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Abstract  19 
The main functions of primary sensory cortical areas are classically considered to be 20 
the extraction and representation of stimulus features. In contrast, higher cortical 21 
sensory association areas are thought to be responsible for combining these sensory 22 
representations with internal motivations and learnt associations. These regions 23 
generate appropriate neural responses that are maintained until a motor command is 24 
executed. Within this framework, responses of the primary sensory areas during task 25 
performance are expected to carry less information about the behavioral meaning of 26 
the stimulus than higher sensory, association, motor and frontal cortices. Here we 27 
demonstrate instead that the neuronal population responses in the early primary 28 
auditory cortex (A1) display many aspects of responses generally associated with 29 
higher-level areas. A1 activity was recorded in awake ferrets while they were either 30 
passively listening or actively discriminating two periodic click trains of different rates 31 
in a Go/No-Go paradigm. By applying population-level dimensionality reduction 32 
techniques, we found that task-engagement induced a shift in the nature of the 33 
encoding from a sensory-driven representation of the two stimuli to a behaviorally 34 
relevant representation of the two categories that specifically enhances the target 35 
stimulus. We demonstrate that this shift in encoding relies partly on a novel 36 
mechanism of change in spontaneous activity patterns upon engagement in the task.  37 
We show that this population-level representation of stimuli in A1 population activity 38 
bears strong similarities to responses in the frontal cortex, but appears earlier 39 
following stimulus presentation. Analysis of neural activity recorded in various Go/No-40 
Go tasks, with different sounds and reinforcement paradigms, reveals that this 41 
striking population-level enhancement of target representation is a general property 42 
of task engagement. These findings indicate that primary sensory cortices play a 43 
highly flexible role in the processing of incoming stimuli and implement a crucial 44 
change in the structure of population activity in order to extract task-relevant 45 
information during behavior.  46 
 47 
 48 
 49 
 50 
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Introduction 51 
  52 
How and where in the brain are sensory representations transformed into abstract 53 
percepts? Classical anatomical and physiological studies have suggested that this 54 
transformation occurs progressively along a cortical hierarchy. Primary sensory areas 55 
are commonly believed to process and extract high-level physical properties of 56 
stimuli, such as orientations of visual bars in the primary visual cortex or abstract 57 
sound features in the primary auditory cortex 1,2. These fundamental sensory features 58 
are then integrated and interpreted as behaviorally meaningful sensory objects in 59 
sensory scenes, and relayed to higher cortical areas, which extract increasingly task-60 
relevant abstract information. Prefrontal, parietal and premotor areas lie at the apex 61 
of the hierarchy 3,4. They integrate inputs from different sensory modalities, transform 62 
sensory information into categorical percepts and decisions, and store them in 63 
working memory until the time when the appropriate motor action needs to be 64 
executed 5,6. 65 
 66 
According to this classical feedforward picture, primary sensory areas are often 67 
considered as playing a largely static role in extracting and encoding high-level 68 
stimulus physical attributes 7–10. However a number of recent studies in awake, 69 
behaving animals have challenged this view, and shown that the information 70 
represented in primary areas in fact strongly depends on the behavioral state of the 71 
animal. Motor activity, arousal, learning and task-engagement have been found to 72 
strongly modulate responses in primary visual, somatosensory, and auditory cortices 73 
11–25. Effects of task-engagement have been particularly investigated in the auditory 74 
cortex, where it was found that receptive fields of primary auditory cortex neurons 75 
adapt rapidly to behavioral demands when animals engage in various types of 76 
auditory discrimination tasks 26–30. These observations have been interpreted as 77 
signatures of highly flexible sensory representations in primary cortical areas, and 78 
they raise the possibility that these areas may be performing computations more 79 
complex than simple extraction and transmission of processed stimulus features to 80 
higher-order regions. 81 
 82 
An important limitation of many previous studies 26–30 is that they relied mostly on 83 
single-cell analyses, which characterized the selectivity of individual neurons to 84 
sensory stimuli. Here we show that simple population analyses reveal that task-85 
engagement induces a shift in the primary auditory cortex from a sensory-driven 86 
representation to a representation of the behavioral meaning of stimuli, analogous to 87 
the one found in the frontal cortex. We first analyzed the responses during a temporal 88 
auditory discrimination task, in which ferrets had to distinguish between Go 89 
(Reference) and No-Go (Target) stimuli corresponding to click trains of different 90 
rates. The activity of the same neural population was recorded when the animals 91 
were engaged in the task, and when they passively listened to the same stimuli. Both 92 
single cell and population analyses showed that task-engagement decreased the 93 
accuracy of encoding the physical attributes of stimuli. Population, but not single-cell, 94 
analyses however revealed that task-engagement induced a shift towards an 95 
asymmetric representation of the two stimuli that enhanced target-evoked activity in 96 
the subspace of optimal decoding. This shift was in part enabled by a novel 97 
mechanism based on the change in the pattern of spontaneous activity during task 98 
engagement. 99 
 100 
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Performing identical analyses developed on this task to independent data sets 101 
collected in A1 during other behavioral discrimination tasks demonstrated that these 102 
findings can be well generalized, independently of the type of stimuli, behavioral 103 
paradigm or reward contingencies. Specifically, in all tasks, we found an enhanced 104 
representation of the target stimuli, defined as those stimuli that induced a change in 105 
          ’    g   g b   v   . Furthermore, in tasks that displayed a shift in the 106 
spontaneous firing rates of neurons, this task-adaptive encoding was partly mediated 107 
by a re-patterning of the population spontaneous activity, offering a functional 108 
interpretation for this previously observed phenomena of task-evoked changes in 109 
spontaneous activity 19.  110 
 111 
Finally, a comparison between population activity in A1 and single-cell recordings in 112 
the frontal cortex revealed strong similarities. However, the target-driven 113 
representation of behavioral meaning appeared in A1 very rapidly following stimulus 114 
presentation, hence it was unlikely to be solely due to immediate top-down influences 115 
from frontal cortex. Altogether, our results suggest that task-relevant, abstracted 116 
information is present in primary sensory cortices, and can be read out by neurons in 117 
higher order cortices. 118 
 119 
 120 
RESULTS 121 
 122 
 123 
Task engagement degrades the encoding of stimulus physical features in A1 124 
 125 
We recorded the activity of 370 units in the primary auditory cortex (A1) of two awake 126 
ferrets in response to periodic click trains. The animals were trained using a 127 
conditioned avoidance paradigm 26 to lick water from a spout during the presentation 128 
of a class of reference stimuli and to stop licking following a target stimulus (Animal 1: 129 
83% hit +/- 3% s.e.m; Animal 2: 69% hit +/- 5% s.e.m) (Fig. 1a; see Methods). Target 130 
stimuli thus required a change in the ongoing behavioral output while reference 131 
stimuli did not. Each animal was trained to discriminate low vs high click rates, but 132 
the precise rates of reference and target click trains changed in every session. The 133 
category choice was opposite in the two animals to avoid confounding effects of 134 
stimulus rates (low/high) and behavioral category (reference/target). Thus, the target 135 
for one ferret was high click train rates, and the target for the other ferret was low 136 
click train rates. In each session, the activity of the same set of single units was 137 
recorded during active behavior (task-engaged condition) and during passive 138 
presentations of the same set of auditory stimuli before and after behavior (passive 139 
conditions). 140 
 141 
We first examined how auditory cortex responses and stimulus encoding depended 142 
on the behavioral state of the animal. In agreement with previous studies 14,19, 143 
spontaneous activity often increased in the task-engaged condition, while stimulus-144 
evoked activity was often suppressed (Fig. 1b). To quantify the changes in activity 145 
over the population, we used a modulation index of mean firing-rates between 146 
passive and task-engaged conditions, estimated in different epochs (Fig. 1c; see 147 
Methods). Spontaneous activity before stimulus presentation increased in the 148 
engaged condition (n=370 units, P<0.0001), while baseline-corrected stimulus-149 
evoked activity did not change overall (n=370 units, P=0.94). These changes in 150 
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average activity suggested that the signal-to-noise (SNR) ratio between stimulus-151 
evoked and spontaneous activity paradoxically decreased when the animals 152 
engaged in the task. 153 
 154 
To quantify in a more refined manner the timing of neural responses with respect to 155 
click-times, we computed the vector strengths of individual unit responses, a 156 
standard measure of phase-locked activity evoked by click trains 12,31. Vector 157 
strengths quantify the amount of entrainment of the neural response to the clicks, 158 
and range from 1 for responses fully locked to clicks to 0 for responses independent 159 
of click timing. A vast majority of neurons (Passive Ref/Targ: 80%, 81% and Active 160 
Ref/Targ: 84%, 81%) displayed statistically significant vector strengths in both 161 
conditions. However vector strength decreased in the engaged condition compared 162 
to the passive condition (Fig. 1c; n=574 (287 units, 2 sounds), P<0.0001), 163 
independently of the rate of the click train and the identity of the stimuli (Fig. S1). This 164 
reduction in stimulus-entrainment further suggested that task engagement degraded 165 
the encoding of click-times in A1. 166 
 167 
The change in activity between passive and task-engaged conditions was 168 
heterogeneous across the neural population. While stimulus-entrainment was on 169 
average reduced in the engaged condition, a minority of neurons increased their 170 
responses. One possibility is that such changes reflect an increased sparseness of 171 
the neural code. Under this hypothesis, the stimuli are represented by smaller pools 172 
of neurons in the task-engaged condition, but in a more reliable manner. To address 173 
this possibility, we built optimal decoders that reconstructed click timings from the 174 
activity of all simultaneously recorded neurons, in a trial-by-trial manner (Fig. 1d, 175 
Methods). We found that the reconstruction accuracy decreased in the task-engaged 176 
condition compared to the passive condition (Fig. 1e-g), confirming that encoding of 177 
click-times decreased during behavior. 178 
 179 
In summary, the fine physical features of the behaviorally relevant stimuli became 180 
less faithfully represented by A1 activity when the animals were engaged in this 181 
discrimination task.  182 
 183 
 184 
During sound presentation target and reference stimuli can be equally 185 
classified from A1 responses in passive and engaged conditions  186 
 187 
In the task-engaged condition, the animals were required to determine whether the 188 
rate of each presented click train was high or low. They needed to make a categorical 189 
decision about the stimuli and correctly associate them with the required actions, 190 
before using that information to drive behavior. We therefore asked to what extent the 191 
two classes of stimuli could be discriminated based on population responses in A1, in 192 
the task-engaged and in the passive conditions. 193 
 194 
We first compared the mean firing-rates evoked by target and reference click trains. 195 
While some units elevated their activity for the target stimulus (Fig. 2a, left), others 196 
preferred the reference (Fig. 2a, right). Over the whole population, mean firing rates 197 
were not significantly different for target vs reference stimuli (Fig. 2b) or for low vs 198 
high rate click trains (Fig. S2a). This observation held in both passive and task-199 
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engaged conditions. Discriminating between the stimuli was thus not possible on the 200 
basis of population-averaged firing rates (see Fig. S2b). 201 
 202 

