
The Shared Genetic Basis of Human Fluid Intelligence and

Brain Morphology

Tian Gea,b,c,d, Chia-Yen Chena,b,d,e, Richard Vettermannb,c, Lauri J. Tuominenb,c,

Daphne J. Holtb,c, Mert R. Sabuncuc,f , Jordan W. Smollera,b,d

aPsychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospi-

tal, Boston, MA 02114, USA; bDepartment of Psychiatry, Massachusetts General Hospital, Harvard Medical School,

Boston, MA 02114, USA; cAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital,

Charlestown, MA 02129, USA; dStanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cam-

bridge, MA 02138, USA; eAnalytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts

General Hospital, Boston, MA 02114, USA; fSchool of Electrical and Computer Engineering and Nancy E. and Peter

C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.

Correspondence to Tian Ge

Email: tge1@mgh.harvard.edu

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2018. ; https://doi.org/10.1101/242776doi: bioRxiv preprint 

https://doi.org/10.1101/242776
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Human intelligence differences are linked to diverse cognitive abilities and predict important life outcomes.

Here we investigate the biological bases of fluid intelligence in a large sample of participants from the UK

Biobank. We explore the genetic underpinnings of fluid intelligence via genome-wide association analysis

(N = 108, 147), and examine brain morphological correlates of fluid intelligence (N = 7, 485). Impor-

tantly, we develop novel statistical methods that enable high-dimensional co-heritability analysis, and com-

pute high-resolution surface maps for the co-heritability and genetic correlations between fluid intelligence

and cortical thickness measurements. Our analyses reveal the genetic overlap between fluid intelligence and

brain morphology in predominately left inferior precentral gyrus, pars opercularis, superior temporal cortex,

supramarginal gyrus, and their proximal regions. These results suggest a shared genetic basis between fluid

intelligence and Broca’s speech and Wernicke’s language areas and motor regions, and may contribute to our

understanding of the biological substrate of human fluid intelligence.
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Introduction

Human intelligence influences diverse cognitive abilities [1]. Individual differences in intelligence are pre-

dictive of important life outcomes, including socioeconomic status, education, job performance, and health

and life span [2]. Reductions in intelligence have been associated with numerous psychiatric disorders [3].

Dissecting the biological bases of intelligence, such as its genetic underpinnings and neural correlates, may

thus contribute to our understanding of cognitive impairment and related mental illnesses [4].

Twin and family studies have established that human intelligence is substantially heritable [5]. Recent

large-scale genome-wide meta-analyses have identified over 200 distinct genomic loci that contribute to indi-

vidual intelligence differences, and confirmed that intelligence is a highly polygenic trait [6, 7]. In addition,

intelligence has shared genetic underpinnings with several neuropsychiatric disorders (e.g., schizophrenia and

depressive symptoms) and neurological diseases (e.g., Alzheimer’s disease), and has strong positive genetic

correlation with educational attainment and longevity [6, 7]. However, the functional consequences of the

associated genetic variants have yet to be characterized.

Neuroimaging has been used to examine the relationships between intelligence and brain structure in vivo

[8]. Higher intelligence has been associated with larger brain size [9–11], and greater total and regional gray

matter volumes [12–17]. Positive correlations have been reported between intelligence and cortical thickness

measurements primarily in the prefrontal and temporal cortices [18–21]. Overall, structural neuroimaging

studies have mapped individual intelligence differences to morphological variation in multimodal association

regions. Notably, the parieto-frontal integration theory of intelligence (P-FIT) posits that a network of dis-

tributed brain regions may be integrated to process sensory information and support cognitive tasks [22, 23].

However, most prior work on neuroanatomical correlates of intelligence had limited sample sizes, and the

shared genetic basis between intelligence and brain morphology remains largely unexplored, outside a small

number of investigations with limited spatial resolution [24–27].

