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Comparison of computational methods for
imputing single-cell RNA-sequencing data

Lihua Zhang and Shihua Zhang

Abstract—Single-cell RNA-sequencing (scRNA-seq) is a recent breakthrough technology, which paves the way for measuring RNA
levels at single cell resolution to study precise biological functions. One of the main challenges when analyzing scRNA-seq data is the
presence of zeros or dropout events, which may mislead downstream analyses. To compensate the dropout effect, several methods have
been developed to impute gene expression since the first Bayesian-based method being proposed in 2016. However, these methods
have shown very diverse characteristics in terms of model hypothesis and imputation performance. Thus, large-scale comparison and
evaluation of these methods is urgently needed now. To this end, we compared eight imputation methods, evaluated their power in
recovering original real data, and performed broad analyses to explore their effects on clustering cell types, detecting differentially
expressed genes, and reconstructing lineage trajectories in the context of both simulated and real data. Simulated datasets and case
studies highlight that there are no one method performs the best in all the situations. Some defects of these methods such as scalability,
robustness and unavailability in some situations need to be addressed in future studies.

Index Terms—Single-cell RNA-sequencing technique, dropout event, imputation, algorithm, bioinformatics.
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1 INTRODUCTION

H IGH-throughput RNA sequencing technology has
been successfully applied to quantify transcriptome

profiling. However, it usually takes advantages of millions
of cells to quantify gene expression, which is insufficient for
studying heterogeneous systems, e.g. embryo development,
brain tissue formation and tumor differentiation. Single-cell
RNA-sequencing (scRNA-seq) technology was first reported
by Tang in 2009 [1], and gained widespread attentions until
2014 when the protocols become easily accessible. Current-
ly, many efficient sequencing technologies are constantly
emerging, such as Smart-seq, Dropseq, CEL-seq, SCRB-seq
and the commercial device 10X chromium3.

scRNA-seq has revealed distinct heterogeneous of indi-
vidual cells within a seemingly homogeneous cell popula-
tion or tissue, and provided insights into cell identity, fate
and function [2], [3]. Many computational methods from
traditional bulk RNA sequencing (bulk-RNAseq) data may
be useful for analyzing the scRNA-seq data. However, there
are some differences between them. One main difference
from bulk-RNAseq is that scRNA-seq takes each cell as a
sequencing library. However, the amount of mRNAs in one
cell is tiny (about 0.01-0.25pg), and it has up to one million
fold amplification. A low starting amount makes some
mRNAs are totally missed during the reverse transcription
and cDNA amplification step, and consequently cannot be
detected in the latter sequencing step. This phenomenon is
the so-called ‘dropout’ event, which suggests that a gene is
observed in one cell with moderate or high expression level,
but not detected in another cell [4], [5].

There are also missing values in bulk-RNAseq or mi-
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croarray data. Many imputation methods have been pro-
posed to address this issue [6], [7], [8]. For example, Kim et
al. proposed a local least squares imputation method named
LLSimpute [6], which imputes each missing value with a
linear combination of similar genes. However, these impu-
tation methods may be not directly applicable to scRNA-seq
data. As bulk-RNAseq measures the average gene expres-
sion, while scRNA-seq can detect gene expression at single
cell resolution. There would be more data fluctuation in
scRNA-seq than that in bulk-RNAseq. Moreover, scRNA-
seq data is much sparse than bulk-RNAseq data.

Considering the famous Netflix problem in the area of
recommendation system: as users only rate a few items, one
would like to infer their preference for unrated ones. Obvi-
ously, only a few factors affect an individual’s preference.
Thus, the user-rating data matrix should be in low-rank.
Interestingly, the single cell gene expression data matrix
should also be in low-rank as the limited cell subpopulation-
s and distinct homogeneity in a cell population. Thus, the
low-rank matrix completion method (Low-rank) [9], [10] can
also be applied to the scRNA-seq data imputation problem.