 203 

Fig 1.   
a. Structure of the click-train discrimination task and average behavior of the two animals. Each sound 
sequence is composed of 0.4s silence then a 1.25s long white noise burst followed by a 0.8s click train and a 
0.8s silence. On each block the ferret is presented with a random number (1-7) of reference stimuli (top) 
preceding a target stimulus (bottom), except on catch trials with no target presentations. On blocks 
including a target, the animal had to refrain from licking during the final 0.4s of the trial, the no go period, 
to avoid a mild tail shock. (error bars are +/- sem)  
b. PSTH of two example units during reference sequences in the passive and engaged state. Note that in the 
task-engaged state, the units show enhanced firing during the initial silent period of spontaneous activity 
and reduced phase locking to the stimulus.  
c. Modulation index of each unit for spontaneous firing rate, spontaneous-corrected click-evoked firing rate 
and vector strength showing higher spontaneous firing rates and lower vector strength in the task-engaged 
state. The vector strength was only calculated for units firing above 1 Hz and values for both reference and 
target are shown. SEM error bars are not shown because not visible at this scale: 0.017, 0.037 and 0.013 
respectively. (one-sample two-sided Wilcoxon signed rank test with mean 0, n=370, 574, 370, zval=-8.99, 
p=2.57e-19; zval=-0.07, p=0.94; zval=-8.82, p=1.16e-18; ***: p<0.001).  
d. Schematic of stimulus reconstruction algorithm. Using PSTHs from half of the trials, a time-lagged filter is 
fitted to allow optimal reconstruction of the stimulus for each individual unit. Individual reconstructions are 
summed to obtain a population reconstruction (far right).  
e. Stimulus reconstruction from an example session showing degraded reconstruction in the task-engaged 
state. 
f. Mean click reconstruction in passive and engaged states.  
g. Modulation index of each session for stimulus reconstruction error. SEM error bar is not shown because 
not visible at this scale: 0.0014. (one-sample two-sided Wilcoxon signed rank test with mean 0, n=36; zval=-
3.4092, p=6.51e-4; ***: p<0.001).  
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 204 
To take into account the heterogeneity of neural responses and quantify the ability of 205 
the whole population to discriminate between target and reference stimuli on an 206 
individual trial basis, we adopted a population-decoding approach. We used a simple, 207 
binary linear classifier that mimics a downstream readout neuron. The classifier takes 208 
as inputs the spike-counts of all the units in the recorded population, multiplies each 209 
input by a weight, and compares the sum to a threshold to determine whether a trial 210 
was a reference or a target. The weight of each unit was set based on the difference 211 
between the average spike-counts evoked by the two stimuli (Fig. S3 and Methods). 212 
This weight was therefore positive or negative depending on whether it preferred the 213 
target or reference stimulus. Different decoder weights were determined at every 214 
time-bin in the trial. The width of the time-bins (100ms) was larger than the inter-click 215 
intervals (Methods). Shorter time-bins increase the amount of noise but do not affect 216 
our main findings (Fig. S8A). Training and testing the classifier on separate trials 217 
allowed us to determine the cross-validated performance of the classifier, and 218 
therefore the ability to discriminate between the two stimulus classes based on 219 
single-trial activity in A1. 220 
 221 
During stimulus presentation, the linear readout could discriminate target and 222 
reference stimuli with high accuracy in both passive and task-engaged conditions 223 
(Fig. 2d,e). Because the classifier performed at saturation during the sound epoch, it 224 
could be that differences between passive and active classifiers were masked by the 225 
substantial number of neurons provided to the classifiers. Decoders performing with 226 
lower numbers of neurons did not reveal any difference between the two behavioral 227 
states (Fig. S4a). Moreover this discrimination capability did not appear to be layer-228 
dependent (Fig. S4b,c). The primary auditory cortex therefore appeared to robustly 229 
represent information about the stimulus class, independently of the decrease in the 230 
encoding of precise stimulus properties that occurs during task-engagement. 231 
 232 
We next examined the discrimination performance during the silence immediately 233 
after stimulus offset. This silent period consisted of a 400ms interval followed by a 234 
response window, during which the animal learned to stop licking if the preceding 235 
stimulus was a target. As during the sound period, mean firing rates were not 236 
significantly different for the two types of stimuli during post-stimulus silence (Fig. 2c). 237 
Nevertheless, we found that discrimination performance between target and 238 
reference trials remained remarkably high throughout the post-stimulus silence in the 239 
task-engaged condition. In the passive condition, the decoding performance decayed 240 
during post-stimulus silence, but remained above chance level (Fig. 2d,e and Fig. 241 
S5b). The information about the stimulus class was thus maintained during the silent 242 
period in the neural activity in A1, but more strongly when the animal was actively 243 
engaged in the task. Moreover, a comparison between the decoders determined 244 
during the sound and after stimulus presentation showed that the encoding of 245 
information changed strongly between the two epochs of the trial (Fig. S6 and 246 
supplementary text).  247 
 248 
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 249 
 250 

 251 
 252 
Task-engagement shifts encoding towards enhanced target-detection 253 
 254 
We next examined in more detail the neural activity that underlies the classification 255 
performance in the two conditions. Target and reference stimuli play highly 256 
asymmetric roles in the Go/No-Go task design studied here as their behavioral 257 
meaning is totally different. As shown in Figure 1a, animals continuously licked 258 
throughout the task and only target stimuli elicited a change from this ongoing 259 
behavioral output while reference stimuli did not. We therefore sought to determine 260 
whether target- and reference-induced neural responses play similar or different roles 261 
in the discrimination between target and reference stimuli. 262 
 263 

Fig 2  
a. PSTHs of two example units during reference (blue) and target (red) trials in the passive (top) and task-
engaged (bottom) state. The unit on the left is target-preferring and the unit on the right is reference-
preferring. 
b-c. Comparison of average firing rates on a log scale in passive (left) and engaged (right) between target 
and reference stimuli during the sound (b) and during the post-stimulus silence (c) periods. SEM error bars 
are not shown because not visible at this scale. (two-sided Wilcoxon signed rank, n=370; zval=0.34, p=0.73; 
zval=0.35, p=0.79; zval=-0.47, p=0.64; zval=-0.35, p=0.73)  
d. Accuracy of stimulus classification in passive and engaged states. In grey, chance level performance 
evaluated on label-shuffled trials. Error bars represent 1 std calculated over 400 cross-validations. 
e. Mean classifier accuracy during the sound (left) and silence period (right) in both conditions. Gray dotted 
lines give 95% confidence interval of shuffled trials. Error bars represent 95% confidence intervals. (n=400 
cross validations; p=0.29 and p<0.0025; **: p<0.01)  
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We first used dimensionality-reduction techniques to visualize the trajectories of the 264 
population activity in three dimensions (Fig. 3a, see Methods for details). The three 265 
principal dimensions were determined jointly for the passive and active data. This 266 
allowed us to visually inspect the difference in population dynamics and decoding 267 
axes between the two behavioral conditions. The average neural trajectories on 268 
reference and target trials strongly differ in the two behavioral conditions. In the 269 
passive condition, reference and target stimuli led to approximately symmetric 270 
trajectories around baseline spontaneous activity, suggesting that reference and 271 
target stimuli played essentially equivalent roles during the sound (Fig. 3a,c,d). In 272 
contrast, in the task-engaged condition, the activity evoked by reference and target 273 
stimuli became strongly asymmetric with respect to the decoding axes and the 274 
spontaneous activity (Fig. 3b,e,f). 275 
 276 
To further characterize the change in information representation between the two 277 
conditions, we examined the average inputs from target and reference stimuli to a 278 
hypothetical readout neuron corresponding to a previously determined linear 279 
classifier. This is equivalent to projecting the trial-averaged population activity onto 280 
the axis determined by the linear classifier, trained at a given time point in the trial. 281 
This procedure sums the neuronal responses after applying an optimal set of 282 
weights. It effectively reduces the population dynamics from N=370 dimensions 283 
(where each dimension represents the activity of an individual neuron) to a single, 284 
information-bearing dimension. The discrimination performance of the classifier is 285 
directly related to the distance between reference and target activity after projection, 286 
so that the projection allows us to visualize how the classifier extracts the stimulus 287 
category from the neuronal responses to the two respective stimuli. Projecting the 288 
spontaneous activity along the same axis provides moreover a baseline for 289 
comparing the changes in activity induced by the target and reference stimuli along 290 
the discrimination axis. As the encoding changes strongly between stimulus 291 
presentation and the subsequent silence (Fig. S6 and supplementary text), we 292 
examined two projections corresponding to the decoders determined during stimulus 293 
and during silence.  294 
 295 
As suggested by the three-dimensional visualization, the projections on the decoding 296 
axes demonstrated a clear change in the nature of the encoding between the two 297 
behavioral conditions. In the passive condition, reference and target stimuli led to 298 
approximately symmetric changes around baseline spontaneous activity (Fig. 3c,d). 299 
In contrast, in the task-engaged condition, the activity evoked by reference and target 300 
stimuli became strongly asymmetric (Fig. 3e,f). In particular, the projection of 301 
reference-evoked activity remained remarkably close to spontaneous activity 302 
throughout the stimulus presentation and the subsequent silence in the task-engaged 303 
condition. The strong asymmetry in the engaged condition, and the alignment of 304 
reference-evoked activity were found irrespective of whether the projection was 305 
performed on decoders determined during stimulus (Fig. 3e,f, top) or during silence 306 
(Fig. 3e,f, bottom). The time-courses of the two projections were however different, 307 
with target-evoked responses rising very rapidly (Fig. 3e,f top) when projected along 308 
the first axis, but much more gradually when projected along the second axis (Fig. 309 
3e,f, bottom). In both cases, however, our analysis showed that in the active 310 
condition the discrimination performance relies on an enhanced detection of the 311 
target.  312 
 313 
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The strong similarity between the projection of reference-evoked activity and the 314 
baseline formed by the projection of spontaneous activity is not due to the lack of 315 
responses to reference stimuli in the engaged condition. Reference stimuli do evoke 316 
strong responses above spontaneous activity in both passive and task-engaged 317 
conditions. However, in the task-engaged, but not in the passive condition, the 318 
population response pattern of the reference stimuli appears to become orthogonal to 319 
the axis of the readout unit during behavior. The strong asymmetry between 320 
reference- and target-evoked responses is therefore seen only along the decoding 321 
axis, but not if the responses are simply averaged over the population, or averaged 322 
after sign correction for the preference between target and reference (Fig. S7).  323 
 324 
We verified that these results are robust across a range of time bins (10ms-200ms), 325 
allowing us to cover timescales both on the order of the click rate and much longer. 326 
Both the increase in post-sound decoding accuracy in the engaged state and the 327 
increased asymmetry of target/reference representation were observed at all time 328 
scales (Fig. S8a,b).  329 
 330 
 331 

 332 
 333 

Fig 3.   
a. Population response during target and reference stimuli in the passive state along the first three 
components identified using GPFA (see methods) on single trial data. The session begins at the baseline 
(green dot), followed by the TORC presentation, (dotted line) then the click presentation of either the target 
and the reference sound (light red and blue respectively) and finally to the post-sound silence period (dark 
red and blue). Note in particular that in the passive state, the reference and target activities move away 
symmetrically from the baseline point given by projection of spontaneous activity.  
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 334 
 335 
Encoding of stimulus behavioral meaning in A1 is independent of motor 336 
activity and reflects behavioral outcomes 337 
 338 
One simple explanation of the asymmetry between target- and reference-evoked 339 
responses could potentially be the motor-evoked neuronal discharge. Indeed, during 340 
task-  g g                  ’           v    w     ff      f    w  g    g       341 
reference stimuli as the animals refrained from licking before the No-Go window 342 
following the target stimulus but not the reference stimulus (Fig. 1a). As neural 343 
activity in A1 can be strongly modulated by motor activity 17, such effects could 344 
potentially account for the observed differences between target- and reference-345 
evoked population activity.  346 
 347 
To assess the role played by motor activity in our findings, we first identified units 348 
with lick-related activity. To this end, we used decoding techniques to reconstruct lick 349 
timings from the population activity, and determined the units that significantly 350 
contributed to this reconstruction by progressively removing units until licking events 351 
could not anymore be detected from the population activity. We excluded a sufficient 352 
number of neurons (10%) such that a binary classifier using the remaining units could 353 
no longer classify lick and no-lick time points as compared with random data  (p>0.4; 354 
Fig. 4a,b, see Methods). We then repeated the previous analyses after removing all 355 
of these units. The discrimination performance between target and reference trials 356 
remained high and significantly different between the passive and the task-engaged 357 
conditions during the post-stimulus silence (Fig. 4c,d), while projection of target- and 358 
reference-elicited activity on the updated decoders still showed a strong asymmetry 359 
in favor of the target (Fig. 4e,f). This indicated that the information about the 360 
behavioral meaning of stimuli was represented independently of any overt motor-361 
related activity. In all subsequent analyses we excluded all lick-responsive neurons. 362 
 363 
Although the information present in A1 during the post-stimulus silent period could 364 
not be explained by motor activity, it appeared to be directly related to the behavioral 365 
performance of the animal. To show this, we classified population activity on error 366 
trials, in which the animal incorrectly licked on target stimuli, using classifiers trained 367 
on correct trials. Error trials showed only a slight impairment of accuracy during the 368 

b. As in a, for the task-engaged state. Note that in this state, target activity makes a much larger excursion 
from the baseline than reference activity. The axes are the same as in panel a, as the GPFA analysis was 
performed jointly on passive and engaged data.  
c. Projection onto the decoding axis of trial-averaged reference- and target-evoked responses for the whole 
neural population. A baseline value computed from pre-stimulus spontaneous activity was subtracted for 
each unit, so that the origin corresponds to the projection of spontaneous activity (shown by black line). 
Decoding axes determined during sound presentation and post-stimulus silence are respectively used for 
projections in the top and bottom rows. The periods used to construct the decoding axis are shaded in gray. 
Error bars represent 1 std calculated using decoding vectors from cross-validation. This procedure allows 
visualization of the distance between reference and target evoked projections (that corresponds to decoding 
strength) and the distance of the stimuli-evoked responses from the baseline of spontaneous activity can be 
interpreted as the contribution of each stimulus to decoding accuracy.  
d. Distance of reference and target projections from baseline in each condition during the sound and silence 
period. Error bars represent 95% confidence intervals (n=400 cross validations; p=0.15 & p<0.0025; **: 
p<0.01). 
e. As in c for the engaged state.  
f. As in d for the engaged state. (n=400 cross validations; p<0.0025 & p<0.0025; **: p<0.01). 
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sound presentation, but strikingly, the discrimination accuracy of the classifier during 369 
the post-stimulus silence on these trials dropped down to the performance level 370 
measured during passive sessions (Fig. 4c,e). This analysis therefore demonstrated 371 
a clear correlation between the behavioral performance and the information on 372 
stimulus category present during the silent period in A1. 373 
 374 
 375 