In this study, we investigate the genetic and morphological bases of human intelligence using fluid in-

telligence scores, structural brain MRI scans and genomic data collected by the UK Biobank (http://

www.ukbiobank.ac.uk) [28]. Fluid intelligence is the capability to reason and solve novel problems inde-

pendent of any acquired knowledge or experience from the past [29]. It is a factor of general intelligence [30],

which is considered the common core shared by all cognitive tests and does not depend on the specific cogni-

tive batteries from which it is constructed [1, 31]. Though a more specialized aspect of cognitive ability, fluid

intelligence is known to be highly correlated with general intelligence [4], and is often combined with general
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intelligence measurements across cohorts in neuroimaging and genetic studies. Here we first perform genome-

wide association analysis of the fluid intelligence score (N = 108, 147), and calculate its vertex-wise cortical

thickness correlates (N = 7, 485) in the UK Biobank. We then develop a novel statistical method to com-

pute vertex-wise SNP co-heritability and genetic correlations between fluid intelligence and cortical thickness

measurements, and localize their shared genetic origins on the cortical surface. SNP co-heritability (genetic

correlation) measures the covariance of two traits attributable to common genetic variants, normalized by total

phenotypic (genetic) variation. Well-established co-heritability/genetic correlation estimation methods such

as genome-wide complex trait analysis (GCTA; also known as the GREML method) [32] and LD (linkage

disequilibrium) score regression [33] require either individual genotypes or GWAS summary statistics for the

two traits. However, to examine the genetic overlap between a trait whose GWAS summary statistics can be

obtained (e.g., a cognitive, behavioral or disease phenotype), and a large number of MRI-derived phenotypes

(e.g., fine-grained brain morphological measurements) — a scenario often encountered in imaging genetic

studies — both GCTA and LD score regression can be computationally intractable. The proposed method fills

this technical gap, and enables high-dimensional co-heritability and genetic correlation estimation, as well as

flexible nonparametric statistical inferences. Our analyses expand the literature on the genetic underpinnings

and brain morphological correlates of intelligence, construct high-resolution surface maps of co-heritability

between fluid intelligence and cortical thickness measurements to unveil their shared genetic basis, and may

contribute to our understanding of the biological substrate of human intelligence differences.

Results

GWAS of fluid intelligence. We performed a genome-wide association analysis of the fluid intelligence score

derived from the touch-screen questionnaire at the baseline assessment visit in a total of 108,147 unrelated

UK Biobank participants of white British ancestry and 7,658,275 genetic variants across the genome that

passed quality control (see Methods). Age, sex, age2, age×sex, age2×sex, genotype array, UK Biobank

assessment center, and top 10 principal components (PCs) of the genotype data were adjusted in the linear

regression. We identified 35 independent genome-wide significant regions that were associated with individual

fluid intelligence differences (Supplementary Figure S1). Figure 1 shows the Manhattan plot for the GWAS.

Using LD score regression [34], the heritability of fluid intelligence captured by common genetic variants

(SNP heritability) was estimated to be 0.247 (s.e. 0.008).
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Figure 1: Manhattan plot for the genome-wide association analysis of the fluid intelligence score in the UK

Biobank (N = 108, 147). The dash line indicates the genome-wide significant threshold p < 5× 10−8.

Cortical thickness correlates of fluid intelligence. Next, we computed Pearson correlations between the fluid

intelligence score and vertex-wise cortical thickness measurements, adjusting for age, sex, age2, age×sex,

age2×sex, in 7,485 participants who had brain MRI scans and intelligence scores collected at the imaging

visit. As shown in Figure 2A, higher fluid intelligence was associated with increased cortical thickness in

somatomotor cortex, inferior frontal gyrus, inferior parietal lobule, and superior temporal cortex, and reduced

cortical thickness in the cingulate gyrus and occipital lobe. More specifically, significant positive correla-

tions between fluid intelligence and cortical thickness measurements were observed in the pars opercularis,

supramarginal gyrus and superior temporal gyrus in both hemispheres (Figure 2B).