Several imputation methods designed specifically for
scRNA-seq data have been proposed in recent studies. BIS-
CUIT adopts a Dirchlet process mixture model to iteratively
normalize, impute data, and cluster cells by simultaneous-
ly inferring parameters of clustering, capturing technical
variations (e.g. library size), and learning cluster-specific
co-expression structures. Therefore, BISCUIT gives out a
normalized and imputed data matrix. However, BISCUIT is
a MCMC-based method, which costs lots of time to imple-
ment [11]. scUnif is a unified statistical framework for both
single cell and bulk RNA-seq data [12]. However, scUnif is
a supervised learning method and it needs predefined cell
type labels that are often unknown. MAGIC is a Markov
affinity-based graph imputation method, which weights
other cells by a Markov transition matrix [13]. However,
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it also imputes counts that are not affected by dropout.
Therefore, it may introduce new bias into the data and pos-
sibly eliminate meaningful biological variations. scImpute
separates genes into two gene sets for cell j (unreliable and
reliable categories: Aj , Bj) based on a dropout probabili-
ty, which is estimated by a mixture model [14]. scImpute
imputes Aj by treating Bj as gold-standard data. And a
weighted LASSO model is used on genes in Bj across other
cells to find similar cells. Then Aj is imputed by a linear
regression model with the most similar cells. scImpute could
distinguish the dropout zeros and real zeros. However,
scImpute assumes that each gene has an overall dropout
rate, while it has been verified that the dropout rate of a
gene is dependent on many factors such as cell types, RNA-
seq protocols [4]. LASSO tends to select just one cell if there
are many cells highly correlated with cell j [15], which may
ignore some useful information. DrImpute is an ensemble
method, which is designed based on a consensus clustering
method [16] for scRNAseq data. In other words, it performs
clustering for many times and conducts imputation by the
average value of similar cells [17]. SAVER is a global method
[18], which recovers the true expression for each gene in
each cell by a weighted average of the observed count and
the predicted value. The predicted value is estimated by
the observed expression of some informative genes in the
same cell. We summarize these methods in Table 1. They
can be classified into two categories according to wether it is
a Bayesian-based method. BISCUIT, scUnif and SAVER are
three Bayesian-based ones. They can also be categorized into
local or global methods according to how the imputation
information is used from the observed data. MAGIC, Low-
rank, BISCUIT, scUnif and SAVER are global methods, while
the remaining ones including LLSimpute, scImpute and
DrImpute are local ones.

In this paper, we comprehensively compared and evalu-
ated these imputation methods with both simulated and real
data. The rest of this paper is organized as follows. In section
2, we describe more details about the eight imputation
methods, datasets used in this study, and the evaluation
strategies employed to make comparison. In section 3, we
present the performance of these imputation methods ex-
tensively. In section 4, we summarize this study and discuss
potential directions for imputing scRNA-seq data in future.

2 METHODS AND MATERIALS

2.1 Method details

In the followings, the eight imputation methods are de-
scribed in detail. The observed gene expression data of m
genes across n cells is denoted as G ∈ Rm×n, which is
obtained from the normalized gene count data (see 2.5).
LLSimpute is designed based on a linear regression model,
which divides cells into two groups (Ci and Di) for gene i.
Ci stores cells in need of imputation (i.e., Ci = {a|G(i, a) =
0}), while cells in Di have reliable gene expression. Suppose
there are q missing values for gene i, it finds the K-
nearest neighbor gene vectors for gene i based on values
in Di, which is represented as GKi,Di ∈ RK×(n−q). Let
Gi,Di ∈ R1×(n−q) denote gene expression of gene i across

cells in Di, and Gi,Di
is represented as a linear combination

of rows of GKi,Di
by:

minx

∥∥∥GKi,Di

Tx−Gi,Di

∥∥∥
2
.

Then the missing values of gene i denoted by Gi,Ci
are

imputed by GKi,Ci

Tx, where GKi,Ci
represents gene ex-

pression values of genes Ki across cells Ci.
Low-rank method adopted here [9] supposes that gene

expression matrix X without dropout events is low-rank
and can be approximated by its nuclear-norm, which is its
convex envelope. The model is summarized as follows,

minX‖X‖∗
s.t. ‖XΩ −G‖2F ≤ δ,

where X is the imputed gene expression matrix, G is the
observed one, Ω is the observed space, and δ is error
tolerance between the imputed data and the observed one.

BISCUIT is the first approach specially designed for
scRNA-seq imputation. Let X ∈ Rm×n denote the log-
transformed count matrix with pseudo count 1. BISCUIT
assumes that each gene expression vector xj of each cell
j follows a Gaussian distribution and the likelihood of xj
is xj ∼ N(αjµk, βjΣk), where αj , βj are cell-dependent
scaling factors, µk, Σk are the mean and covariance of
the kth mixture component, respectively. The conjugate
prior of each µk is normal, Σk is Wishart, αj is normal,
and βj is Inverse-gamma. The ideal gene expression of
cell j after removing technical variations is denoted as x̄j ,
x̄j ∼ N(µk,Σk), which is the jth column of the recovered
matrix X̄ by BISCUIT.

scUnif is a unified framework and it incorporates single
cell and bulk data together to obtain more accurate expected
relative expression level E ∈ Rm×k, where m represents the
number of genes, k denotes the number of cell types, and
the sum of each column of E is 1. We merely depict the
model on scRNA-seq data due to the lack of corresponding
bulk-RNAseq data. The gene expression vector for each
cell j denoted as G.j is assumed to follow a multinomial
distribution with probability vector pj and the number trials

Rj , which approximates sequencing depth (Rj =
m∑
i=1

Gij).