 376 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 28, 2017. ; https://doi.org/10.1101/240556doi: bioRxiv preprint 

https://doi.org/10.1101/240556
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

 377 
 378 
Another aspect of neural activity that can be expected to change with task 379 
engagement is correlations between pairs of neurons. Our analysis so far has 380 
focused on the structure of population responses to external stimuli (signal 381 
correlations) but pairs of neurons display trial-to-trial fluctuations in activity (noise 382 
correlations) that can affect the population ability to encode information 32,33. We 383 
found that task engagement decreased noise correlations on average (Fig. 5a,b; Fig. 384 
S9a), compatible with previous observations that attention reduces noise correlations 385 
34. Across the population, the range of changes was however very broad. To 386 
determine the influence of noise correlations on the population level, we repeated our 387 
analysis on simultaneously recorded data, using a modified linear decoder that takes 388 
noise correlations into account (the Fisher discriminant, see Methods). Our main 389 
findings appeared not to be sensitive to noise correlations. We were able to decode 390 
with high accuracy stimulus identity in passive and engaged states and observed an 391 
increase of stimulus memory in the engaged state as before (Fig. 5c). Projection onto 392 
this adjusted decoding axis showed a similar enhanced target representation in the 393 
engaged state, with the reference response lying along the projected baseline activity 394 
(Fig. 5d,e). Projection of responses using the linear classifier with and without taking 395 
noise correlations into account are strikingly similar across a range of timebins (Fig. 396 

Fig 4.  
a. Schematic of the approach used to identify lick responsive units to eliminate from population analysis. 
First, we reconstructed licks using optimal filters as with click reconstruction (Fig 1). To test whether this 
reconstruction allows to detect lick events, the filter is applied during licks and also during randomly selected 
time points with no licks (top left) to all units. Each event (lick or no-lick) can therefore be represented by a 
population vector constituted of the peak reconstruction values for all neurons. We evaluated the accuracy 
of classifying lick and no-lick time events using a linear decoder applied to this population vector (black 
distribution, middle panel). The same procedure was applied to randomized data (top right and purple 
distribution, middle panel) to test the significance of decoding and calculate a p-value (percentage of 
random data cross validations larger than real data cross validations). We then iteratively removed the best 
classification units (bottom plot) until the p-value was greater than 0.4 and the two distributions were 
indistinguishable. (see Methods for details) 
b. Results of reconstruction of lick events and removal of lick units. Left shows a heatmap of average lick 
reconstruction for all neurons ordered by their classification weight. Right shows the average reconstruction 
of lick and no-lick events using units retained for population analysis (non-lick responsive) and units excluded 
from the population analysis (lick-responsive).  
c. Accuracy of stimulus classification in passive and engaged states using only non lick-responsive units. For 
the engaged state both correct and incorrect trials are shown. Note that after removal of lick-responsive 
units, the discrimination during post-stimulus silence is still enhanced in the task-engaged state on correct 
trials but is low during error trials. Error bars represent 1 std calculated over 400 cross-validations.  
d. Comparison of mean accuracy on passive, task-engaged correct and task-engaged error trials, during the 
sound (left) and post-stimulus silence periods (right). Error bars represent 95% confidence intervals. (n=400 
cross validations ; sound :  pass/eng p=0.22, eng/err: p=0.87; silence : pass/eng p<0.0025, eng/err: p=0.012; 
*: p<0.05, **: p<0.01)  
e. Projection onto the decoding axis of baseline-subtracted population vectors during the engaged condition 
constructed using activity of non-lick responsive units only for the reference and target stimuli. Projections 
are shown onto the decoding axes obtained on early sound (top) and silence periods (bottom). The periods 
used to construct the decoding axis are shaded in gray. A baseline value computed from pre-stimulus 
spontaneous activity was subtracted for each unit, so that the origin corresponds to the projection of 
spontaneous activity (shown by black line).  Error bars represent 1 std calculated using decoding vectors 
from cross-validation.  
f. Distance of reference and target projections from baseline in the engaged condition during the sound and 
silence periods. Error bars represent 95% confidence intervals (n=400 cross validations; p<0.0025 & 
p<0.0025; **: p<0.01).  
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S9b,c).  Finally, a finer examination of the change between passive and engaged 397 
conditions showed that, contrary to previous observations 35, noise correlations were 398 
most strongly reduced for pairs of neurons with opposite stimulus preference in our 399 
data set (Fig. S10b,c), which is expected to impair decoding of information (Fig. 400 
S10a).  401 
 402 

 403 

 404 
 405 
Mechanisms underlying the asymmetric, target-driven encoding during task-406 
engagement 407 
 408 
The previous analyses of population activity have shown that task engagement 409 
induces an asymmetric encoding, in which the activity elicited by reference stimuli 410 
becomes similar to spontaneous background activity when seen through the 411 
decoder. Two different mechanisms can potentially contribute to this shift between 412 
passive and engaged conditions: (i) the spontaneous activity changes between the 413 

Fig 5.  

a. Comparison of noise correlations between pairs of neurons in the passive and engaged 
state. Red line indicates identity line.   
b. Histogram of correlation changes between the engaged and passive states showing a 
shift to lower values in the engaged state despite highly heterogeneous behavior across 
the population. (two-sided Wilcoxon signed rank, n=3361 pairs; zval=10.33, p=4.9E-25, 
***:p<0.001)  
c. Accuracy of stimulus classification in passive and engaged states using simultaneously 
recorded, non lick-responsive units and applying a decoding vector corrected for noise 
correlations. Note that the increase in decoding accuracy during the silent period in the 
engaged state is still clearly visible. Error bars represent s.e.m over n=15 sessions.  
d. Projection onto the decoding axis determined during the sound period of trial-averaged 
reference (blue) and target (red) activity during the passive (dark colors) and the active 
(light colors) sessions. A baseline value computed from pre-stimulus spontaneous activity 
was subtracted for each neuron, so that the origin corresponds to the projection of 
spontaneous activity (shown by black line). Note that the target-driven activity lies further 
from the baseline in the active state and the reference-driven activity lies closer to 
baseline. The period used to construct the decoding axis is shaded in gray. Error bars 
represent s.e.m over n=15 sessions 
e. Index of target enhancement induced by task engagement based on projections using 
the decoding axis determined during the sound. This value is positive if projected target 
activity is enhanced in the active state and projected reference activity is reduced. Error 
bars represent s.e.m over n=15 sessions. .  
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two behavioral states such that its projection on the decoding axis becomes more 414 
similar to reference-evoked activity; (ii) stimulus-evoked activity changes between the 415 
states, inducing a change in the decoding axis and in the projections. In general, both 416 
mechanisms can be expected to contribute and their effects can be separated during 417 
different epochs of the trial. 418 
 419 
To disentangle the effects of the two mechanisms, we chose a fixed decoding axis, 420 
and projected on the same axis the stimulus-evoked activity from both passive and 421 
engaged conditions. We then compared the resulting projections with projections of 422 
both passive and engaged spontaneous activity. We performed this procedure 423 
separately for decoding axes determined during sound and silence epochs.  424 
 425 
Figure 6a (top) illustrates the projections along the decoding axis determined during 426 
the sound epoch in the engaged condition. Comparing the passive responses with 427 
the passive and engaged spontaneous activity revealed that the projection of passive 428 
reference-evoked activity was aligned during sound presentation with the projection 429 
of engaged, but not passive spontaneous activity (Fig. 6a top left). A similar 430 
observation held for the engaged responses throughout the sound presentation 431 
epoch (Fig. 6a top right). These projections remained similar regardless of whether 432 
the decoding axes were determined during the passive or the engaged conditions, as 433 
these two axes largely share the same orientation (Fig. S6e). Altogether, these 434 
results indicate that the change in spontaneous baseline activity during task 435 
engagement is sufficient to explain the strongly asymmetric, target-driven response 436 
observed early in the trial during sound presentation (Fig. 6b top). 437 
 438 
However, we reached a different conclusion when we examined the activity during 439 
the post-stimulus silence (Fig. 6a bottom). Repeating the same procedure as above, 440 
but projecting on the decoding axis determined during the post-stimulus silence 441 
revealed that the shift in spontaneous activity alone was not able to account for the 442 
asymmetry of the projected responses during the post-stimulus silence (Fig. 6b 443 
bottom). The target-driven, asymmetrical projections observed during this trial epoch 444 
therefore relied in part on a change in stimulus-evoked responses.  445 
 446 
All together, we found that the changes in baseline spontaneous activity induced by 447 
the task engagement are key in explaining the enhancement of the target-driven, 448 
asymmetric encoding during sound presentation. As described in the above, the 449 
encoding axis during sound presentation is not drastically affected by task 450 
engagement. Instead, it is the population spontaneous activity that aligns with the 451 
reference-elicited activity with respect to the decoding axis. This observation in 452 
particular provides an additional argument against the possibility that the appearance 453 
of an asymmetrical representation is due to the asymmetrical motor responses to the 454 
two stimuli. Rather, the asymmetry is geometrically explained by baseline changes 455 
that precede stimulus presentation, and reflects the behavioral state of the animal. 456 
 457 
 458 
 459 
 460 
 461 
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 462 

 463 
Sustained, target-driven, and behaviorally-gated responses of single cells in 464 
frontal cortex parallel population encoding in A1 465 
 466 
The pattern of activity resulting from projecting reference- and target-elicited A1 467 
activity on the linear readout is strikingly similar to previously published activity 468 
recorded in the dorsolateral frontal cortex (dlFC) of behaving ferrets performing 469 
similar Go/No-Go tasks (tone detect and two-tone discrimination in 36). We therefore 470 
compared in more detail A1 activity with activity recorded in dlFC during the same 471 
click-rate discrimination task. When the animal was engaged in the task, single units 472 
in dlFC encoded the behavioral meaning of the stimuli by responding only to target 473 
stimuli, but remaining silent for reference stimuli (Fig. 6a bottom panel). Target-474 
induced responses were moreover observed well after the end of the stimulus 475 
presentation, allowing for a maintained representation of stimulus category. The 476 
strong asymmetry of single-unit responses in dlFC clearly resembles the activity 477 