Heritability of vertex-wise cortical thickness measurements. We estimated the SNP heritability of vertex-

wise cortical thickness measurements using an unbiased and computationally efficient moment-matching

method described previously [35], in 7,818 participants controlling for age, sex, age2, age×sex, age2×sex,

genotype array, and top 10 PCs of the genotype data. As an empirical justification, our method produced

virtually identical heritability estimates to LD score regression when applied to the average cortical thickness

measurements in 68 regions of interest (ROIs; 34 ROIs per hemisphere) defined by the Desikan-Killiany atlas

[36] (Supplementary Figure S2, left; also see Methods and Supplementary Information for a theoretical treat-

ment). As shown in Figure 3, fine-grained cortical thickness measurements were moderately heritable across
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Figure 2: Vertex-wise Pearson correlations between the fluid intelligence score and cortical thickness mea-

surements (N = 7, 485). (A) Surface maps for the Pearson correlations, adjusting for age, sex, age2, age×sex,

age2×sex. (B) Surface maps for the − log10 p-values of the Pearson correlations.
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Figure 3: Surface maps for the SNP heritability of cortical thickness measurements (N = 7, 818).

Co-heritability between fluid intelligence and cortical thickness. Given that fluid intelligence and cortical

thickness measurements were both heritable and showed correlations in several brain regions, we sought to

examine whether they have a shared genetic basis. Existing methods for co-heritability or genetic correlation

estimation are challenging to apply here due to the high-dimensionality of the brain morphological measure-

ments (approximately 300,000 vertices across the two hemispheres). For example, one would have to run

hundreds of thousands of GWAS in order to use LD score regression. We developed a novel and compu-

tationally efficient method that can leverage the summary statistics of the fluid intelligence GWAS and the

individual genotypes of the neuroimaging sample to compute the co-heritability between fluid intelligence

and vertex-wise cortical thickness measurements (see Methods). We note that there was no overlap between
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the GWAS sample and the imaging sample, which protected our co-heritability estimates from potential bias

induced by sample overlap. An empirical comparison of the co-heritability between fluid intelligence and the

average cortical thickness measurement in each of the 68 Desikan-Killiany ROIs estimated by the proposed

method and LD score regression showed that the two methods produced almost identical estimates (Supple-

mentary Figure S2, right). Theoretical equivalence between the two methods is established in Methods and

Supplementary Information.

Figure 4A and 4B show surface maps for the co-heritability and its statistical significance between the fluid

intelligence score and cortical thickness measurements, respectively, adjusting for age, sex, age2, age×sex,

age2×sex, genotype array, and top 10 PCs of the genotype data. Unlike the phenotypic correlations, which

were largely bilaterally symmetric as shown in Figure 2, the co-heritability between fluid intelligence and

cortical thickness showed a predominantly left-hemispheric pattern. We thresholded the significance map

using p = 0.01 as the threshold (Figure 4B), and assessed the significance of the size of each identified

cluster (spatially contiguous vertices) and computed their family-wise error (FWE) corrected p-values using

a permutation procedure we devised (see Methods). Positive co-heritability was observed in the left inferior

precentral gyrus (cluster 1; pFWE = 0.028), left pars opercularis (cluster 2; also known as Brodmann area 44

or BA44, which is part of the Broca’s speech area; pFWE = 0.057), and in cluster 3 (pFWE = 0.004), which

spanned the entire superior temporal cortex (including BA22) and extended into the angular gyrus (BA39) and

supramarginal gyrus (BA40), a region that overlaps with Wernicke’s language area. We did not identify any

significant cluster on the right hemisphere (pFWE > 0.10). Supplementary Figure S3 shows the surface map

for the genetic correlations between fluid intelligence and cortical thickness measurements, which exhibited a

similar pattern to the co-heritability map.