The ith entry of pj is computed as follows,

pij =
Ei,Tj

Sij
m∑
i=1

Ei,Tj
Sij

,

where S is a binary variable which represents dropout sta-
tus and follows a Bernoulli distribution with the observed
probability πij of gene i in a single cell j. πij is modeled as a
logistic function of expected relative expression Ei,Tj

as fol-
lows, πij = logistic(κj + τjEi,Tj

), where Tj ∈ {1, 2, . . . , k}
is the cell type of cell j, κj and τj are parameters following
κj
i.i.d.∼ N(µκ, σ

2
κ), τj

i.i.d.∼ N(µτ , σ
2
τ ) for j = 1, 2, . . . , n and

µκ, σκ, µτ , στ are parameters. Finally, the expected relative
expression profile E is inferred by scUnif. Therefore, the
dropout value of gene i in a single cell j is imputed by the
multiplication of Ei,Tj

and sequencing depth of cell j.
SAVER models the observed count value of gene i in

a single cell j by Gij ∼ Poisson(sjX̂ij), where sj is a cell-
specific size factor and X̂ij is the normalized true expression
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level of gene i in cell j. X̂ij is recovered with the help of µij
with a dispersion parameter φi, where µij is predicted from
the expression of other genes in the same cell. To account for
the recovery uncertainty, a Gamma prior is placed on X̂ij :
X̂ij ∼ Gamma(αij , βij), where αij and βij are the reparam-
eterization of µij and φi. Then the posterior distribution of
X̂ij is also gamma distributed and the posterior mean is:

Xij =
sj

sj + β̂ij
· Gij
sj

+
β̂ij

sj + β̂ij
· µij .

MAGIC leverages the shared information of similar cells
to impute missing values. Firstly, MAGIC computes cell-
cell distance matrix denoted as Ddist based on Euclidian
distance. Then it convertsDdist to an affinity matrix F using
an adaptive Gaussian kernel. After that, MAGIC transforms
F to a Markov transition matrix M by symmetrizing and
normalizing each row of F . Finally, MAGIC obtains im-
puted data matrix X by information flows from similar

cells in terms of X(i, j) =
n∑
k=1

G(k, j)×M t(i, k), where G

is the observed gene expression matrix, and t represents
the diffusion time. Smaller t could not capture effective
gene structure information, while larger t will result in
over-smoothing and loss of information after imputation.
Therefore, choosing an optimal diffusion time t is a key
component of MAGIC.

scImpute models the expression levels of gene i as the
following mixture model fGi(x) = λiGamma(x;αi, βi) +
(1 − λi)Normal(x;µi, σi), where λi represents gene’s
dropout rate, αi, βi are parameters of Gamma distribu-
tion, and µi, σi are parameters of normal distribution. The
dropout probability is computed as follows,

dij =
λ̂iGamma(Gij ; α̂i, β̂i)

λ̂iGamma(Gij ; α̂i, β̂i) + (1− λ̂i)Normal(Gij ; µ̂i, σ̂i)
.

Then scImpute divides genes for each cell j into Aj :
{i : dij ≥ t} and Bj : {i : dij < t}, and genes in Aj are treated
as dropout genes in cell j, while genes in Bj are thought to
have accurate values. scImpute imputes dropout values cell by
cell. It constructs a weighted lasso regression model on gene
expression of Bj to select similar cells. Then gene expression
of Aj is imputed by the ordinary least square linear regression
model on similar cells. The threshold value t is a key parameter
of scImpute.

DrImpute computes the distance of cells using Spearman
and Pearson correlations. Then it performs K-means clustering
on the first 5% principal components of similarity matrix con-
verted from the distance matrix with varied cluster number
k. Therefore, clustering results C1, C2, . . . , C2k are obtained,
where the first k clusters are based on Spearman correlation
distance and the last k clusters are based on Pearson correla-
tion distance. The expected value of the dropout is computed
by E(xij |Cl) = mean(xij |xij are in the same cell group in
clustering Cl). Finally, DrImpute imputes the dropout value
by averaging the multiple expected values across all clustering
results.

2.2 Evaluation strategies
We evaluate the performance of imputation methods from two
angles. Firstly, the imputed value should be similar to the
original value, which can be evaluated in the formation of mean
squared error (MSE) and Pearson correlation coefficient (PCC).
Secondly, a good recovery method should preserve the biolog-
ical structures of the data (e.g. cell-type clusters, differently

expressed genes (DEGs), and cell differentiation directions).
Methods of dimension reduction, clustering, detecting DEGs,
and reconstructing pseudotime trajectory for analyzing scRNA-
seq data have been developed [4], [16], [19], [20], [21], [22],
[23], [24]. Some of these methods consider or impute dropout
events, while others do not. In this study, we compared meth-
ods considering dropout events or not to study the impact of
imputation methods on scRNA-seq analyses.

