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ABSTRACT 

• Premise of the study: Targeted enrichment strategies for phylogenomic inference are a 

time- and cost-efficient way to collect DNA sequence data for large numbers of 

individuals at multiple, independent loci. Automated and reproducible processing of these 

data is a crucial step for researchers conducting phylogenetic studies. 

• Methods and Results: We present Fluidigm2PURC, an open source Python utility for 

processing paired-end Illumina data from double-barcoded PCR amplicons. In 

combination with the program PURC (Pipeline for Untangling Reticulate Complexes), 

our scripts process raw FASTQ files for analysis with PURC and use its output to infer 

haplotypes for diploids, polyploids, and samples with unknown ploidy. We demonstrate 

the use of the pipeline with an example data set from the genus Thalictrum L. 

(Ranunculaceae). 

• Conclusions: Fluidigm2PURC is freely available for Unix-like operating systems on 

GitHub [https://github.com/pblischak/fluidigm2purc] and for all operating systems 

through Docker [https://hub.docker.com/r/pblischak/fluidigm2purc]. 

Key words: bioinformatics; haplotype inference; high-throughput sequencing; microfluidic 

PCR; phylogenomics; polyploidy.  
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INTRODUCTION 

The collection of large-scale, multilocus data sets for phylogenomic inference has become an 

increasingly common method for understanding evolutionary relationships within a group of 

taxa. Coupled with recent implementations of coalescent-based species tree estimation programs 

that take into account the independent histories of different genes (e.g., SVDquartets, Chifman 

and Kubatko, 2014; ASTRAL-II, Mirarab and Warnow, 2015), targeted enrichment strategies are 

powerful methods for collecting more informative data sets for conducting phylogenomic 

investigations. Of the many types of targeted enrichment that exist, several recent studies have 

begun to use a method that combines both library preparation and target amplification into a 

single step. This process, known as double-barcoded amplicon sequencing (Uribe-Convers et al., 

2016), allows for the collection of multilocus sequence data for large numbers of individuals that 

is both time- and cost-effective. 

Double-barcoded amplicon sequencing combines the amplification of a targeted region in the 

genome with the addition of sample-specific barcodes and Illumina sequencing adapters to the 

resulting PCR product for paired-end sequencing on an Illumina MiSeq platform (Uribe-Convers 

et al., 2016). This is done by adding conserved sequence (CS) tags to traditional PCR primers, 

which act as templates for adding barcodes and adapters when preparing the sequencing library. 

Parallel amplification is most often achieved using microfluidic PCR with the Fluidigm Access 

Array (Fluidigm, San Francisco, CA, USA; e.g., Gostel et al., 2015; Uribe-Convers et al., 2016; 

Kates et al., 2017), allowing for multiple samples and loci to be amplified simultaneously 

(minimum of 48 samples x 48 loci). The newer Fluidigm Juno system can also handle up to 192 

samples in a single run, and multiplexing of primer pairs can allow for even higher throughput, 

provided that the primers do not interact during amplification. Double-barcoded amplicons can 
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also be generated by other means using approaches such as traditional or highly-multiplexed 

PCR (e.g., Bybee et al., 2011; Dupuis et al., 2017). 

Previous methods to analyze these data have typically relied on generating consensus 

sequences using software packages such as Geneious (Kearse et al., 2012; e.g. Gostel et al., 

2015), HiMAP (Dupuis et al., 2017), or an R script, reduce_amplicons.R, that is part of the 

dbcAmplicons package (but see comparison with "occurrence-based" methods in dbcAmplicons 

in the Example Analyses section; Uribe-Convers et al., 2016; Kates et al., 2017). However, using 

consensus sequences can often ignore important within-individual level variation, such as 

differing alleles or levels of ploidy. To alleviate this issue and to facilitate the analysis of these 

data for haplotype inference, we developed Fluidigm2PURC. Fluidigm2PURC consists of two 

main Python scripts that process input data files using several external programs (Table 1) that 

automate quality filtering, read merging, and file formatting for downstream steps (Figure 1). 

Although it can be used to process any double-barcoded amplicons, the software derives its name 

from the method of PCR amplification that we used to generate our data (Fluidigm Access 

Array), as well as its primary dependency, PURC, a Python program that combines sequence 

clustering and PCR chimera detection (Rothfels et al., 2017). The final step in the 

Fluidigm2PURC pipeline processes clusters from PURC and outputs a FASTA file containing 

phased haplotypes for all targeted sequences. This last step has methods for haplotype inference 

that work on diploids, polyploids, individuals with unknown ploidy, or any mixture of the three. 