Discussion

In this paper, we investigated the biological bases of human fluid intelligence using large-scale brain imaging

and genomic data in the UK Biobank. Specifically, we explored the genetic underpinnings of fluid intelligence

via genome-wide association analysis, examined the brain morphological correlates of fluid intelligence, and,

more importantly, developed novel statistical methods to map the shared genetic basis of intelligence and fine-

grained cortical thickness measurements on the cortical surface. We now discuss each of these advances and

the limitations of our analyses below.
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Figure 4: Vertex-wise SNP co-heritability between the fluid intelligence score and cortical thickness measure-

ments. (A) Surface maps for the SNP co-heritability estimates. (B) Surface maps for the − log10 p-values of

the SNP co-heritability. Clusters identified by a cluster-forming threshold of p = 0.01 are shown. Family-wise

error corrected significant (or marginally significant) clusters are annotated.
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Our genome-wide association analysis of the fluid intelligence score identified 35 independent genomic

loci and confirmed the polygenicity and substantial heritability of human intelligence. Previous studies have

conducted genome-wide meta-analysis of general intelligence [6, 7, 37], and GWAS with a larger total sample

size than the present study exists [7]. Although we could have leveraged the summary statistics of existing

GWAS in our co-heritability analysis, we performed our own GWAS in the UK Biobank primarily for two

reasons. First, we excluded all participants that had neuroimaging data from our GWAS to ensure that the

co-heritability and genetic correlation estimates between fluid intelligence and imaging measurements were

not biased by sample overlap. Second, prior genetic analyses of human intelligence often combined various

cognitive tests across cohorts to produce a measurement of general intelligence (known as g) [30], while in

this study we focused on fluid intelligence, which, together with crystallized intelligence are two specific

components of general intelligence [29]. Although it is known that cognitive tests are universally correlated

and general intelligence is the common core of cognitive ability, each individual cognitive test also captures

substantial amount of specific variation [4]. For example, despite their strong positive correlation, fluid and

crystallized intelligence show distinct patterns of age-related decline, and have different responses to working

memory training [38], suggesting that their biological bases may substantially overlap but also have unique

components. Therefore, our analysis of fluid intelligence targets a specialized domain of cognitive ability, but

also contributes to the understanding of the biology of general intelligence.

In addition to the well-replicated finding that higher human intelligence is associated with larger brain

size [9–11, 39] and global indices of gray matter volumes [12, 16], several previous studies also investigated

regional volumetric and morphological correlates of intelligence. Higher intelligence scores have been associ-

ated with increased gray matter volumes across the brain including frontal, temporal, parietal and subcortical

regions (e.g., hippocampus) [13–15, 17]. Cortical thickness analyses also reported heterogeneous locations

and strengths of associations but positive correlations were consistently observed in the frontal and temporal

cortices [18–21]. In this study, we examined the correlations between fluid intelligence and vertex-wise cor-

tical thickness measurements, adjusting for the effect of age and sex, in a much larger sample than previous

neuroimaging studies of intelligence. Our results were in line with the literature in the sense that we observed

largely bilaterally symmetric associations between fluid intelligence and cortical thickness in several multi-

modal association regions, including inferior frontal gyrus, superior temporal cortex and proximal regions.

That said, we did observe weak positive correlations in the somatomotor cortex and negative correlations in

the occipital cortex, which, to our knowledge, has not been reported before.

A major contribution of this study is that we developed a novel statistical method to examine the shared
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genetic basis between fluid intelligence and brain morphology at high spatial resolution. Prior studies along

this line used the twin design and largely focused on global brain volumes [24–27]. Existing methods for

co-heritability and genetic correlation analyses in unrelated individuals either require individual genotypes