High level of noise in both technical and biological aspects
with large gene or cell dimensions makes scRNA-seq data
analyses difficult. Thus, dimension reduction is essential for
data visualization and analysis. PCA [25] and tSNE [26] are two
commonly used dimension reduction methods. Recently, Zero
Inflated Factor Analysis (ZIFA) has been developed to reduce
dimensions of scRNA-seq data, which considers dropout events
by modeling dropout rate [19]. CIDR is a dimension reduction
and clustering method, which incorporates imputation proce-
dure meanwhile [20]. However, the imputation value of a gene
in a cell is dependent on another cell it pairs up. In this study,
we visualized data by PCA, tSNE, ZIFA and CIDR.

De novo discovery of cell-type clusters is one of the most
promising application of scRNA-seq. SC3 is a consensus clus-
tering method with a series of ranks based on spectral clus-
tering for analyzing scRNA-seq data [16]. This method does
not address the dropout events. A multi-kernel learning based
method named SIMLR has been suggested to be robust to
dropout events, which also doesn’t consider to addressing
dropout events [21]. We implement SC3, SIMLR and k-means
with the first two tSNE dimensions (tSNE+kmeans) on raw
data, original data (if available), and imputed data, respectively.

The negative binomial model fits bulk-RNAseq data very
well and several statistical methods have been designed based
on this model. For example, edgeR is one of such methods de-
signed for differential expression analysis [27]. However, a raw
negative binomial model does not fit single cell read count data
well due to dropout. Zero-inflated negative binomial models
have been proposed (e.g. SCDE, MAST) for detecting DEGs
from scRNA-seq data [4], [22]. SCDE models gene-specific
expression with the mixture of a poisson and negative binomial
model, and provides the posterior probability of being DEG for
each gene between two biological conditions [4]. MAST uses
a Gaussian generalized linear model describes expression con-
dition on non-zero expression and tests differential expression
rate between groups [22]. We detected DEGs by edgeR on raw
data, original data (if available) and imputed data, and MAST,
SCDE on raw data respectively.

scRNA-seq has already been used to study cellular transi-
tions between different states. Monocle 1 and Monocle 2 are two
widely used methods to deduce the underlying developmental
trajectories [23], [24]. However, it does not address dropout. In
this study, we applied Monocle 1 and Monocle 2 on raw data
and imputed data respectively.

2.3 Simulated datasets
Splatter and PowsimR are two R Bioconductor packages pro-
posed recently for reproducible and accurate simulation of
scRNA-seq data [28], [29]. PowsimR is designed to simulate and
evaluate differential expression for bulk and single cell RNA-
seq data. Here we adopted Splatter to generate five scRNA-
seq datasets including single or multiple cell populations, cells
along a differentiation path, and cells in various batches with
predefined or estimated parameters (Table 2). Firstly, we simu-
lated an observed count matrix with 1000 genes and 100 cells
in a single population (dataset 1), and set the dropout.shape
parameter ranging from 0.05 to 0.25 in step of 0.05 resulting
in data with increasing dropout ratios. Then we simulated two
datasets with multiple subpopulations. One dataset (dataset 2)
was of small size with 150, 50, 50 cells in each group and the
left parameters were as follows, nGenes = 500, mean.shape =
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TABLE 1
Summary of the eight imputation methods

Designed for single cell Local or global Beyesian method Need other information Imputation strategy
LLSimpute N local N No. of nearest genes 1

Low-rank N global N error tolerance δ 2
BISCUIT Y global Y dispersion parameter 1 and 2

scUnif Y global Y cell labels 2
MAGIC Y global N diffusion time 2

scImpute Y local N dropout rate cutoff 2
DrImpute Y local N cluster numbers 2

SAVER Y global Y size factor 1

Strategy 1 represents imputing dropout based on co-expressed or similar genes, while strategy 2 denotes imputing
dropout by borrowing information from similar cells.

TABLE 2
Summary of both simulated and real datasets used for systematic evaluation

Simulated data Real data
Dataset 1 2 3 4 5 mECS Mouse IFE

Data size 1000*100 500*200 1000*1000 1000*100 2000*100 8989*182 26165*1529
Cell clusters 1 3 6 a path 2 (batch effects) 3 a path (3 stages)

0.3, mean.rate = 0.02, de.prob = c(0.05, 0.02, 0.03), de.facLoc
= 0.1, and de.facScale = 0.4. Another one (dataset 3) was of
large size and the parameters were: nGenes = 1000, groupCells
= c(240, 120, 100, 20, 370, 150), de.facLoc = 0.1, and de.facScale
= 0.4. Moreover, we simulated a dataset (dataset 4) with 1000
genes and 100 cells. The cells were generated along a differ-
entiation path with default parameters. Finally, we simulated
a dataset (dataset 5) with 2000 genes and 100 cells with two
groups in two batches with group.prob = c(0.5, 0.5) and other
default parameters.

2.4 Real datasets
We adopted two real biological single cell datasets for this
evaluation study (Table 2). The mESC dataset was obtained
from a controlled study that explored the effect of cell cycle on
gene expression level of individual mouse embryonic stem cells
(mESCs) [30]. This data has been used for visualizing, reducing
dimensions and clustering single cells in a previous study [21].
We obtained the preprocessed data by this study and there were
182 mouse embryonic stem cells (mESCs) in three cell cycle
stages (G1, S and G2M) marked by fluorescence-activated cell
sorting [30].