To demonstrate the utility of Fluidigm2PURC, we analyzed nuclear amplicon data from the 

genus Thalictrum L. (Ranunculaceae) and compared the results with those obtained from 

dbcAmplicons using the reduce_amplicons.R script (Uribe-Convers et al., 2016).  
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METHODS AND RESULTS 

Input data—The input data for Fluidigm2PURC are paired-end FASTQ files (R1 and R2 for 

paired reads) that have been demultiplexed using the program dbcAmplicons (Uribe-Convers et 

al., 2016). dbcAmplicons demultiplexes reads using the original sample barcodes and amplicon 

primer sequences to annotate the reads with the sample and locus name that each read comes 

from, followed by trimming these identifying parts of the sequence. The resulting pair of FASTQ 

files is then input into the first script in the pipeline, fluidigm2purc. 

Step 1: fluidigm2purc—The fluidigm2purc script takes the paired-end FASTQ files, filters 

them using Sickle (Joshi and Nash, 2011; minimum length = 100bp, PHRED threshold = 20), 

merges the filtered reads using FLASH2 (Magoč and Salzberg, 2011), and then converts the 

resulting FASTQ files into FASTA files (one for each locus) with sequence header information 

that is compatible with PURC. The sequence headers for PURC follow the format 

‘>IndividualName|LocusName|UniqueID#’. When paired reads with low quality bases are 

trimmed by Sickle and no longer overlap, we merge them artificially with multiple N’s inserted 

between them. The fluidigm2purc script writes two additional files: (1) the taxon table, a two-

column table listing each sequenced taxon and its ploidy level, and (2) the locus-err table, a two-

column table listing each sequenced locus and the average level of sequencing error for all reads 

coming from that locus. The taxon table lists the ploidy as “None” for all individuals by default, 

but known ploidy levels can be included by the user (e.g., diploid has the value “2,” tetraploid 

has the value “4,” etc.). For the locus-err table, the per locus levels of sequencing error are 

calculated individually from the input FASTQ files using the average PHRED score per read 

averaged across all reads coming from that locus. 
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Step 2: PURC—The output FASTA files from fluidigm2purc can be run through PURC 

using the purc_recluster.py script (Rothfels et al., 2017). This script is used to iteratively run 

chimera detection and sequence clustering (performed with USEARCH; Edgar, 2010; Edgar et al., 

2011) on each locus individually to produce a reduced set of putative haplotypes that includes 

size information about the number of original reads forming each cluster. Details on running 

PURC can be found on its Bitbucket page [https://bitbucket.org/crothfels/purc]. 

Step 3: crunch_clusters—The clusters output by PURC are then run through our second 

script, crunch_clusters, which uses the taxon table and locus-err table output by fluidigm2purc 

(Step 1) to infer haplotypes in a maximum likelihood framework. This script also has options for 

realigning clusters using MAFFT (Katoh, 2013), as well as cleaning the clusters using Phyutility 

(Smith and Dunn, 2008). 

Before haplotypes can be inferred at a locus, we first do a pairwise comparison of all clusters 

for each taxon individually and merge any clusters that are identical (ignoring gaps). This step is 

necessary because of the initial trimming/filtering step in the fluidigm2purc script. Artificially 

joining unmerged reads often causes two sequencing clusters representing the same haplotype to 

form: (1) one cluster for reads that were merged, and (2) one cluster for the reads that were 

artificially merged and contain a large number of gapped sites in the middle. In this case, these 

two clusters should not be treated as separate haplotypes, so we combine the clusters by keeping 

the larger haplotype (i.e., the one with less gaps) and adding the sizes of the two clusters 

together. The alternative would be to process the original data by ignoring all reads that did not 

merge. However, throwing away unmerged reads could potentially discard sequence variation 

that should be represented in the data set, especially if most reads are unmerged, which may be 

the case for large amplicons. The downside of merging sequences that are identical except for 
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gaps is that it potentially discards informative indel variation, although it is unlikely that a locus 

within an individual would have only one of its haplotypes containing gaps and not the others. 

Overall, we felt that this approach provided the best method for including more of the original 

data when inferring haplotypes. 