(e.g., GCTA or GREML) [32] or GWAS summary statistics (e.g., LD score regression) [33] for both traits,

which become challenging to apply in high-dimensional settings. We filled this technical gap by formulat-

ing co-heritability estimation as a polygenic score analysis. More specifically, the summary statistics of the

fluid intelligence GWAS were used to weight individual genotypes of the imaging sample and calculate an

individual-specific polygenic score. The polygenic score was then correlated with the cortical thickness mea-

surement at each cortical location and properly scaled to produce a co-heritability estimate. Our method is

thus highly computationally efficient and can be applied to estimate the co-heritability between any trait (e.g.,

a cognitive, behavioral or disease phenotype) whose GWAS summary statistics are available, and a high-

dimensional phenotype, such as the MRI-derived vertex-wise cortical thickness measurements in the present

study. Permutation procedures can also be devised to enable flexible statistical inferences, such as the cluster-

wise analysis [40, 41] on the surface map of co-heritability. Our vertex-wise analysis localized a common

genetic basis between fluid intelligence and cortical thickness in predominately left inferior precentral gyrus,

pars opercularis, superior temporal cortex, supramarginal gyrus, and their adjacent regions. Intriguingly, some

of these regions overlap with Broca’s and Wernicke’s areas, suggesting that fluid intelligence may have com-

mon genetic origins with language-related brain regions. In fact, although fluid intelligence usually does not

emphasize the verbal component of human intelligence, the UK Biobank fluid intelligence test requires read-

ing comprehension and verbal reasoning, in addition to inductive and deductive logic abilities (see Methods).

Thus, brain regions involved in comprehension of language may be critical to performance in this particular

fluid intelligence test. The left precentral gyrus (primary motor cortex) and its vicinity have been found to

be consistently activated during reasoning tasks [42, 43], and implicated in lesion mapping of intelligence

[44, 45]. Therefore, our results also suggest that fluid intelligence may have a shared genetic basis with brain

regions involved in motor processes.

Findings in this analysis should be generalized with caution to populations with different sample char-

acteristics with respect to age range, sex composition, ancestry groups, socioeconomic status, educational

attainment or other environmental exposures [38]. Both human intelligence and the cortex undergo rapid de-

velopment in childhood and adolescence, and age-related decline and degeneration in late adulthood. More

importantly, a number of studies have found that the relationship between intelligence and brain morphology

is dynamic over time and sex-dependent [see e.g., 39, 46–49]. In this study, we controlled for age, sex, age2,
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age×sex, age2×sex in all the analyses to remove the (potentially nonlinear) effect of age and sex on intel-

ligence, brain structure, and their correlations. However, since the UK Biobank only recruited middle- and

older-aged participants, our results may not be generalizable to other age ranges. In addition, intelligence and

genetic influences on intelligence may be moderated by educational opportunities and socioeconomic status

(SES) [50–52]. Therefore, our findings should be interpreted in light of the fact that UK Biobank participants

are on average more educated and have higher SES than the general population [53].

Although we identified phenotypic and genetic correlations between fluid intelligence and cortical thick-

ness measurements in several brain regions, these correlations do not necessarily indicate causal relationships.

Future work using methods such as Mendelian Randomization may shed light on whether genetic influences

on human intelligence are mediated through brain morphology. Also, genetic correlation is a genome-wide

metric and does not provide any information about specific genes that might underlie both intelligence and

brain structure. Further statistical and molecular genetic analyses are needed to dissect their genetic over-

lap. Lastly, in addition to gray matter volumes and cortical thickness, white matter volumes, diffusion tensor

imaging (DTI) derived measurements, functional MRI task activations, and indices of complex brain networks

have also been associated with intelligence measurements [4, 8]. Given that a range of features derived from

brain morphology, resting state networks, and the structural and functional connectomes are substantially her-

itable [54–59], integration of multimodal imaging data might provide further insights into possible neural

mechanisms of human intelligence.

Methods

The UK Biobank. UK Biobank is a prospective cohort study of 500,000 individuals (age 40-69 years)

recruited across Great Britain during 2006-2010 [28]. The protocol and consent were approved by the

UK Biobank’s Research Ethics Committee. Details about the UK Biobank project are provided at http:

//www.ukbiobank.ac.uk. Data for the current analyses were obtained under an approved data request

(ref: 32568; previously 13905).