Fig 6.  
Note that all analysis in this figure is done after excluding lick-responsive units in A1 as described in Fig 4. 
a. Projection onto the engaged decoding axis of reference- and target-evoked activity in the passive (left 
column) and engaged state (right column). Decoding axes determined during sound presentation and post-
stimulus silence are respectively used for projections in the top and bottom rows. This figure differs from 
Fig 3c in which the spontaneous activity is subtracted before projection. Passive and engaged spontaneous 
activities after projection are shown by continuous lines. Error bars represent 1 std calculated using 
decoding vectors from cross-validation (n=400). 
b. Comparison of reference/target asymmetry for evoked responses in different states compared to 
different baselines given by passive or engaged spontaneous activity. Reference/target asymmetry is the 
difference of the distance of reference and target projected data to a given baseline. We examine three 
cases: (i) passive evoked responses, distances calculated relative to engaged spontaneous activity; (ii) 
engaged evoked responses, distances calculated relative to passive spontaneous activity; (iii) engaged 
evoked responses, distances calculated relative to engaged spontaneous activity. These values are shown 
during the sound (top) and the silence (bottom).  In all three cases, the engaged decoding axis was used for 
projections. Decoding axes determined during sound presentation and post-stimulus silence are 
respectively used for projections in the top and bottom rows. 
Error bars represent 95% confidence intervals (n=400 cross validations; sound: p(col1,col3)=0.29 &  
p(col2,col3)<0.0025; silence : p(col1,col3)<0.0025 &  p(col2,col3)<0.0025; **: p<0.01). 
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extracted from the A1 population by the linear decoder (Fig. 3 and 4). This suggests 478 
that the target-selective responses in the dlFC that reflect the cognitive decision 479 
process could in part be thought of as a simple readout of information already 480 
present in the population code of A1. 481 
 482 
To further examine the relationship between dlFC single-unit responses and 483 
population activity in A1, we next compared the time course of the projected target-484 
elicited data in A1 (Fig. 3e) and the population-averaged target-elicited neuronal 485 
activity in dlFC (Fig. 7a bottom panel) during active sessions. As mentioned above, 486 
the optimal decoding axes for A1 activity changes between the stimulus presentation 487 
epoch and the silence that follows (Fig. S6). The time-course of the projected A1 488 
activity depends strongly on the axis used for the projection. When projecting on the 489 
axis determined during stimulus presentation, the target-elicited response in A1 was 490 
extremely fast (0.08s +/- 0.009 std) compared to the much longer response latency in 491 
the population-averaged response of dlFC neurons (0.48s +/- 0.12 std) (Fig. 7b). In 492 
contrast, when projecting on the axis determined during post-stimulus silence, the 493 
target-elicited response in A1 was slower (0.21s +/- 0.03 std) and closer to the 494 
population-averaged response in the dlFC (note that a fraction of individual units in 495 
dlFC display a very fast responses not reflected in the population average, see Fritz 496 
et al. 2010). Our analyses therefore identified two contributions to target-driven 497 
population dynamics in A1, a fast component absent in population-averaged dlFC 498 
activity and a slower component similar to population-averaged activity in dlFC, thus 499 
pointing to a possible contribution of an A1-FC loop that could be engaged during 500 
auditory behavior. 501 

 502 

 503 
 504 

Fig 7.  
Note that all analysis in this figure is done after excluding lick-responsive units in A1 as described in Fig 4. 
a. Average PSTHs of all frontal cortex units in response to target and reference stimuli in both passive and 
engaged conditions. Note that the response to the target in the task-engaged state is very clear and appears 
late during the sound. Error bars: s.e.m over all units (n=102)  
b. Latency to half-maximum response for frontal cortex (for average PSTHs) and primary auditory cortex (for 
projected target-elicited data) in the task-engaged state. For the auditory cortex, data is projected either on 
the sound decoding vector or the silence decoding vector. Error bars represent 95% confidence intervals. 
(400 cross-validations. p=<0.0025, p=<0.0025 & p=0.011;**: p<0.01, ;*: p<0.05).  
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Enhanced representation of target stimuli in A1 is a general feature of auditory 505 
Go/No-Go tasks  506 
 507 
To determine whether the task-related increase in asymmetry between target and 508 
reference was a more general feature of primary auditory cortex responses during 509 
auditory discrimination, we applied our population analysis to other datasets collected 510 
during different tasks. All of these tasks used Go/No-Go paradigms (see Fig. S11a,e,i 511 
and Methods), in which the animals were presented with a random number of 512 
references followed by a target stimulus. In these different datasets, animals were 513 
required to discriminate noise bursts vs. pure tones (tone detect tasks), or categorize 514 
pure tones drawn from low, medium or high-frequency ranges (frequency range 515 
discrimination task). Contrasting datasets were obtained from two groups of ferrets 516 
that were separately trained on approach and avoidance versions of the same tone 517 
detect task. These two behavioral paradigms used exactly the same stimuli under 518 
two opposite reinforcement conditions 30, requiring nearly opposite motor responses 519 
(Fig. S11a,e). A crucial feature shared by all these tasks lies in the fact that the 520 
behavioral response to the target stimulus always required a behavioral change 521 
relative to sustained baseline activity. More specifically the target was the No-Go 522 
stimulus in negative reinforcement tasks and required animals to cease ongoing 523 
licking, whereas the target was the Go stimulus in the positive reinforcement task and 524 
required animals to begin licking in a non-lick context. In all of the analyses, lick-525 
related neurons were removed using the approach outlined earlier.  526 
 527 
Performing the same analyses on all tasks showed that projections of target- and 528 
reference-evoked activities in passive conditions contained a variable degree of 529 
asymmetry in the sound and silence epochs. However, in all tasks we found that 530 
task-engagement leads an enhancement of target-driven encoding during sound 531 
(Fig. 8a,b;e,f;i,j;m,n). As previously described for the rate discrimination task (Fig. 3 532 
and 4e), target projections more strongly deviated from baseline than projections of 533 
reference stimuli in the engaged condition. Moreover, for three of the four tasks we 534 
examined, enhancement of target representations was not observed at the level of 535 
population-averaged responses, but only in the direction determined by the decoder 536 
(Fig. 8b,f,j,n). During the post-sound silence, decoding accuracy quickly decayed in 537 
both passive and engaged states, but remained above chance (Fig. S11c,g,k). As in 538 
the click-train detection task, decoding accuracy relied on a different encoding 539 
strategy than the sound period (Fig. S11d,h,l), and the asymmetry during the post-540 
sound silence was high both in passive and engaged conditions (Fig. S12). 541 
 542 
Comparison of appetitive and aversive versions of the same task is particularly 543 
revealing as to which type of stimulus was associated with enhanced representation 544 
in the engaged state. In the appetitive version of the tone detect tak, ferrets needed 545 
to refrain from licking on the reference sounds (No-Go) and started licking the water 546 
spout shortly after the target onset (Go) (Fig. S11e), whereas in the aversive 547 
(conditioned avoidance) paradigm they had to stop licking after the target sound (No-548 
Go) to avoid a shock (Fig.S11a). It is important to note that although the physical 549 
stimuli presented to the behaving animals were identical in both tone detect tasks, 550 
the associated motor behaviors of the animals are nearly opposite. Projection of task-551 
engaged A1 population activity reveals a target-driven encoding (compare right 552 
panels of Fig. 8f,j with Fig. 8I,j), irrespective of whether the animal needed to refrain 553 
from or to start licking to the target stimulus. This shows that the common feature of 554 
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stimuli that are enhanced after projection onto the decoding axis is that they are 555 
associated with a change of ongoing baseline behavior.  556 
 557 
This range of behavioral paradigms provides additional arguments against the 558 
described changes in activity being solely due to correlates of licking activity. Firstly, 559 
we observed enhanced target-driven encoding in both the appetitive and aversive 560 
tone-detect paradigms, even though the licking profiles were diametrically opposite to 561 
each other. Secondly, comparing the projections of the population activity in the 562 
approach tone detect task with the click rate discrimination task reveals a strong 563 
similarity in the temporal pattern of asymmetry observed during task engagement. In 564 
less than 100 ms, projection of target-elicited activity reached its peak in both 565 
paradigms (Fig. 8a,i), although the direction and time course of the licking responses 566 
were reversed, with a fast decline in lick frequency for the click rate discrimination 567 
task (Fig. 1a), versus a slow increase for the tone detect (Fig. S11e left panel). Last, 568 
although the results are more variable partly due to low decoding performance, we 569 
observed target-driven encoding during the post-stimulus silence in the passive state 570 
(Fig. S12) although ferrets were not licking during this epoch. The points listed here 571 
     g        g        w                      f             ’ b   v      572 
consequences, independent of the animal motor response. 573 
 574 
As pointed out in the case of the click rate discrimination task, the enhancement of 575 
target representation in the engaged condition can rely on two different mechanisms, 576 
a shift in the spontaneous activity or a shift in stimulus-evoked activity. We therefore 577 
set out to tease apart the respective contributions of the two mechanisms in this 578 
novel set of tasks. As in Fig. 6, we compared the distance of target and reference 579 
passive and engaged projections to either engaged or passive baseline activities. 580 
Out of the three additional datasets, we observed an increase in spontaneous firing 581 
rates only in the aversive tone detect task (Fig. 8g). In this latter paradigm, task-582 
induced modulations of spontaneous activity patterns explained the change in 583 
asymmetry during sound presentation, similar to what was observed in the click rate 584 
discrimination task (compare Fig. 8d and 8h). The other two tasks showed no global 585 
change of spontaneous firing rate (Fig. 8k,o), and consequently, during the task 586 
engagement, the enhancement of the target representation was solely due to the 587 
second mechanism, the changes in the target-evoked responses themselves 588 
(Fig.8l,p). During the silence, we observed as previously for the click-rate 589 
discrimination that the increase in asymmetry relied only on the second mechanism 590 
(Fig. S11).  591 
 592 
Taken all together, population analysis on four different Go/No-Go tasks revealed an 593 
increase of the encoding in favor of the target stimulus as a general consequence of 594 
task-engagement on A1 neural activity. Viewing activity changes in this light allowed 595 
us to interpret the previously observed changes in spontaneous activity as one of two 596 
possible mechanisms underlying this task-induced change of stimulus representation 597 
in A1 population activity. 598 
 599 
 600 
 601 
 602 
 603 
 604 
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 606 
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 607 
DISCUSSION 608 
 609 
In this study, we examined population responses in the ferret primary auditory cortex 610 
during auditory Go/No-Go discrimination tasks. Comparing responses between 611 
sessions in which animals passively listened and sessions in which animals actively 612 
discriminated between stimuli, we found that task-engagement induced a shift from a 613 
sensory-driven to an asymmetric, target enhanced, representation of the stimuli, 614 
highly similar to the type of activity observed in dorsolateral frontal cortex during 615 
engagement in the same task. This enhanced representation of target stimuli was 616 
found in a variety of discrimination tasks that shared the same basic Go/No-Go 617 
structure, but used a variety of auditory stimuli and reinforcement paradigms. 618 
 619 
In the click rate discrimination task that we analyzed first, the sustained asymmetric 620 
stimulus encoding in A1 was only observed in the engaged state (Fig. 3). One 621 
possible explanation is that this encoding scheme relied on corollary neuronal 622 
discharges related to licking activity. However there are several factors that argue 623 
against this interpretation. Firstly, we adopted a stringent criterion for the exclusion 624 
from the analysis of all units whose activity was correlated with lick events (Fig. 4). 625 
After removing lick-responsive units from the analysis the results remained 626 
unchanged, indicating the absence of a direct link between licking and the observed 627 
asymmetry in the encoding. Furthermore, the large differences in the lick profiles 628 
between the different tasks were not in line with the remarkably conserved target-629 
driven projections of population activity across tasks and reinforcement types, 630 
supporting a non-motor nature of the stimulus encoding in A1 (Fig. 8b,f,j,n). Finally, 631 