The mouse IFE data was obtained from Gene Expression
Omnibus with GSE67602. This data consists of 25932 genes
and 536 cells, which were used to reconstruct interfollicular
epidermis (IFE) cell differentiation in a previous study [31]. We
removed genes that were expressed in less than 5 cells, and
kept 13689 genes in the final dataset.

2.5 Data preprocessing
For all datasets except the mouse IFE data, if a gene was
expressed in less than two cells, it was removed. We normalized
the count values by a global normalization method with being
divided by library size and multiplied by mean library size
across cells. Then the normalized values were log-transformed.
scImpute, BISCUIT and scUnif can process this transformation
automatically.

3 RESULTS

3.1 Recover gene expression of a homogenous cell
population
We applied the eight methods to the simulated dataset 1, which
is a homogenous data with varying ratios of dropout events.
We can clearly see that the MSE values increase and PCC values

decrease with the ratio of dropout events increasing. Low-rank
shows the best performance than other methods with the small-
est MSE and the largest PCC values. scUnif and LLSimpute also
have better performance, while scImpute has large fluctuations
when the ratio of dropout events increases (Figure 1A and 1B).
We compared the imputed data with the original one in zero
and non-zero spaces respectively on the data with dropout.shape
= 0.05 (Figure 1C). In the zero space, LLSimpute and Low-
rank recover values similar to the original ones. While scImpute
imputes the missing values with distinct dispersion. There is a
clear linear relationship between the imputed values of scUnif
and the original ones. And the imputed values of scUnif is
smaller than the corresponding original ones. That is because
the imputed value equaled the multiplication of the relative
profile and the sequencing depth of the corresponding cell,
which is usually unknown and estimated by the sum of raw
counts of the corresponding cell. As the existence of dropout,
the estimated sequencing depth is lower than the real one.
The imputed value of dropout are near zeros by the remaining
methods on this data. Among these methods, Low-rank, MAG-
IC, BISCUIT and SAVER could change the observed values in
principle. scImpute may change some observed values, whose
dropout probability are smaller than a certain threshold. In the
observed non-zero space of the homogenous data, Low-rank,
MAGIC and SAVER can recover the original values well, while
BISCUIT recovers them with some fluctuations.

3.2 Recover gene expression of the heterogenous
scRNA-seq data
We simulated two heterogenous scRNA-seq data with small
size (dataset 2) and large size (dataset 3) respectively. LL-
Simpute shows the largest MSE and the smallest PCC values
among all methods on datasets 2 and 3. LLSimpute imputes
many true near zero values with large ones. These phenomenon
demonstrates that LLSimpute is not applicable to scRNA-
seq data directly due to the existence of heterogeneity and
sparsity. DrImpute, scImpute, scUnif (given label information),
SAVER and Low-rank have better performance in terms of MSE
and PCC values (Figure 2A and 2B; Figure 3A and 3B). The
Bayesian-based methods took more time to conduct compu-
tation (Figure 2C and Figure 3C). Since the negative values
imputed by LLSimpute, Low-rank, MAGIC and BISCUIT are
meaningless, we set these values to be zeros. BISCUIT and
SAVER impute the dropout events by near zero values. In the
observed non-zero space, MAGIC and BISCUIT estimate the
observed values with relatively large fluctuations, while other
methods recover them well.
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C

BA

Fig. 1. Direct evaluation of the eight imputation methods on simulated dataset 1. (A) MSE values varies across various dropout ratios. (B) PCC
values of all single cell pair computed between the imputed data and the original one. (C) Density plot of the imputed values versus the original
ones in the zero space (top) and the observed non-zero space (bottom), respectively.

A B C

D

Fig. 2. Direct evaluation of the eight imputation methods on simulated dataset 2. (A) MSE values of each imputation method. (B) PCC values of all
single cell pair computed between the imputed data and the original one. (C) Computational time (seconds) of running each imputation method. (D)
Density plot of the imputed values versus the original ones in the zero space (top) and the observed non-zero space (bottom), respectively.
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A B C

D

Fig. 3. Direct evaluation of the eight imputation methods on simulated dataset 3. (A) MSE values of each imputation method. (B) PCC values
of all single cell pair computed between each cell of the imputed data and the original one. (C) Computational time (seconds) of running each
imputation method. (D) Density plot of the imputed values versus the original ones in the zero space (top) and the observed non-zero space
(bottom), respectively.