Genetic data. The genetic data for the UK Biobank comprised 488,377 samples. Two closely related

Affymetrix arrays were used to genotype ∼800,000 markers spanning the genome. In addition, the dataset

was phased and imputed to ∼96 million variants with the Haplotype Reference Consortium (HRC) [60] and

UK10K haplotype resource. We constrained all analyses to the HRC panel in the present study, which com-
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bined whole-genome sequence data from multiple cohorts of predominantly European ancestry, and thus

covers a large majority of the common genetic variants in the European population.

The genetic data was quality controlled (QC) by the UK Biobank. Important information such as popu-

lation structure and relatedness has been released. Details about the QC procedures can be found in Bycroft

et al. [61]. We leveraged the QC metrics provided by the UK Biobank and removed samples that had mismatch

between genetically inferred sex and self-reported sex, high genotype missingness or extreme heterozygosity,

sex chromosome aneuploidy, and samples that were excluded from kinship inference and autosomal phas-

ing. We removed one individual from each pair of the samples that were 3rd degree or more closely related

relatives, and restricted our analysis to participants that were estimated to have white British ancestry using

principal component analysis (PCA).

Brain imaging. We used the T1 structural brain MRI scans from 10,102 participants released by the UK

Biobank in February 2017. FreeSurfer [62] version 6.0 was used to process the MRI scans. All processed

images were manually inspected and those with processing errors, motion artifacts, poor resolution, patholo-

gies (e.g., tumors) and other abnormalities were removed. Among the 9,229 participants that passed imag-

ing QC, a subset of 7,818 unrelated white British participants additionally passed the genetic QC described

above and were included in the analysis. We resampled subject-specific cortical thickness measurements onto

FreeSurfer’s fsaverage representation, which consists of 163,842 vertices per hemisphere with an inter-vertex

distance of approximately 1-mm. We further smoothed the co-registered surface maps using a Gaussian kernel

with 20-mm full width at half maximum (FWHM).

Fluid intelligence score. The fluid intelligence score (UK Biobank field ID: 20016) used in the present

study is an unweighted sum of the number of correct answers given to the 13 fluid intelligence questions

as part of the UK Biobank touch-screen questionnaire (http://biobank.ctsu.ox.ac.uk/crystal/

refer.cgi?id=100231). Participants who did not answer all of the questions within the allotted 2-minute

limit were scored as zero for each of the unattempted questions. The score is roughly normal distributed

(Supplementary Figure S4) and was thus treated as a quantitative variable in this study. Of all the participants

that passed genetic QC, 108,147 (age, 40-70 y; female, 53.51%) had fluid intelligence scores at the baseline

assessment visit (2006–2010) and were used in the fluid intelligence GWAS. Of the 7,818 participants (age,

45-79 y; female, 52.24%) that passed both imaging and genetic QC, 7,485 (age, 45-79 y; female, 52.22%)

additionally had fluid intelligence scores at the imaging visit (after 2014), and were used in assessing the

phenotypic correlations between fluid intelligence and cortical thickness measurements. There was no overlap
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between the fluid intelligence GWAS sample and the neuroimaging sample.

GWAS of fluid intelligence. We performed GWAS of the fluid intelligence score in 108,147 participants.

In addition to the genetic sample QC described above, we filtered out genetic markers with minor allele

frequency < 1% and imputation quality score < 0.8. A total of 7,658,275 imputed SNPs on the HRC panel

were included in the GWAS. Association tests were conducted using SNPTEST v2.5.2 [63]. For each genetic

marker, a linear regression model was fitted, adjusting for age (at the baseline assessment visit), sex, age2,

age×sex, age2×sex, genotype array, UK Biobank assessment center, and top 10 PCs of the genotype data as

covariates. GWAS results were visualized using the platform FUMA [64].

Phenotypic correlation. Pearson correlations between the fluid intelligence score collected at the imaging

visit and vertex-wise cortical thickness measurements were computed using data from 7,485 participants,

adjusting for age (at the imaging visit), sex, age2, age×sex, age2×sex as covariates.