Figure 8.  
Each line of four panels represent the same analysis for all four tasks, statistics are given in order of 
appearance in the figure: click rate discrimination, aversive tone detect, appetitive tone detect, frequency 
range discrimination. 
a,e,I,m Projection onto the decoding axis determined during the sound period of trial-averaged reference 
(blue) and target (ref) activity during the passive (dark colors) and the active (light colors) sessions. A 
baseline value computed from pre-stimulus spontaneous activity was subtracted for each neuron, so that 
the origin corresponds to the projection of spontaneous activity (shown by black line). Note that the target-
driven activity is further from the baseline in the active state and the reference-driven activity is closer. The 
periods used to construct the decoding axis are shaded in gray. Error bars represent 1 std calculated using 
decoding vectors from cross-validation (n=400). 
b,f,j,n Index of target enhancement induced by task engagement based on projections using the decoding 
axis determined during the sound. In green same index instead giving the same weight to all units. The 
difference between the green and black curved indicates that the change in asymmetry induced by task 
engagement cannot be detected using the population averaged firing rate alone.  Error bars represent 1 std 
calculated using decoding vectors from cross-validation (n=400).  
c,g,k,o Modulation index of each unit for spontaneous firing rate after exclusion of lick-related units. Eror 
bars are 95% C.I. (one-sample two-sided Wilcoxon signed rank test with mean 0, n=277, zval=6.35, p=2.1e-
10; n=161, zval=7.22, p=5.4e-13; n=99, zval=1.01, p=0.30; n=520, zval=-0.78, p=0.47; ***: p<0.001).   
d,h,l,p Comparison of reference/target asymmetry for evoked responses in different states compared to 
different baselines given by passive or engaged spontaneous activity. Reference/target asymmetry is the 
difference of the distance of target and reference projected data to a given baseline. We examine three 
cases: (i) passive evoked responses, distances calculated relative to engaged spontaneous activity; (ii) 
engaged evoked responses, distances calculated relative to passive spontaneous activity; (iii) engaged 
evoked responses, distances calculated relative to engaged spontaneous activity. In all three cases, the 
engaged decoding axis was used for projections. Error bars represent 95% confidence intervals (n=400 cross 
validations; p(col1,col3)=0.29 & p(col2,col3)<0.0025; p(col1,col3)=0.38 & p(col2,col3)<0.0025; 
p(col1,col3)<0.0025 & p(col2,col3)=0.16; p(col1,col3)<0.0025 & p(col2,col3)=0.92; **: p<0.01).  
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the role of baseline shifts due to the change in spontaneous activity in two more tasks 632 
further argues against a purely motor explanation of the observed asymmetry (Fig. 6 633 
and Fig. 8a) since the spontaneous activity occurs during epochs that preceded 634 
stimulus presentation and behavioral changes. Altogether, while the different lines of 635 
evidence exposed above make an interpretation in terms of motor activation unlikely, 636 
ultimately a different type of behavioral report, such as one using similar responses, 637 
would help fully rule out this possibility. 638 
 639 
Our analyses show that the target-driven encoding scheme during task engagement 640 
is neither purely sensory nor purely motor, but instead argue for a more abstract, 641 
cognitive representation of the stimulus behavioral meaning in A1 during task 642 
engagement. As the target stimulus was associated with an absence of licking in the 643 
tasks under aversive conditioning, one possibility could have been that the A1 644 
encoding scheme was contrasting the only stimulus associated with an absence of 645 
licking (No-Go) against all other stimuli (Go). This lick/no-lick encoding was however 646 
not consistent with the tone detect task under appetitive reinforcement, in which the 647 
target stimulus was a Go signal for the animal. We thus suggest that A1 encodes the 648 
behavioral meaning of the stimulus by emphasizing the stimulus requiring the animal 649 
to change its behavioral response, i.e. the target stimuli in the different tasks we 650 
examined. However, our data do not allow us to conclude whether this behavioral 651 
meaning corresponds to the encoding of the stimulus-action association, or the 652 
      ’                                        leading to a change in behavioral 653 
response and it would be interesting to perform similar analyses in tasks more 654 
specifically designed to tease apart these different possible interpretations. 655 
 656 
 657 
Relation to previous studies 658 
 659 
A series of previous studies found that task-engagement strongly influences 660 
responses in the primary auditory cortex, in some cases sharpening stimulus 661 
representation 26–28,37, in others leading to a suppression of sensory responses 14, as 662 
was also observed during locomotion 17,18. While some studies observed signatures 663 
of decision-related activity in A1 11,38, none has hitherto reported the strong 664 
representation of behavioral meaning described here in the population code. 665 
 666 
The majority of previous studies concentrated on single-neuron or LFP activity. In 667 
contrast, our results critically rely on population-level analyses 39–42, and in particular, 668 
on linear decoding of population activity. This is a simple, biologically-plausible 669 
operation that can be easily implemented by a neuron-like readout unit that performs 670 
a weighted sum of its inputs. The summed inputs to this hypothetical read-out unit 671 
showed that Go and No-Go stimuli elicited inputs symmetrically distributed around 672 
spontaneous activity in the passive state. In contrast, in the task-engaged state, only 673 
target stimuli, which required an explicit change in ongoing behavior, led to an output 674 
different from spontaneous activity, once passed through the readout unit. This 675 
switch from a more symmetric, sensory-driven to an increasingly asymmetric, target-676 
driven representation was not clearly apparent if single-neuron responses were 677 
simply averaged or normalized (Fig. S7, 7b,f,j,n), but instead relied on a population 678 
analysis in which different units were assigned different weights by projecting 679 
population activity on the decoding axis. Note that the weights were not optimized to 680 
maximize the asymmetry between Go and No-Go stimuli, but rather the 681 
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discrimination between them. The shift towards a more asymmetric representation of 682 
the behavioral meaning of stimuli is therefore an unexpected but important by-683 
product of the analysis.  684 
 685 
From a population-decoding viewpoint, task-engagement induced a shift towards an 686 
enhanced representation of target stimuli class in all the tasks we considered. 687 
However, considering these same effects from a less elaborate sensory coding view, 688 
they appear to be quite varied and to depend on the details of the stimuli. Thus, in 689 
the tone-detection task, previous studies reported that task-engagement enhanced 690 
the representation of the relevant tone frequency in a negative reinforcement 691 
paradigm 26–28, and caused a suppression at the tone frequency during the appetitive 692 
version of the task 30. In the click-discrimination task, task-engagement led to 693 
decreased temporal fidelity in the representation of click times, the main sensory 694 
features of the stimuli (see Fig. 1 and 14). These varied results, however, are unified 695 
by a shift to a representation of the behavioral meaning of stimuli. Our findings 696 
therefore provide a possible way to reconcile the diverse effects described earlier. 697 
 698 
Possible implication of an A1-FC loop during task engagement 699 
 700 
Recordings performed in dorsolateral frontal cortex (dlFC) in the ferret during tone 701 
detection 36 showed that, when the animal is engaged in the task, dlFC single units 702 
encode the abstract behavioral meaning of the stimuli by responding only to target 703 
stimuli (that require a change in the ongoing behavioral output) but remain silent for 704 
reference stimuli. Remarkably, projections of reference- and target-elicited A1 activity 705 
on the linear readout showed the same type of target-specific patterns of activity. 706 
Several possible mechanisms could account for these similarities of representations 707 
in A1 and dlFC. Here we propose that, during task engagement, sound evoked 708 
activity in A1 triggers activity in dlFC, which then subsequently feeds back top-down 709 
inputs to A1 that may underlie the sustained activity pattern found during post-710 
stimulus silence. 711 

Very early in the trial, the asymmetric encoding is already fully present in A1 (as early 712 
as 100ms in the rate discrimination task for instance; Fig. 3e top panel). At this point 713 
in time, dlFC does show some target-selective responses that increase over time 714 
(Fig. 7a). This suggests the presence of a feed-forward mechanism early in the trial, 715 
by which A1 may be feeding higher-order auditory cortex and FC with a pattern of 716 
neuronal responses encoding the behavioral meaning of the stimulus. Our results 717 
show that this early task-induced change in the representation in A1 relies on a shift 718 
of spontaneous activity at the population level that may be due to tonic top-down or 719 
neuromodulatory inputs during task engagement 43,44. The presence of a dynamic 720 
balance characterizes interactions between A1 and dlFC has been previously shown 721 
by changes in Granger causality and effective connectivity during behavioral state 722 
transitions 45. 723 
 724 
As the trial progresses, the encoding in A1 progressively shifts (Fig. S6). Activity 725 
projected on the late decoding vector (Fig. 3e bottom panel) shows a progressive 726 
buildup similar to the activity observed in dlFC (Fig. 7). The late stimulus encoding, 727 
during the later phase of the click trains and the subsequent post-stimulus silence 728 
(Fig. 3e bottom panel) may thus be gradually engaging stronger top-down inputs from 729 
the dlFC-A1 network loop. The persistent encoding of stimuli identity could therefore 730 
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rely on a stimulus-specific top-down input from frontal areas. Although direct 731 
connections from dlFC to A1 have not been identified in ferrets, several recent 732 
studies have identified direct inputs from the rodent motor cortex 17, the rodent 733 
orbitofrontal cortex 46,47 and the secondary auditory areas 48 (ferret posterior 734 
ectosylvian gyrus) to A1. Altogether, while the comparison of time-course of activity in 735 
A1 and dlFC suggest that the recruitment of the A1-FC loop is a plausible 736 
interpretation of our results, more direct evidence is needed to establish this 737 
mechanism. 738 
 739 
Projection to the read-out null space as a mechanism for target detection in A1 740 
 741 
Our analysis suggests a novel population readout mechanism for extracting 742 
behaviorally relevant information from A1 while suppressing other, irrelevant sensory 743 
information: in the task-engaged state, irrelevant sensory inputs (reference stimuli) 744 
elicit changes of activity that are orthogonal to the read-out axis and therefore cannot 745 
be distinguished from spontaneous activity. This mechanism is reminiscent of the 746 
mechanism proposed for movement preparation in motor cortex 49, where 747 
preparatory neural activity lies in the null space of the motor readout, i.e. the space 748 
orthogonal to the read-out of the motor command, and therefore does not generate 749 
movements. In our case, the readout is task-dependent, as it presumably depends on 750 
the performed discrimination task. We showed that the A1 activity in the engaged 751 
condition rearranges so that the difference between spontaneous activity and 752 
reference-elicited activity lies in the null space of the readout, which is therefore only 753 
activated by target stimuli. This rearrangement can be implemented either by a 754 
change of reference-elicited activity or by a change of spontaneous activity. In two of 755 
the examined tasks, click-discrimination and aversive tone detection, we found that 756 
the rearrangement of population activity relied mostly on the change in population 757 
spontaneous activity in the engaged condition. Strikingly, these two tasks were 758 
performed by the same ferrets, which were trained to switch between the two tasks in 759 
the same session. In the two other tasks, reference-elicited activity in the passive 760 
condition were already aligned with the passive spontaneous activity when projected 761 
on the active decoder, suggesting that learning these behavioral tasks may have 762 
profoundly reshaped stimulus-evoked activity. Our results therefore suggest that 763 
task-dependent shaping of spontaneous activity can allow the primary auditory cortex 764 
to encode the behavioral meaning of stimuli in a task-relevant, and often in a highly 765 
flexible manner.  766 
 767 
Changes in spontaneous activity have previously been shown to contribute to 768 
stimulus responses 50–54 and task-driven changes have been reported in multiple 769 
previous studies 14 but, to our knowledge, have never been given a functional role in 770 
stimulus representation 55. Here we propose that population-level modulations of 771 
spontaneous activity act as a mechanism supporting the asymmetric representation 772 
of reference and stimuli target in the engaged state. This was clearly the case in 773 
tasks where the passive reference-evoked responses and spontaneous patterns of 774 
activity were not already aligned with respect to the active decoding vector (Fig.8a-d 775 
and Fig8e-h). In those tasks, significant adjustments in spontaneous activity 776 
supported the deployment of a reference/spontaneous space orthogonal to the active 777 
readout-out axis. 778 
 779 
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However, this proposed simple linear readout mechanism cannot fully account for the 780 
whole set of responses observed in frontal areas for at least two reasons. First, 781 
projections of reference-elicited activity (in A1) during engagement on an aversive 782 
task still give rise to a non-null, albeit reduced, output contrary to what is observed in 783 
dlFC area recordings. Second, projecting passive data onto the engaged decoding 784 
vector results in symmetric and reduced outputs (data not shown), whereas dlFC 785 
recordings showed on average a complete absence of response during passive state 786 
during the tone-detect task 36. An additional non-linear gating mechanism likely 787 
operates between primary auditory cortex and frontal areas, further reducing 788 
responses to any stimulus in the passive state and to reference sounds in the active 789 
state. In particular, neurons in higher-order auditory areas could refine the 790 
population-wide, abstracted representation originating in A1 through the proper 791 
combinations of synaptic weights. Such a mechanism could also explain why 792 
individual single units recorded in belt areas of the ferret auditory cortex show a 793 
gradual increase in their selectivity to target stimuli 56. 794 
 795 
Effects of learning 796 
  797 
All the recordings analyzed here were performed on highly trained animals. Several 798 
investigations have reported that training procedures strongly influence neural 799 
representations in primary cortices 57–61. One may therefore wonder to what extent 800 
our findings, even in the passive state, depend on the prior training history of the 801 
animal 62–64. To address this question, we examined A1 recordings performed in a 802 
naive ferret exposed to the same stimuli as used in the click-train discrimination task. 803 
Stimulus discrimination was relatively decreased, during both the sound and silent 804 
periods when compared with the decoder accuracy obtained with trained animals 805 
(Fig. S5c,d). In particular, the discrimination performance during the post-stimulus 806 
silence was reduced to chance-levels, while in trained animals it was above chance 807 
even in the passive state. The weak but significant maintained encoding of stimulus 808 
class observed in the passive state with expert ferrets thus appears to be due to the 809 
behavioral training. Discrimination in the passive condition for trained animals also 810 
involved target-specific activity during post-stimulus silence (Fig. 3c,d, bottom 811 
panels), whereas it was not the case for naive ferrets (Fig. S5d), indicating that this 812 
target-driven mechanism is ubiquitously present during the silent period in trained 813 
animals. 814 