Inferring haplotypes with ploidy information—For known ploidy levels, we use a 

multinomial likelihood to determine the number of copies of each potential haplotype using the 

ordered cluster sizes returned by PURC (largest to smallest). Given an individual of ploidy level 

K, we enumerate the number of possible haplotype configurations using integer partitions (an 

unordered set of integers that sums to K; Stojmenovic and Zoghbi, 1998). Since the cluster sizes 

are sorted, we never need to consider more than the first K largest clusters. For example, a 

tetraploid can have a maximum of four haplotypes, and the integer partitions to consider are 

(4,0,0,0), (3,1,0,0), (2,2,0,0), (2,1,1,0), and (1,1,1,1). This corresponds to (4 copies of haplotype 

one), (3 copies of haplotype one, 1 copy of haplotype two), (2 copies of haplotype one, 2 copy of 

haplotype two), (2 copies of haplotype one, 1 copy of haplotype two, 1 copy of haplotype three), 

and (1 copy of haplotype one, 1 copy of haplotype two, 1 copy of haplotype three, 1 copy of 

haplotype four). The mathematical details for the likelihood function with an example 

calculation are presented in the Supplemental Materials (Supplemental Text §S1.1). Once the 

most likely configuration has been identified, the crunch_clusters script will return each 

haplotype in proportion to its representation in the maximum likelihood estimate. We have also 

provided options to return only unique haplotypes and to treat loci as haploid, the latter of which 

can be used to process organellar data. The haploid option can also be used as an alternative to 

finding consensus sequences for nuclear loci by returning only the cluster with the most reads. 
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Inferring haplotypes without ploidy information—For unknown ploidy levels, we no longer 

have information about the maximum number of haplotypes that an individual can have. 

However, we can use the cluster sizes to infer which clusters from PURC are actual haplotypes 

versus those that are likely to be sequencing errors. We do this by calculating the likelihood that 

each successive haplotype in the sorted list is a “real” haplotype versus a sequencing error. As an 

example, consider a tetraploid with six clusters identified by PURC. We first calculate the 

likelihood that all clusters are errors. Then we calculate the likelihood that cluster one is a real 

haplotype, and two through six are errors. Next, we calculate the likelihood that clusters one and 

two are real haplotypes, and that three through six are errors. This continues until we calculate 

the likelihood of all six clusters being real haplotypes. We then apply a cutoff that uses the 

relative increase in the likelihood when an additional haplotype is added. If treating an additional 

cluster as a haplotype increases the likelihood by less than the cutoff then only the previous 

haplotypes are kept and the others are considered errors. We use a default cutoff of 10% increase 

in the likelihood. An example with the likelihood function that we use for this approach is 

provided in the Supplemental Materials (Supplemental Text §S1.2). 

Example analysis—To demonstrate the use of the Fluidigm2PURC pipeline, we analyzed 

amplicon sequence data generated from orthologs of the nuclear gene PISTILLATA (PI) in the 

genus Thalictrum L. (Ranunculaceae), which is single copy in diploids and two-copy in 

tetraploids (Di Stilio et al., 2005). PI is responsible for establishing stamen and petal identity 

during flower development in Arabidopsis thaliana (Goto and Meyerowitz, 1994), and has been 

used to detect reticulation in polyploid Lepidium L. (Brassicaceae) (Lee et al., 2002; Soza et al., 

2014). Given the length of the PI locus, primers were designed to sequence exons 3 to 6 in two 

overlapping ~600-bp segments: exons 3 to 5 (PIS_4) and exons 4 to 6 (PIS_3). Our analyses 
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focused on six species with known ploidy levels ranging from diploid (2N=2X=14) to 22-ploid 

(2N=22X=154). These species are presented in Table 2, with accession numbers following Soza 

et al. (2013). Paired-end reads were demultiplexed and annotated using dbcAmplicons (Uribe-

Convers et al., 2016) followed by read trimming, merging, and sequence renaming using the 

fluidigm2purc script with default options. All reads coming from PIS_3 and PIS_4 were then run 

separately through PURC using the purc_recluster.py script (Rothfels et al., 2017). After 

clustering and chimera detection, we determined haplotypes for each amplicon using three 

different approaches: (1) consensus sequences using the ‘--haploid’ option, (2) unique haplotypes 

assuming unknown ploidy (10% likelihood cutoff), and (3) unique haplotypes using known 

ploidy. For each of these methods, we realigned and cleaned the sequences using MAFFT (Katoh 

2013) and Phyutility (added the options '--realign --clean 0.33'; Smith and Dunn, 2008). 