Estimators for SNP heritability. Consider the linear model y = Xβ + ε, where y is an N × 1 vector of

covariate-adjusted and standardized phenotypes, X = [xij]N×M is an N ×M matrix of genotypes with each

column xj normalized to mean zero and variance one, β is an M × 1 vector of (random) SNP effect sizes,

and ε is an N × 1 vector of residuals. In Supplementary Information, we show that under a polygenic model,

the following moment-matching estimators for SNP heritability are asymptotically equivalent:

ĥ2g,LDSC = Ch2
(
χ2 − 1

)
, ĥ2g,HE = Ch2

(
1

N
y>Ky − 1

)
, ĥ2g,PS = Ch2

(
〈ξ,y〉 − 1

)
, (1)

where Ch2 =
M

`N
≈ N∑

i6=j k
2
ij

is a constant, K = [kij]N×N =XX>/M is the empirical genetic relationship

matrix, ` is the average LD score across the genome, β̂j = x>j y/N is the marginal effect size estimate of

the j-th variant with χ̂2
j = Nβ̂2

j being the corresponding χ2 statistic, χ2 is the average χ2 statistic across the

genome, ξ =
1

M

M∑
j=1

xjβ̂j is a weighted average of the genotype, i.e., an N × 1 vector of individual-specific

polygenic scores, and 〈·, ·〉 denotes inner product, i.e., 〈ξ,y〉 = ξ>y.

We note that ĥ2g,LDSC is the LD score regression estimator based on GWAS summary statistics, with the

intercept constrained to one and the reciprocal of the LD score as the regression weight [34]. ĥ2g,HE is the

Haseman-Elston regression estimator based on individual genotypes [35, 65–67]. ĥ2g,PS formulates SNP heri-

tability estimation as a polygenic score analysis. The equivalence between ĥ2g,LDSC and ĥ2g,HE has been estab-

lished both theoretically and empirically in prior work [35, 68, 69].
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Estimators for SNP co-heritability. Consider the bivariate model y1 = X1β1 + ε1 and y2 = X2β2 + ε2,

where y1 and y2 are N1 × 1 and N2 × 1 vectors of covariate-adjusted and standardized phenotypes, X1 and

X2 are N1 × M and N2 × M matrices of standardized genotypes, β1 and β2 are M × 1 vectors of SNP

effect sizes, ε1 and ε2 are N1 × 1 and N2 × 1 vectors of residuals, respectively. Without loss of generality,

we assume that the first Ns samples are identical for the two phenotypes. In Supplementary Information, we

show that under a polygenic model, the following moment-matching estimators for SNP co-heritability are

asymptotically equivalent:

ρ̂g,LDSC = Cρg

(
z1z2 −

Nsρ√
N1N2

)
, ρ̂g,HE = Cρg

(
1√
N1N2

y>1 Kcy2 −
Nsρ√
N1N2

)
,

ρ̂g,PS = Cρg

(√
N2

N1

〈ξ1,y1〉 −
Nsρ√
N1N2

)
= Cρg

(√
N1

N2

〈ξ2,y2〉 −
Nsρ√
N1N2

)
,

(2)

where Cρg =
M

`
√
N1N2

≈
√
N1N2∑

(i,j)/∈I k
2
c,ij

is a constant, I =
{
(i, j) | 1 6 i = j 6 Ns

}
, Kc = [kc,ij]N1×N2 =

X1X
>
2 /M , ρ is the phenotypic correlation between the two traits, β̂1j = x>1jy1/N1 and β̂2j = x>2jy2/N2 are

marginal effect size estimates of the j-th variant, with ẑ1j = x>1jy1/
√
N1 and ẑ2j = x>2jy2/

√
N2 being the

corresponding z statistics, respectively, z1z2 =
1

M

M∑
j=1

ẑ1j ẑ2j is the average product of z statistics across the

genome, ξ1 =
1

M

M∑
j=1

x1jβ̂2j and ξ2 =
1

M

M∑
j=1

x2jβ̂1j are individual-specific polygenic scores.