Interestingly, passive projections of target- and reference-evoked activities 815 
showed variable degrees of asymmetry across tasks (Fig. 3c and 8a,e,i,m). This 816 
observation could be explained by the variability in training duration across ferrets, in 817 
task performance, and in paradigm requirements and complexity. Strikingly, the only 818 
task we examined involving long-term memory (frequency range discrimination task) 819 
exhibited a very strong asymmetry both in passive and active states (Fig. 8m). While 820 
asymmetric representation of stimuli was weak in tasks demanding flexible and rapid 821 
attention towards new stimuli (rate discrimination and tone detect tasks), a task 822 
involving long-term memory, such as the frequency range discrimination task, could 823 
engage global reshaping of the neuronal population structure to keep a mnemonic 824 
trace of the behaviorally-relevant stimuli. Interestingly, this target-driven asymmetry in 825 
the passive state came along with a lack of change in the spontaneous population 826 
activity between passive and active state (Fig. 8fo). This observation is in agreement 827 
with the hypothesis that the encoding of stimulus behavioral meaning is mediated by 828 
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an adjustment of spontaneous population activity, mostly operated in passive state 829 
for this particular task.  830 
 831 

In summary, we found that task-engagement induces a shift from sensory-832 
driven to abstract, behavior-driven representations in the primary auditory cortex. 833 
These abstract representations are encoded at a population, but not at a single-834 
neuron level, and strikingly resemble abstract representations observed in higher-835 
level cortices. These results suggest that the role of primary sensory cortices is not 836 
limited to encoding sensory features. Instead, primary cortices appear to play an 837 
active role in the task-driven transformation of stimuli into their behavioral meaning 838 
and the translation of that meaning into task-appropriate motor actions. 839 
 840 
 841 
 842 
 843 
Materials and methods 844 
Training and recordings. 845 
Behavioral training 846 
All experimental procedures conformed to standards specified by the National Institutes of 847 
Health and the University of Maryland Institutional Animal Care and Use Committee 848 
(IACUC). Adult female ferrets, housed in pairs in normal light cycle vivarium, were trained 849 
during the light period on a variety of different behavioral paradigms in a freely moving 850 
training arena. After headpost implantation, the ferrets were retrained while restrained in a 851 
head-fixed holder until they reached performance criterion again. Most of the animals in 852 
these studies were trained on multiple tasks, including the two ferrets trained both on the 853 
click rate discrimination and the tone detect tasks. Three out of four tasks shared the same 854 
basic structure of Go/No-Go avoidance paradigms 65, in which ferrets were trained in a  855 
conditioned avoidance paradigm to lick water from a spout during the presentation of a class 856 
of reference stimuli and to cease licking after the presentation of a different class of target 857 
stimuli to avoid a mild shock. The positive reinforcement task is detailed below (see Tone 858 
detect task – Aversive conditioning).  859 
Recordings began once the animals had relearned the task in the holder. Each recording 860 
session included epochs of passive sounds presentation without any behavioral response or 861 
reinforcement, followed by an active behavioral epoch where the animals could lick.  A post-862 
passive epoch was then recorded. This sequence of epochs could be repeated multiple 863 
times during a recording session. The table below summarizes the animals and recordings 864 
for each task. 865 
 866 
 
Task 

Click rate  
discrimination 

Tone 
detect 

Frequency range 
discrimination 

Structure dlFC A1 A1 A1 

Animals 2 ferrets 2 ferrets 4 ferrets 1 ferret 

Conditioning Aversive Aversive Aversive Appetitive Aversive 

Recorded 
sessions 

- Prepassive 
- Active 
- Postpassive 

- Prepassive 
- Active 
- Postpassive 

- Prepassive 
- Active 
- Postpassive 

- Passive 
- Active 
 

- Prepassive 
- Active 
- Postpassive 

Session 
num. 

 
25 (17 and 8) 

 
18 (9 and 9) 

 
13 (7 and 6) 

 
56 (8,37,2,9) 

 
149 

Recorded 
units 

102 (66 and 36) 370 (188 and 
182) 

202 (129 and 
73)  

100 
(17,72,2,9) 

758 

 867 
Click rate discrimination task. Two adult female ferrets were trained to discriminate low from 868 
high rate click trains in a Go/No-Go avoidance task. A block of trials consisted of a sequence 869 
of a random number of reference click train trials followed by a target click train trial (except 870 
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on catch blocks in which 7 reference stimuli were presented with no target). On each trial, the 871 
click train was preceded by a 1.25s neutral noise stimulus (Fig. 1A). Ferrets licked water from 872 
a spout throughout trials containing reference click trains until they heard the target sound. 873 
They learned to stop licking the spout either during the stimulus or after the target click train 874 
ended, in the following 0.4-s time silent response window, in order to avoid a mild shock to 875 
the tongue in a subsequent 0.4 s shock window (Fig.1A). Any lick during this shock window 876 
was punished. The ferrets were first trained while freely-moving daily in a sound-attenuated 877 
test box. Animals were implanted with a headpost when they reached criterion, defined with 878 
a Discrimination Ratio (DR)>= 0.64 where DR = HR * (1-FA) [Hit Rate, HR=0.8 and False 879 
Alarm, FA=0.2]. They were then retrained head-fixed with the shocks delivered to the tail. 880 
The decision rule was reversed in the 2 animals, as low rates were Go stimuli for one animal 881 
and No-Go for the second one. During each session, rates were kept identical, but were 882 
changed from day to day.  883 
Tone detect task – Aversive conditioning. The same two ferrets were trained on a tone detect 884 
task previously described 26. Briefly, a trial consisted of a sequence of 1 to 6 reference white 885 
noise bursts followed by a tonal target (except on catch trials in which 7 reference stimuli 886 
were presented with no target). The frequency of the target pure tone was changed every 887 
day. The animals learned not to lick the spout in a 0.4 s response window starting 0.4 s after 888 
the end of the target. The ferrets were trained until they reached criterion, defined as 889 
consistent performance on the detection task for any tonal target for two sessions with >80% 890 
hit rate accuracy and >80% safe rate for a discrimination rate of >0.65. 891 
Tone detect task – Appetitive conditioning. 4 ferrets were on an appetitive version of the tone 892 
detect task previously described 30. On each trial, the number of references presented before 893 
the target varied randomly from one to four. Animals were rewarded with water for licking a 894 
water spout in a response window 0.1–1.0 s after target onset. False alarms were punished 895 
with a timeout when ferrets licked earlier in the trial before the target window. The average 896 
DR during experiments was 0.76. This data set contained sessions with different trial 897 
durations, therefore we analysed separately data from the first 200ms after stimulus onset 898 
and 200ms before stimulus offset. For this task, the passive data was not structured in the 899 
format of successive reference and target trials as in the engaged session but instead the 900 
animal was presented with a block of reference only trials followed by a block of target only 901 
trials separately. This slight change in the structure of the sound presentation did not affect 902 
our results that were highly similar to other tasks but may explain the slightly higher accuracy 903 
of decoding during the initial silence in the passive data. Indeed reference and target trials 904 
were systematically preceded by other reference and target trials, possibly allowing the 905 
decoder to discriminate using remnant activity from the previous trial. 906 
Frequency range discrimination task. One ferret was trained on a three-frequency-zone 907 
discrimination task with a Go/No-Go paradigm. The three frequency zones were defined 908 
once and for all and the animal had to learn the corresponding frequency boundaries (Low-909 
Medium: ~500 Hz / Medium-High: ~3400 Hz). Each trial consisted of the presentation of a 910 
single pure tone (0.75-s duration) with a frequency in one of the three zones. A trial began 911 
when the water pump was turned on and the animal licked a spout for water. The ferret 912 
learned to stop licking when it heard a tone falling in the Middle frequency range in order to 913 
avoid punishment (mild shock) but to continue licking if the tone frequency fell in either the 914 
Low or High range. The shock window started 100 ms after tone offset and lasted 400 ms. 915 
The pump was turned off 2 s after the end of the shock window. The learning criterion was 916 
defined as DR>40% in three consecutive sessions of more than 100 trials. 917 
 918 
Acoustic stimuli 919 
All sounds were synthesized using a 44 kHz sampling rate, and presented through a free-920 
field speaker that was equalized to achieve a flat gain. Behavior and stimulus presentation 921 
were controlled by custom software written in Matlab (MathWorks). 922 
Click rate discrimination task. Target and reference stimuli were preceded by an initial 923 
silence lasting 0.4 s followed by a 1.25 s-long broadband-modulated noise bursts (temporal 924 
orthogonal ripple combinations, TORC 66) acting as a neutral stimulus, without any behavioral 925 
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meaning (Fig.1A). Click trains all had the same duration (0.75 s, 0.8 s inter-stimulus interval 926 
of which the last 0.4 s consisted of the response window) and sound level (70 dB SPL). 927 
Rates used were comprised between 6 and 36 Hz (ferret A: references [6 7 8 15] Hz, targets 928 
[24 26 28 30 32 33 36] Hz / ferret L: references [26 28 30 32 36] Hz, targets [6 8 9 16] Hz). 929 
Tone detect task. Reference sounds were TORC instances. Targets were comprised of pure 930 
tone with frequencies ranging from 125–8000 Hz. Target and reference stimuli were 931 
preceded by an initial silence lasting 0.4 s. Target and reference stimuli all had the same 932 
duration (2 s, 0.8 s inter-stimulus interval whose last 0.4 s consisted of the response window 933 
for the aversive tone detect task) and sound level (70 dB SPL). In the appetitive version of 934 
this paradigm, target and reference duration varied between sessions (0.5–1.0 s, 0.4–0.5-s 935 
interstimulus interval). 936 
Frequency range discrimination task. The target frequency region was the Medium range 937 
(tone frequencies: 686, 1303 and 2476 Hz) while the reference regions were the Low and 938 
High frequency ranges (100, 190 and 361 Hz; 4705, 8939 and 16884 Hz). Thus the set of 939 
tones included 9 frequencies with 90% increment (~0.9 octave) and spanned a ~7.4 octaves 940 
range. Target and reference stimuli (duration: 0.75 s; level: 70 dB SPL) were preceded by an 941 
initial silence lasting 1.5 s and followed by a 2.4 s silence comprising the shock window (400 942 
ms starting 100 ms after the tone offset). 943 
 944 
Neurophysiological recordings 945 
To secure stability for electrophysiological recording, a stainless steel headpost was 946 
surgically implanted on the skull (Fritz et al. 2003; Fritz et al. 2010). Experiments were 947 
conducted in a double-walled sound attenuation chamber. Small craniotomies (1–2 mm 948 
diameter) were made over primary auditory cortex prior to recording sessions, each of which 949 
lasted 6–8 h. The A1 and frontal cortex (dorsolateral FC and rostral ASG) regions were 950 
initially located with approximate stereotaxic coordinates and then further identified 951 
physiologically. Recordings were verified as being in A1 according to the presence of 952 
characteristic physiological features (short latency, localized tuning) and to the position of the 953 
neural recording relative to the cortical tonotopic map in A1 67. Data acquisition was 954 
controlled using the MATLAB software MANTA 68. Neural activity was recorded using a 24 955 
channel Plexon U-   b  (                   : ~ 75 kΩ    1 kHz  75-μ       -electrode 956 
spacing) during the click discrimination task and the aversive version of the tone detect task. 957 
Recordings during the other tasks (frequency range discrimination and appetitive tone detect 958 
task) were done with high-impedance (2-1   Ω)    g                (A    -Omega and 959 
FHC), using multiple independently moveable electrode drives (Alpha-Omega) to 960 
independently direct up to four electrodes. The electrodes were configured in a square 961 
        w    ~    μ  b  w              . The probes and the electrodes were inserted 962 
     g                 g            b    ’     f                 j       f                    963 
spontaneous spiking. 964 
 965 
Data Analysis 966 