A

B C D E

F G

Fig. 4. Performance of the eight imputation methods on simulated dataset 5. (A) Density plot of the imputed values versus the original ones in the
zero space (top) and the observed non-zero space (bottom), respectively. (B) PCA visualization of the raw data and the original one with groups
represented by different colors and batches denoted by different shapes. (C) MSE values of each imputation method. (D) PCC values of all single
cell pair computed between the imputed data and the original one. (E) Computational time (seconds) of running each imputation method. (F)
Clustering performance of the eight imputation methods on simulated dataset 5. (G) Performance of detecting DEGs.
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We also simulated a heterogenous scRNA-seq data (dataset
5) with batch effect. By PCA visualizing, we can see that the
cells in this raw data are mixed together, while the cells in
the full data are separated due to batch effects. Interestingly,
the batch effects are stronger than group effects with the for-
mer represented as the first component, while another as the
second component (Figure 4B). Low-rank performs the best
on this data with the largest PCC and smallest MSE values.
Both imputation methods recover non-zero values well (Figure
4A). This might because that many similar cells were clustered
together as illustrated by PCA visualization on the normalized
data. However, BISCUIT and SAVER might fail to capture batch
effect.

3.3 Imputation methods demonstrate diverse ability in
preserving data structures
Proper imputation of dropout values should preserve the un-
derlying data structures. We assessed the imputation meth-
ods in several indirect ways including dimension reduction,
cell-type clustering, DEG detection and pseudotime trajectory
reconstruction. CIDR and ZIFA are two dimension reduction
methods, which can address dropout events directly. Compared
with CIDR and ZIFA, we visualized the raw data, original data
and imputed data by PCA (Figure 5). Low-rank, scImpute,
DrImpute, scUnif and SAVER outperform other methods and
are consistent with patterns of real data in the first two PC
dimensions. Though ZIFA has more divergent clusters than
other methods, it is far from real data in the low dimensional
space, which might introduce new noise. As the clusters of
simulated dataset 3 is not separable in the first two principle
components, we also visualized dataset 3 with tSNE. Low-rank,
scImpute, DrImpute, scUnif and SAVER still discover different
clusters. Interestingly, Low-rank gets the most similar structure
with that in the real data in the low-dimensional space (Figure
6B).

Identifying cell subpopulations is a key application of
scRNA-seq and some clustering methods may fail due to the
existence of dropout events. SC3 and SIMLR have been devel-
oped for clustering scRNA-seq data, and both of them do not
address dropout events directly. We evaluated the effectiveness
of these imputation methods with impacts on the clustering
performance of SC3, SIMLR and k-means with the first two
tSNE dimensions (tSNE+kmeans). The clustering performance
was assessed by the normalized mutual information (NMI)
[32], Jaccard index, purity, and adjusted rand index (ARI). SC3
shows better performance than SIMLR and tSNE+kmeans on
simulated datasets 2 and 3. As the first two tSNE components
capture little information of the simulated dataset 2 (Figure
6A), tSNE+kmeans has a worse clustering performance. Low-
rank, scImpute, DrImpute, scUnif and SAVER improve the
clustering performance of SC3 on simulated datasets 2 and
3. In the simulated dataset 2, scUnif and scImpute have the
best performance, but scUnif needs cell labels information in
advance. Low-rank and DrImpute also have better performance
(Figure 7). In the large simulated dataset 3, Low-rank, scImpute,
DrImpute, scUnif and SAVER also enhance the clustering per-
formance of SIMLR and tSNE+kmeans. Interestingly, SIMLR
and tSNE+kmeans applied to the imputed data by Low-rank,
scImpute, DrImpute, scUnif and SAVER have better perfor-
mance than CIDR (Figure 8). However, CIDR outperforms both
of these clustering methods even on the real data on simulated
dataset 5 (Figure 4F).

To evaluate the robustness of imputation methods, we
down-sampled 50 cells at random on simulated dataset 2 with
five repetitions. We clustered the down-sampled cells with
or without imputing the dropout events by SC3, SIMLR and
tSNE+kmeans respectively. The clustering performance show
that scUnif has the best robustness, while scImpute is not as
good as that of using all cells (Figure 9).

A

B

Fig. 5. PCA visualization of the reduced dimensions of the eight imputa-
tion methods on simulated datasets 2 (A) and 3 (B).

A

B

Fig. 6. tSNE visualization of the reduced dimensions of the eight impu-
tation methods on simulated datasets 2 (A) and 3 (B).

Detecting DEGs is also an important downstream analy-
sis of scRNA-seq data. We assessed the recovery power of
imputation methods in identifying DEGs from the raw data.
We can see that MAST has the worst performance compared
to other methods in these two simulated datasets 2 and 3.
scImpute, DrImpute and scUnif slightly enhance the perfor-
mance of edgeR in detecting DEGs, which are better than MAST
and SCDE. edgeR has similar performance on raw data with
Low-rank, BISCUIT and SAVER on the imputed data. SCDE
demonstrate the best AUPR value than other methods (Figure
10). Moreover, the imputation methods have no advantages on
improving the performance of edgeR on the simulated dataset
3 (Figure 11). DrImpute and BISCUIT have better performance
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Fig. 7. Clustering performance of the eight imputation methods on simulated dataset 2.