We note that ρ̂g,LDSC is the LD score regression estimator based on GWAS summary statistics, with con-

strained intercept and the reciprocal of the LD score as the regression weight [33]. ρ̂g,HE is the Haseman-Elston

regression estimator based on individual genotypes. ρ̂g,PS formulates SNP co-heritability estimation as a poly-

genic score analysis, and thus enables co-heritability analysis when GWAS summary statistics are available

for one trait and individual genotypes are available for the other trait. The equivalence between ρ̂g,LDSC and

ρ̂g,HE has been established in prior work [68].

Statistical genetic analyses. For all heritability and co-heritability analyses, we used SNPs in the HapMap3

panel whose LD scores have been computed and released (https://github.com/bulik/ldsc). We

further filtered out genetic markers with imputation quality score < 0.9, missing rate > 1%, minor allele

frequency < 1%, and significant deviation from Hardy-Weinberg equilibrium (p < 1 × 10−10) in the UK

Biobank. A total of 871,023 SNPs were used in heritability and co-heritability analyses.

The SNP heritability of the fluid intelligence score, denoted as ĥ2Gf , was computed using the LD score

regression estimator ĥ2g,LDSC in Eq. (1) and the summary statistics of the fluid intelligence GWAS in the UK
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Biobank (N = 108, 147). The SNP heritability of the cortical thickness measurement at vertex v, denoted as

ĥ2v, was computed using the Haseman-Elston regression estimator ĥ2g,HE in Eq. (1) and individual genotypes of

the imaging sample (N = 7, 818). We adjusted for age (at the imaging visit), sex, age2, age×sex, age2×sex,

genotype array, and top 10 PCs of the genotype data as covariates. Vertex-wise estimates ĥ2v, v = 1, 2, · · · , V ,

where V is the total number of vertices, form a surface map for the heritability of cortical thickness measure-

ments.

The SNP co-heritability between the fluid intelligence score and the cortical thickness measurement at

vertex v, denoted as ρ̂Gf,v, was computed using the estimator ρ̂g,PS in Eq. (2). More specifically, the summary

statistics of the fluid intelligence GWAS (N = 108, 147) were used to calculate an individual-specific poly-

genic score in the imaging sample (N = 7, 818) where individual genotypes were available. The polygenic

score was then correlated with the cortical thickness measurement at each cortical location and properly scaled

to produce the co-heritability estimate. Since there was no overlap between the fluid intelligence GWAS sam-

ple and neuroimaging sample, the bias term in the estimator, i.e., Nsρ/
√
N1N2, was set to zero. We adjusted

for age (at the imaging visit), sex, age2, age×sex, age2×sex, genotype array, and top 10 PCs of the genotype

data as covariates in the co-heritability (polygenic score) analysis.

Vertex-wise estimates ρ̂Gf,v, v = 1, 2, · · · , V , form a surface map for the co-heritability between fluid

intelligence and cortical thickness measurements. Clusters on the surface map can be defined by spatially

contiguous vertices with co-heritability estimates above a predefined threshold (or equivalently, p-values be-

low a threshold). To assess the significance of the size (number of vertices) of a cluster while accounting for

the spatial correlation of cortical thickness measurements, we employed the following permutation procedure.

For each permutation k = 1, 2, · · · , Nperm, we recomputed and thresholded the co-heritability map using a

permuted polygenic score, and recorded the maximal cluster size Mk across the two hemispheres. Then for

an observed cluster C with size c, the family-wise error (FWE) corrected p-value is [70]

pFWE(C) =
#{Mk > c}
Nperm

. (3)

Genetic correlation between the fluid intelligence score and cortical thickness measurement at each vertex

was computed as

r̂Gf,v =
ρ̂Gf,v√
ĥ2Gf ĥ

2
v

, v = 1, 2, · · · , V. (4)
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