Data analyses were performed in MATLAB (Mathworks, Natick, MA, USA). 967 

Spike sorting 968 
To measure single-unit spiking activity, we digitized and bandpass filtered the continuous 969 
electrophysiological signal between 300 and 6,000 Hz. The tail shock for incorrect responses 970 
introduced a strong electrical artefact and signals recorded during this period were discarded 971 
before processing. 972 
Recordings performed with 24 channel Plextrodes (U-probes) (click discrimination and the 973 
tone detect tasks) were spike sorted using an automatic clustering algorithm (KlustaKwik, 69), 974 
followed by a manual adjustment of the clusters. Clustering quality was assessed with the 975 
isolation distance, a metrics developed by Harris et al, 2001 which quantifies the increase in 976 
cluster size needed for doubling the number of samples. All clusters showing isolation 977 
distance larger than 20 were considered as single units 70,71. A total of 82 single units and 978 
288 multi-units were isolated. All analyses were reproduced on both pools of units and 979 
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qualitatively similar results were obtained (Supplementary Information). We thus combined 980 
all clusters for the analysis. Spike sorting was performed on merged data sets from pre-981 
passive, active and post-passive sessions. 982 
For recordings performed with high-impedance tungsten electrodes (frequency range 983 
discrimination and relative pitch tasks), single units were classified using principal 984 
components analysis and k-means clustering followed by manual adjustment 26.  985 
 986 
Depth determination in the click rate discrimination task 987 
Each penetration of the linear electrode array produced a laminar profile of auditory 988 
responses in A1 across a 1.8 mm depth. Supra- and infragranular layers were determined 989 
with LFP responses to 100 ms tones recorded during the passive condition. The border 990 
between superficial and middle-deep layer was defined as the inversion point in correlation 991 
coefficients between the electrode displaying the shortest response latency and all the other 992 
electrodes in the same penetration 72,73.  993 
 994 
 995 
Click reconstruction from neural data 996 
Optimal prior reconstruction method 74 was used to reconstruct stimulus waveform from click-997 
elicited neural activity. Units with spontaneous firing rate larger than 2 spikes/s in at least one 998 
condition were considered for this analysis. Neuronal activity was binned at 10 ms in time 999 

with a 1-ms time step. For each trial, we defined       the stimulus waveform of trial k 1000 

(t ∈ [1,T]) and   
     the binned firing rate of each neuron i ∈ [1,N] where t ∈ [1,T+τ] with 1001 

τ the considered delay in the neuronal response. A linear mapping was assumed between 1002 
the neuronal responses and the stimulus: 1003 
 1004 
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for unknown coefficients . Equation (1) was rewritten as: 1007 
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Before the inversion in the previous formula, a single value decomposition was used to 1020 
eliminate the noisy components of the auto-correlation matrix. The maximal number of 1021 
components retained was empirically set to 70. Once the values    were fitted on all the 1022 
trials but one, the reconstructed stimulus     was defined as          with the 1023 
neuronal response R of the remaining run. Each trial was left out in turn. Reconstruction error 1024 
was quantified with the mean-squared error (MSE) of the reconstructed stimulus. One 1025 
passive and active reconstruction filters were fitted for each type of stimulus (reference and 1026 
target) in every session. 1027 
 1028 
Modulation index 1029 
To evaluate changes in a given parameter X (firing rate, vector strength) at the level of the 1030 
individual unit, we define the modulation index to compare situation 1 and 2 as for each 1031 
neuron as: 1032 

 

1033 

As a measure of the enhancement of target projection relative to reference projection in the  

1034 

task engaged state we used the following index (referred to target enhancement index in the 

1035 

text)   

1036 

                                                   

where d is the distance from baseline. 1037 

When simply measuring the asymmetry between reference and target in condition X, we 1038 
used the following index (Fig. 5b; 7d,h,l,p; S9c,f,i): 1039 

                        

Vector strength 1040 
Vector strength (VS) allows to measure how tightly spiking activity is locked to one phase of 1041 
a stimulus. If all spikes at exactly the same phase, VS is one whereas if firing is uniformly 1042 
distributed over phases VS is 0. It is defined in Goldberg & Brown 1969 as  1043 
 1044 

 1045 

Significance was assessed us  g       g ’               =  nr2, where r is the vector strength 1046 
and used p < 0.001 as the criterion for significant phase locking consistent with previous 1047 
work 76. 1048 
 1049 
Linear discriminant classifier performance 1050 
To evaluate the accuracy with which single-trial population responses could be classified 1051 
according to the presented stimulus (reference or target), we trained and tested a linear 1052 
discriminant classifier 39,77 using cross validation (FigS3). 1053 
Trial by trial pseudo-population firing rate vectors were constructed for each 100ms time bin 1054 
using units from all sessions and both animals. Training and testing sets were constructed by 1055 
randomly selecting equal numbers (15) of reference and target trials for each unit. All 1056 
contribution of noise correlations among neurons are therefore destroyed by this procedure 1057 
as the pseudo-population vector contains activity of units recorded on different days and on 1058 
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different trials. Since correlations between neurons can affect population coding 33 and are 1059 
modified by task engagement 13,  1060 
The classifier was trained for each time bin using the average pseudo-population vectors cR,t 1061 
and cT,t calculated from a random selection of an equal number of reference and target trials. 1062 
These vectors define at time bin t the decoding vector wt given by 1063 

 1064 

and the bias bt given by 1065 

 1066 

we also used Fisher discriminant analysis in which the decoding vector is defined as :  1067 
                      1068 

where Cov is the covariance matrix, which allows to correct the decoding vector by taking into account the trial 1069 
by trial correlations between units 1070 

These define the decision rule for a new population vector x,  1071 

 1072 

This rule was applied to an equal number of reference and target testing trials drawn from 1073 
the remaining trials that were not used to train the classifier. The proportion of correctly 1074 
classified trials gave the accuracy of the classifier. Cross-validation was performed 400 times 1075 
by randomly picking training and testing data to estimate the average and variance of 1076 
accuracy. This allowed comparing the performance of classification in two behavioral states 1077 
by constructing confidence intervals from the cross-validation. Note that this limits p-value 1078 
estimate to a minimum of 1/400=0.0025. 1079 
 1080 
Random performance 1081 
To evaluate whether the classifier performance is higher than chance, the classifier was 1082 
                           g                          b     ff   g       b    (‘  f      ’     1083 
‘   g  ’)  f       . F   each of 100 label permutations, cross-validation was performed 100 1084 
times. This allows comparing the performance of classification with chance levels by 1085 
constructing confidence intervals from the cross-validation and from the random shuffled 1086 
permutations. 1087 
 1088 
 1089 
Classifier evolution  1090 
When studying the evolution of population encoding (Fig. S6), we defined early sound, late 1091 
sound, and silence periods as 1700-1900 ms, 2200-2400 ms and 2700-2900 ms (equal 1092 
duration for comparison) relative to trial onset. The classifier was trained on randomly chosen 1093 
trials from one time period and then tested on trials at all other 100ms time bins.  1094 
We also constructed matrices showing the accuracy of the classifier trained and tested at all 1095 
100ms time bins and evaluated whether these values are higher than chance using 1096 
surrogate data sets by shuffling labels as described above. 1097 
When comparing the classifier during sound and silence periods across tasks (Fig. 7), the 1098 
following periods were used:  1099 
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Silence 2.5-2.9s 2.5-2.9s 0-0.1 after stim offset 2.4-2.8s 

 1101 
Projection onto decoding vectors 1102 
To study the contribution of reference and target trials to classifier performance, we projected 1103 
population firing vectors at each time bin onto decoding vectors calculated during the sound 1104 
and silence periods as defined above. Before projection, the mean spontaneous activity of 1105 
each unit was subtracted from its firing rate throughout the whole trial. Deviations from 0 of 1106 
the projection show activity deviating from spontaneous activity along the decoding axis.  1107 

Controlling for lick-responsive neurons 1108 
In order to control for the contribution of units directly linked with task-related motor activity to 1109 
our results, we combined reconstruction and decoding methods to identify and remove lick-1110 
responsive neurons so that linear classification no longer yielded any licking-related 1111 
information. The approach comprised the following steps: 1112 

- Optimal prior reconstruction (described in Click reconstruction from neural data) was 1113 
used to reconstruct lick-activity separately for each unit. 1114 

- Reconstruction values for each unit were then sampled at the time of licks and at 1115 
randomly selected times without licking. These values were used to construct 1116 
population vectors of lick and non-lick activity. 1117 

- A linear classifier (described in Linear discriminant classifier performance) was 1118 
trained and tested using cross-validation to distinguish lick from non-lick events. 1119 

- Reconstruction values and classification was also performed on random data 1120 
obtained by reconstructing the licking activity of a session with the neural activity of a 1121 
subsequent session. This made it possible to establish the distribution of accuracy for 1122 
randomized data. 1123 

- The accuracy of classification was compared between the true data and the 1124 
randomized data sets and a p-value was calculated by counting the number of 1125 
permutations showing better accuracy for the randomized data than the true data.  1126 

- We progressively removed units, starting with those with highest classifier weights, 1127 
which reduced the accuracy of classification, until the p-value of population 1128 
classification rose above 0.4. This indicated that the remaining units contained no 1129 
more information about lick events than randomized data. 1130 

- Only the units remaining after this procedure were used to re-analyze the data and 1131 
verify that reliable classification and difference in projections of reference and tone 1132 
trials did not rely on the difference in licking activity between the two trials. 1133 
For the click rate discrimination task only a subset of sessions (15/18) had reliable 1134 
recordings of all lick events, so the analysis was done on 308 units (not 370), 277 1135 
units were identified as non-lick related. For the appetitive tone task 99/100 units, for 1136 
the aversive tone task 161/202 and for the frequency range discrimination 520/758. 1137 
 1138 

Gaussian-process factor analysis 1139 
To visualize neural trajectories of the large population of units recorded in A1, we used 1140 
Gaussian-process factor analysis as described in 78. This method has the advantage over 1141 
more traditional methods of dimensionality reduction such as PCA of jointly performing both 1142 
the binning/smoothing steps and the dimensionality reduction. 1143 
 1144 
Statistics 1145 
Statistics on classifier performance relied on p-value estimation using cross-validation. For 1146 
each statistical analysis provided in the manuscript, the Kolmogorov–Smirnov normality test 1147 
was first performed on the data. As the data failed to meet the normality criterion, statistics 1148 
relied on non-parametric tests. When performing systematic multiple tests, the Bonferroni 1149 
correction was applied. 1150 
 1151 
Data availability 1152 
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The data that support the findings of this study are available from the corresponding author 1153 
upon reasonable request. 1154 
 1155 
Code availability 1156 
Code used in the article can be supplied upon request by writing to the corresponding author. 1157 
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Supplementary information 1453 
Comparison of results in single and multiunits  1454 
All analyses in the main section of the paper concerning the click train discrimination 1455 
task combine results from single units (isolation distance > 20, see Methods) and 1456 
multi-units because we found no differences concerning their general properties (see 1457 
table 1) and the main population-level results of the paper (see table 2) were 1458 
maintained using SU activity only, although the power of the analysis was of course 1459 
reduced. 1460 
 SU  MU  Comparison 