Fig. 8. Clustering performance of the eight imputation methods on simulated dataset 3.

than other methods, while LLSimpute and MAGIC have the
worst performance on simulation dataset 3. Interestingly, im-
putation methods except MAGIC and BISCUIT enhance the
sensitivity of edgeR in detecting DEGs, while these methods
have smaller AUPR values than those of MAGIC and BISCUIT
(Figure 4G).

scRNA sequencing has already shown its power in re-
constructing developmental trajectories [33]. We employed the
simulated dataset 4 with a path and no branches to compare the
impacts of imputation methods on inferring pseudotime order.
As LLSimput imputed data does not satisfy the requirement
of Monocle 2, we did not show the pseudotemporal order of
it. scImpute and SAVER have more consistent trajectories with
that constructed in the original data (Figure 12). The measur-

able indicator of order conformity (named as order correlation)
is defined as C/(Nc + C), where C represents the number
of similar orders between the pseudotime and gold standard
orders, and Nc denotes the number of dissimilar orders. scIm-
pute, DrImpute and SAVER improve the power of Monocle 2
in ordering cells along a trajectory in terms of this index. We
down-sampled 50 cells randomly for five repetitions, imputed
them by these imputation methods and inferred trajectories
with or without imputing the dropout events. We can see that
Low-rank has the largest order correlations than those of other
methods, enhancing the power of Monocle 2 by imputing the
dropout events. Moreover, MAGIC has the worse performance
when we randomly selected some cells to infer a trajectory.

In summary, Low-rank, scImpute, DrImpute, scUnif and
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Fig. 9. Clustering performance of the eight imputation methods on the down-sampled cells of simulated dataset 2.

A

B

Fig. 10. Performance of detecting DEGs on simulated dataset 2.

SAVER have better performance in dimension reduction and
cell clustering, which are even better than CIDR. scImpute,
DrImpute and SAVER improves the performance of Monocle
2 in reconstructing pseudotime. However, these imputation
methods have no significant improvement for edgeR in de-
tecting DEGs. Only scImpute, DrImpute and scUnif slightly
enhance this performance on simulated dataset 2.

3.4 Imputation methods provide more potential DEGs
In the mECS real data, the 182 mESC cells consist of 59 cells in
G1 phase, 58 cells in S phase and 65 cells in G2/M phase. Firstly,
BISCUIT and SAVER impute zeros with near zero values, while
LLSimpute and scImpute impute zeros with relatively large
values. We compared true values with recovered ones by Low-
rank, MAGIC, BISCUIT and SAVER, which will change the
values in the observed space in principle (Figure 13B). Low-
rank and SAVER recover the observed values well, while MAG-

A

B

Fig. 11. Performance of detecting DEGs on simulated dataset 3.

IC and BISCUIT change the observed ones in some degree.
However, MAGIC improves the clustering performance of SC3.
BISCUIT enhances the power of SC3 in clustering slightly.
tSNE+kmeans has better clustering performance on DrImpute
imputed data than on the raw data, and even better than CIDR,
which addresses dropout events directly. edgeR on LLSimpute
imputed data tends to treat each genes as a DEG, which is
fallacious (Figure 13D). There are 332 DEGs by SCDE with
q-value < 0.05, which are included in the DEG set of edgeR
on Low-rank imputed data. We downloaded mouse cell cycle
stage-specific maker genes from a previous study [31], which
includes 43 (31) and 54 (51) marker genes of G1/S and G2/M
(in the processed data) respectively.

The DEGs of SCDE is significantly enriched with the G1/S
and G2/M marker genes using Fisher’s exact test with FDR
< 0.05. However, only PLK1 is regarded as DEG by SCDE
with FDR < 0.01. The activity of PLK1 is indeed regulated
by cell cycle, which is in low activity during interphase but

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2017. ; https://doi.org/10.1101/241190doi: bioRxiv preprint 

https://doi.org/10.1101/241190
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

A

C

D

B

Fig. 12. Performance of reconstructing pseudotime order of scRNA-seq data using imputation methods or not on simulated dataset 4. (A)
Visualization of the inferred trajectory using each method. Each dot represents a cell. Cells with higher values are in more differentiated states. (B)
Order correlation of pseudotime inferred from Monocle 2 on the raw data, original data, and imputed data with golden standard pseudotime. (C)
Computational time (seconds) of running each imputation method. (D) Boxplot of order correlation of five repetitions with 50 cells.

high during mitosis [34]. MAGIC enhances the enrichment of
marker genes with higher fold-changes (Figure 13E). There
are six G2/M marker genes detected by eageR on MAGIC
imputed data but ignored by SCDE. These genes indeed have
higher count level in G2 cells recovered by MAGIC (Figure 14).
The Bayesian-based imputation methods are still more time-
consuming than other methods (Figure 13F).

