of this phage dominating the sample, while MiCoP suggests that a wide
variety of Streptococcus phages are present. MetaPhlAn’s results may stem from the reference bias issue explored in
the simulation studies.
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Fig. 4. Abundance estimation for fungi when applying MiCoP to 20 Human Microbiome Project samples, 10 from
buccal mucosa and 10 from tongue dorsum. MiCoP detects a total of 6 genera present.
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Fig. 5. Abundance estimation for fungi when applying MetaPhlAn2 to 20 Human Microbiome Project samples, 10
from buccal mucosa and 10 from tongue dorsum. MetaPhlAn detects only two genera (Candida and Aspergillaceae),
which are also present in MiCoP’s results. As the human oral eukaryome is known to be diverse [33–35], our results
indicate that MiCoP captures the fungal community diversity better.
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