As a comparison, we also analyzed these data using the reduce_amplicons.R script from the 

dbcAmplicons package (v0.8.5; Uribe-Convers et al., 2016). This script merges paired-end reads 

using FLASH2 (Magoč and Salzberg, 2011) and allows for a global read trimming size to be 

used for read one, read two, or both. Unmerged reads are treated independently, resulting in 

separate haplotypes for read one and read two. The final result is a FASTA file with the 

unaligned haplotypes that can be further processed for downstream applications. We generated 

consensus haplotypes as well as haplotypes based on read occurrence (controlled by the 

minimum read frequency and minimum read count) using the default settings, and trimmed 20 

bp from read one and 40 bp from read two. We then aligned the resulting sequences using Mafft 

(Katoh, 2013). These results were compared to the haplotypes from Fluidigm2PURC based on 

(1) the number of recovered haplotypes, (2) the length of the resulting alignment, and (3) the 

amount of gaps in the alignment. 
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Results—Haplotypes inferred by both methods were visualized and compared using 

alignment statistics computed in Geneious v8.1.8 (Kearse et al., 2012) and MEGA v7.0.18 

(Kumar et al., 2016). Consensus sequences from the Fluidigm2PURC and dbcAmplicons 

pipelines were similar overall, with the reduce_amplicons.R script producing longer haplotypes, 

but containing more gaps (Table 3). We then compared the occurrence-based method from the 

reduce_amplicons.R script with the crunch_clusters results when ploidy levels are treated as 

unknown. In this case, Fluidigm2PURC recovered more haplotypes with fewer gaps and more 

parsimony informative sites. We believe the reason that the reduce_amplicons.R script recovered 

so few haplotypes is due to its use of minimum read count and frequency criteria that rely on 

reads being identical to form haplotypes, rather than clustering based on similarity. Inferring 

haplotypes with Fluidigm2PURC using known ploidy levels resulted in the largest number of 

recovered haplotypes. The reason that using known versus unknown ploidy levels produced 

more haplotypes (PIS_3: 57 vs. 18, PIS_4: 43 vs. 14) was because the clusters sizes that went 

into the likelihood calculation were disparate for some species (a few large clusters and many 

smaller ones), making the smaller clusters difficult to model when the ploidy level was unknown 

due to lack of prior knowledge about how many haplotypes should be expected. On a per species 

basis, using known ploidy levels always led to more inferred haplotypes (Table 4). For example, 

the PIS_4 region for Thalictrum pubescens recovered 15 haplotypes when assuming known 

ploidy (analyzed as 22X), but only one haplotype when assuming unknown ploidy. The reason 

for this is that the cluster data for this species had one putative haplotype with many reads (147), 

but all other putative haplotypes had far fewer reads (the next largest cluster had 25 reads, and 

nine clusters had fewer than 10 reads). In general, drawing the line between real haplotypes and 

errors for clusters with lower read counts is difficult when the ploidy level is unknown. By 
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applying a threshold, the method we implement is a conservative way to estimate haplotypes that 

only includes clusters with the highest read counts. 

Code and data availability—The code for each step of our example analysis is available in 

the Supplemental Materials (Supplemental Text §S2). Raw sequence data from the PIS_3 and 

PIS_4 loci for the six sampled Thalictrum species, as well as all output FASTA files from the 

Fluidigm2PURC and dbcAmplicons pipelines, are available on Dryad (dryad.####). 

CONCLUSIONS 

The ability to infer haplotypes regardless of an individual’s ploidy level is a crucial step 

toward understanding the complex relationships within many plant groups whose evolutionary 

histories often contain multiple instances of hybridization and whole genome duplication (Soltis 

and Soltis, 2009; Van de Peer et al., 2009). As models that accommodate these processes 

continue to be developed (e.g., Jones et al., 2013; Solís-Lemus and Ané, 2016; Oberprieler et al., 

2017; Thomas et al., 2017; Wen and Nakhleh, in press), we anticipate that the functionality of 

our pipeline will be especially useful for conducting phylogenomic studies with nuclear sequence 

data. Furthermore, the increase in genomic resources for taxa across the Plant Tree of Life will 

continue to facilitate the process of phylogenetic marker development, allowing more researchers 

to take advantage of targeted enrichment strategies such as double-barcoded amplicon 

sequencing. Compared with existing approaches for analyzing these data, the methods we 

present here offer an improved workflow for sequence processing, clustering, and haplotype 

inference, and are particularly well suited for analyses in taxa with incomplete knowledge about 

ploidy levels. 
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Availability—Fluidigm2PURC is open source software that is freely available on GitHub 

[https://github.com/pblischak/fluidigm2purc] for Unix-like operating systems (Mac, Linux) 

under the GNU General Public License v3. We have also built a Docker image with all 

dependencies (Table 1) pre-installed for use on any operating system with a compatible 

distribution of the Docker software [https://hub.docker.com/r/pblischak/fluidigm2purc] 

(https://www.docker.com; Merkel, 2014). Fluidigm2PURC is written in Python and has been 

successfully tested using Python versions 2.7 and 3.6. Documentation for the software can be 

found on ReadTheDocs [http://fluidigm2purc.readthedocs.io]. 
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TABLES 

TABLE 1. Dependencies for the Fluidigm2PURC pipeline with version numbers in parentheses. 