Fig. 14. Violinplot of the imputed count values of G2/M marker genes,
which are detected by edgeR using MAGIC imputed data but ignored by
SCDE.

3.5 Imputation methods improve the reconstruction of
epidermal differentiation process
The great regenerative capacity of murine epidermis and its
appendages enable it to be an invaluable model system for

stem cell biology. Recently, the cellular heterogeneity of the
adult mouse epidermis has been examined using scRNA-seq.
The pseudotemporal order of IFE cells has been obtained by
a minimum spanning tree-based method in tSNE space [31].
Applied imputation methods to this dataset, we can see that
BISCUIT still imputes zeros with near zero values in this data.
MAGIC and SAVER recover non-zero values with large devi-
ation, while BISCUIT recover non-zero values well, indicating
that there is small technical variation detected by BISCUIT in
this data (Figure 15A and 15B).

We inferred the pseudotime of individual cells by Monocle
1 [23] and Monocle 2 [24] on the raw data and imputed
data respectively. The transcribed repetitive elements (i.e., gene
name stated with ”r ”) were removed from the gene list. The
trajectory reconstructed on the raw data and imputed data
by these imputation methods except Low-rank and scUnif are
more consistent with the one inferred by the spanning tree
model visually [31]. Based on the order correlation, MAGIC,
BISCUIT and SAVER preserve the differentiation direction well,
which starts from IFE basal cells to IFE differentiated cells, then
arrives at IFE keratinized layer (Figure 15D). However, any im-
putation methods cannot enhance the performance of Monocle
2 due to its efficiency. Interestingly, Monocle 1 is not as effective
as Monocle 2 on the raw data. SAVER, Low-rank, scUnif and
scImpute improve the ability of Monocle 1 clearly (Figure 15E).
Therefore, the impact of imputing dropout events may rely on
the downstream analysis method. MAGIC and BISCUIT have
more reliable IFE differentiation process as the pseudotime
order of the known basal maker (Krt14), mature marker (Krt10),
terminally differentiated cell stage marker (Lor) and a transient
marker (Mt4) gradually vary along the trajectory within each
cluster than those of other imputation methods (Figure 16).
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Fig. 13. Performance of the eight imputation methods on the mESC data. (A) Boxplot of the imputed values of each method on the zero space.
(B) Density plot of the recovered values versus original ones in the observed non-zero space using Low-rank, MAGIC, BISCUIT and SAVER with
y-axis representing log-transformed observed non-zero values and x-axis denoting log-transformed recovered values. (C) Clustering performance
of CIDR on raw data and SC3, SIMLR, tSNE+k-means on raw data and imputed data in terms of NMI, Jaccard, Purity and ARI respectively. (D)
Heatmap of -log10(q) value of MAST, SCDE on raw data and edgeR on raw and imputed data for detecting DEGs. (E) Barplot of -log10(q) and
fold-change of Fishers exact test on the enrichment analysis of 82 G1/S, G2/M maker genes. (F) Computational time (seconds) of running each
imputation method.

4 CONCLUSION AND DISCUSSION

The main goal of this study is to provide a straightforward and
thorough comparison on the imputation methods for scRNA-
seq data. We systematically evaluated eight imputation meth-
ods including two for general incomplete data and six specially
designed for scRNA-seq data from multiple angles. We summa-
rized the impacts of eight imputation methods on the simulated
and real datasets (Table 3). Firstly, LLSimpute designed for
the bulk-RNAseq data performs well in a homogenous cell
population, but it fails when the data shows large heterogeneity
and sparsity, which are two key characteristics of scRNA-seq
data. Low-rank also performs well in datasets 1 and 5. It is
not affected by batch effect applying to all genes. Secondly,
scImpute and DrImpute recover the data well in simulated
datasets. However, they fail on the data with less collinearity
(e.g., mESC data). Thirdly, simulation study illustrates that BIS-
CUIT and SAVER tend to impute the dropout events with near
zero values. MAGIC and BISCUIT recover non-zero values with
large fluctuations. MAGIC shows better performance to help
to detect biomarkers in mouse mESC data. MAGIC designed
based on a Markov affinity-based graph could capture the grad-
ual variation of genes. Therefore, it enhances the performance
of Monocle 2 to reconstruct marker genes expression change

along differentiation process. However, it fails to improve the
ability of Monocle 1. These results demonstrate that the impacts
of imputing dropout events on downstream analysis depend on
the analysis methods.

Extensive studies highlight that there is no one method
performs the best in all situations. Current methods still have
some defects such as scalability, robustness and applicability
in some situations. With the rapid generation of large-scale
scRNA-seq data, imputation of dropout events is becoming a
basic and routine step in scRNA-seq data analysis. Therefore,
efficient methods and powerful tools for imputation are ur-
gently needed at present. Moreover, efficient information from
genes such as co-expressed networks should be used in future
studies.
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Monocle 1 on the raw data and imputed data with golden standard pseudotime. (F) Computational time (seconds) of running each imputation
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