Dependency Citation Link 
PURC (v1.02) Rothfels et al., 2017 https://bitbucket.org/crothfels/purc  
Sickle (v1.33) Joshi and Nash, 2011 https://github.com/najoshi/sickle  
FLASH2 (v2.2.00) Magoč and Salzberg, 2011 https://github.com/dstreett/FLASH2  
Mafft (v7.237) Katoh, 2013 http://mafft.cbrc.jp/alignment/software/  
Phyutility (v2.7.1) Smith and Dunn, 2008 https://github.com/blackrim/phyutility  

TABLE 2. Thalictrum L. species included in the comparison of Fluidigm2PURC and dbcAmplicons. 

Collection information is listed as the collector(s), collection number, and the herbarium. All additional 

information is available from Soza et al. (2013), Tables S1, S3, and S4. For all analyses, T. pubsescens 

was analyzed at the 22X level. 

Species Ploidy Level Collection Information 
T. thalictroides (L.) A.J. Eames & B. Boivin 2N=2X=14 V. Di Stilio, 123, WTU 

T. squarrosum Stephan ex Willd. 2N=6X=42 V. Di Stilio & X. Duan Thalictrum 
sp#8, 20120617, PE 

T. macrostylum Shuttlew. ex Small & A. Heller 2N=8X=56 R. Penny (unvouchered) 

T. pubescens Pursh 2N=12X=84 or 
2N=22X=154 D. Baum & D. Howarth, 375, A 

T. revolutum DC. 2N=20X=140 V. Soza, 1917, WTU 
T. dasycarpum Fisch., C. A. Mey. & Avé-Lall. 2N=22X=154 V. Di Stilio, 110, WTU 
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TABLE 3. Overall alignment statistics for the comparison between Fluidigm2PURC and the 

reduce_amplicons.R script. 

 PIS_3 PIS_4 
 Fluidigm2PURC reduce_amplicons Fluidigm2PURC reduce_amplicons 
Consensus     
   Alignment length (bp) 395 415 403 418 
   Percent gaps 27.9 30.0 1.9 4.4 
   Parsimony informative sites 19 19 11 10 
Unknown Ploidy/Occurrence     
   Number of haplotypes 18 5 14 6 
   Alignment length (bp) 395 403 403 424 
   Percent gaps 16.2 48.9 2.7 7.1 
   Parsimony informative sites 48 11 43 10 
Known ploidy     
   Number of haplotypes 57 – 43 – 
   Alignment length (bp) 395 – 403 – 
   Percent gaps 10.3 – 2.6 – 
   Parsimony informative sites 81 – 62 – 

TABLE 4. Per species data for the number of haplotypes inferred by Fluidigm2PURC using known vs. 

unknown ploidy. Data are presented as: number of inferred haplotypes (average percent gaps per 

haplotype). For Thalictrum pubescens, haplotypes are presented at both the 12X and 22X level. 

  PIS_3 PIS_4 
Species Ploidy Known Unknown Known Unknown 
T. thalictroides 2N=2X=14 1 (2.3) 1 (2.3) 1 (0.8) 1 (0.8) 
T. squarrosum 2N=6X=42 6 (3.3) 4 (3.1) 4 (3.9) 3 (3.2) 
T. macrostylum 2N=8X=56 8 (13.9) 5 (20.9) 4 (3.3) 4 (3.3) 

T. pubescens 2N=12X=84 or 
2N=22X=154 

12X: 11 (3.7) 
22X: 19 (3.3) 1 (1.5) 12X: 9 (2.3) 

22X: 15 (2.3) 1 (1.2) 

T. revolutum 2N=20X=140 10 (26.9) 4 (40.9) 5 (2.5) 3 (2.9) 
T. dasycarpum 2N=22X=154 13 (9.2) 3 (2.8) 14 (2.4) 2 (2.1) 
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FIGURES 

 

Fig. 1. Flowchart outlining the steps for haplotype inference using Fluidigm2PURC. 
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