MI : baseline 0.14 +/- 0.03 
(***) 

0.19 +/- 0.02 (***) p= 0.22 

MI : evoked 0.04 +/- 0.05 
(ns) 

- 0.05 +/- 0.06 
(ns) 

p=0.22 

MI : vector 
strength 

0.05 +/- 0.006 
(***) 

0.04 +/- 0.0075 
(***) 

p=0.25 

Ref FR pass. – 
Snd 

7.45 +/- 0.70 6.67 +/- 0.88 p=0.48 

Ref FR eng. – Snd 9.14 +/-0.86 8.38 +/- 1.06 p=0.57 

Targ FR pass. – 
Snd 

7.78 +/- 0.72 6.15 +/- 0.77 p=0.12 

Tar FR eng. – Snd 9.9 +/- 0.93 7.9 +/- 0.97 p=0.15 

Ref FR pass. – Sil 6.34 +/-0.64 5.3 +/- 0.68 p=0.25 

Ref FR eng. – Sil 7.96 +/-0.76 7.65 +/- 0.94 p=0.79 

Targ FR pass. – 
Sil 

6.31 +/-0.67 5.4 +/- 0.76 p=0.36 

Targ FR eng – Sil. 8.56 +/-0.84 7.26 +/- 0.99 p=0.32 

Table 1 Comparison of unit properties for single and multi units. Mean +/- s.e.m are 1461 
given for each value and the comparison between SU and MU is performed using a 1462 
ttest. For modulation indexes (first three lines), the significance compared to zero is 1463 
given in brackets. These results are identical to those found in the main paper. 1464 
 1465 
To verify that the population-level results were maintained SU data, despite the 1466 
reduced number of units (82 SU units, 370 total units used in main paper), we 1467 
recapitulate below the main results using SU activity alone. 1468 
 1469 

 Mean [C.I.] – signif. of comparison 

Sound accuracy pass. and eng. 0.97 [0.95:0.99] - 0.98 [0.94:1]  NS 

Silence accuracy pass. and eng. 0.59 [0.52:0.66] - 0.78 [0.69:0.87] * 

Sound: ref and target projected values 
pass. 

29 [25:36] - 26 [18:33] NS 

Silence: ref and target projected values 
pass. 

6 [4:8] - 12 [6:16] NS 

Sound: ref and target projected values 
eng. 

16 [8:23] - 44 [33:55] ** 

Silence: ref and target projected values 
eng. 

2 [0.7:4] - 37 [33:42] ** 

Table 2 Recapitulation of important results using SU activity alone. 1470 
 1471 
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We found that the significant increase in accuracy during the silence with task 1472 
engagement was maintained after restriction to SU activity. We also observed the 1473 
significantly greater role played by target evoked activity in the engaged state after 1474 
projection (as in Fig. 3) using SU activity alone (p<0.0025). The only difference with 1475 
results given in the main paper is that in the passive state during the silence the 1476 
stronger contribution of target activity did not achieve significance as in Fig. 3d, 1477 
bottom. 1478 
 1479 
Population-encoding dynamics change between conditions 1480 
In the analyses reported in the main text, we trained a classifier at each time point in 1481 
the trial, and used it to evaluate stimulus discrimination at the same time point in 1482 
held-out trials. To assess how much the underlying encoding changes over the trial, 1483 
we used two procedures. First, we directly compared the classifiers determined at 1484 
different time-bins by computing the correlation between them (Fig. S6a,c). Second, 1485 
we used the classifier obtained at three different trial epochs (early and late stimulus, 1486 
post-stimulus silence) to classify the neural activity along the whole trials (Fig. S6b,d). 1487 
If the encoding of stimulus underlying stimulus discrimination changes over time in 1488 
the trial, a classifier trained on one time point will lead to a lower discrimination 1489 
performance at other times.  1490 
In the passive condition, we found that changes in encoding over time are weak.  The 1491 
encoding was highly homogeneous within stimulus presentation and during the post-1492 
sound silence (Fig. S6a). Consistent with this view, classifiers trained during the early 1493 
or the late phases of the stimulus presentation could be used efficiently at all other 1494 
times during stimulus presentation without an appreciable drop in accuracy (Fig. S6b, 1495 
brown and orange curves). In contrast, the same classifier led to chance-level 1496 
discrimination at time points after stimulus presentation. Conversely a classifier 1497 
trained after stimulus presentation led to chance-level performance during stimulus 1498 
presentation (Fig. S6b, yellow curve). In the passive condition, the neural encoding 1499 
that underlies stimulus discrimination therefore appears to change very little during 1500 
stimulus presentation, and shifts abruptly afterwards. 1501 
A different picture emerged when animals were engaged in the task. The encoding 1502 
appeared to change more progressively over the trial (Fig. S6c), and a classifier 1503 
trained at one point systematically led to reduced discrimination performance at other 1504 
time points (Fig. S6d). Moreover, no sharp transition was apparent at the time the 1505 
stimulus was switched off. In particular, a classifier trained during the stimulus 1506 
presentation led to a significant discrimination performance after stimulus 1507 
presentation (Fig. S6d, brown and orange curves). Conversely, a classified 1508 
determined during the post-sound silence led to an above chance and progressively 1509 
increasing discrimination performance during stimulus presentation (Fig. S6d, yellow 1510 
curve).  1511 
Altogether, in the engaged condition, the population encoding underlying stimulus 1512 
discrimination therefore appeared to progressively shift from a representation purely 1513 
along a stimulus-driven axis, where categorical information was present but 1514 
uncorrelated with behavior (Fig. 3c top panel), to a representation along a decision-1515 
related axis, which was directly correlated with the behavioral action (Fig. 3e bottom 1516 
panel). 1517 
 1518 
 1519 
 1520 
 1521 
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Supplementary Figures 1522 
 1523 

 1524 

 1525 

Fig S1  
a. For each unit the vector strength for the reference and target click train is plotted in the engaged state vs 
the passive state. Animals are given in different colours and stimuli as different markers. Note that most 
points are below the x=y line, showing higher phase locking in the passive state.  
b. Modulation index of vector strength in task-engaged and passive states for fast and slow stimuli 
separately. (one-sample two-tailed Wilcoxon signed rank with mean 0, n=287; zval=-4.29, p=1.75e-5 & 
zval=-8.20, p=2.36e-16; ***: p<0.001).  
c. Modulation index of vector strength in task-engaged and passive states for reference and target stimuli 
separately. (one-sample two-tailed Wilcoxon signed rank with mean 0, n=287; zval=-4.95, p=7.37e-7 & 
zval=-7.54, p=4.75e-14 ;***: p<0.001). 
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 1538 

Fig S2  
a. Comparison of average firing rates on log scale in passive (left) and engaged (right) between fast and 
slow stimuli during the sound. (one-sample two-tailed Wilcoxon signed rank with mean 0, n=360; zval=-0.53, 
p=0.59 & zval=-0.25, p=0.8).  
b. Accuracy of decoding in engaged and passive state using equal weights for all units. In grey, chance level 
performance evaluated on label-shuffled trials. Error bars are 1 std over 400 cross-validations 
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Fig S3  
Illustration of binary classifier, see materials and methods. 
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 1554 

 1555 

Fig S4  
a. Effect of randomly adding units on decoding accuracy during the sound period. Error bar: 95% confidence 
intervals over 100 random selections of units.  
b. Units taken from the granular layer only are used for classification and accuracy is compared with the 
same number (89) of randomly chosen units. Error bars: 95% confidence intervals. (100 sub-sampling 
procedures, 400 cross validations for accuracy using granular layer units; Bonferonni corrected p-value (8 
tests): 0.0063; p=0.622, p=0.933, p=0.624, p=0.618)   
c. Same as b but for infragranular layer (273 units). Error bars: 95% confidence intervals. (100 sub-sampling 
procedures, 400 cross validations for accuracy using granular layer units; Bonferonni corrected p-value (8 
tests): 0.0063; p=0.0067, p=0.51, p=0.015, p=0.48)  
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Fig S5  
a. Comparison of accuracy during the sound period in the passive state before behavior, the task-engaged 
state and the passive state after behavior. Error bars represent 95% confidence intervals. (n=400 cross 
validations; pas.pre/eng: p=0.45, pas.pre/pas.post: p=0.74, eng/pas.post: p=0.58).  
b. Comparison of accuracy during the silence period as in a. (n=400 cross validations; Bonferonni corrected 
p-value (3 tests): 0.0167; pas.pre/eng: p<0.0025, pas.pre/pas.post: p=0.43, eng/pas.post:, p<0.0025; **: 
p<0.01) 
c. Comparison of accuracy during the sound period in a naive animal with the passive state before behavior, 
the task-engaged state and the passive state after behavior in trained animals. For classification, the 
number of units in the trained animals was downsampled to the same number (222) as those recorded in 
the naive animal to allow for comparison. Error bars represent 95% confidence intervals. (n=100 cross 
validations after random downsampling; Bonferonni corrected p-value (3 tests) : 0.0167; nve/pas.pre, 
nve/pas.post,nve/eng: p<0.0025;**: p<0.01)  
d. Comparison of accuracy during the silence period as in c. (n=100 cross validations after random 
downsampling; Bonferonni corrected p-value (3 tests) : 0.0167;  nve/pas.pre, nve/pas.post, nve/eng: 
p<0.0025;**: p<0.01)  
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 1567 

Fig S6. 
a. Classifier evolution in the passive state is shown in colour as the correlation between decoding vectors at 
one time (y-axis) versus another (x-axis). Squares with below chance correlation values are shown in grey. 
Here, in the passive state, coding is homogeneous throughout the sound but does not allow for significant 
decoding in the silent period.   
b. Decoding accuracy in the passive state using a decoder trained on the early (1) or late (2) sound or silence 
(3) periods. Accuracy is high throughout the sound for both early and late sound training but rapidly falls off 
during the silence. The decoder trained during the silence is only above chance after the sound has ended.
  
c. Classifier evolution in the task-engaged state as in (a). During the silence, coding is homogeneous. 
d. As in (b) for the task-engaged state. The decoder trained during the early sound is specific to this period 
and performs poorly during the silence. Conversely, training late in the sound increases performance during 
the silence but decreases performance at the beginning of the sound. The accuracy of a decoder trained 
during the silence ramps up during sound presentation.  
e. Correlation of passive and engaged decoding vectors throughout the trial. Vectors show stronger 
similarity during the sound than the silence between states. Note the different color scale, correlation 
between states is as expected lower than within states. 
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Fig S7  
a. Average population PSTH on reference and target trials in the passive and task-engaged states. The PSTH 
of each neuron is baseline subtracted and then all PSTHs are averaged. Error bars: 95% C.I. after 
bootstrapping 400 times over all neurons (n=370).  
b. Average normalized population PSTH on reference and target trials in the passive and task-engaged 
states. The PSTH of each neuron is baseline subtracted, corrected for the sign of its peak response to 
reference or target and normalized to its maximal response across states and stimuli. All normalized PSTHs 
are then averaged. Error bars: 95% C.I. after bootstrapping 400 times over all neurons (n=370).  
c. Distance of reference and target from baseline after normalization as in (b). Results are shown for both 
states during the sound or the silence period. Error bars represent 95% confidence intervals. (n=400 cross 
validations; pass: p=0.025 & p=0.025, eng: p<0.0025 & p<0.0025;*: p<0.05; **: p<0.01) 
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FigS8.  
a. Accuracy of decoding during the sound (left) and silence (right) period in passive and engaged states 
calculated using a classifier determined with time bins of varying size. Error bars represent 95% confidence 
intervals. (n=400 cross validations)  
b. Index of target enhancement by task engagement calculated during the sound period using a classifier 
determined with time bins of varying size. Note that for all time bins the value if significantly greater than 0, 
indicating a systematic enhancement of target driven encoding in the engaged state. Error bars represent 
95% confidence intervals. (n=400 cross validations) 
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Fig S9.  
a. Mean noise correlation in passive and engaged state using time bins of varying 
duration. . Error bars represent s.e.m over n=3361 pairs(two-sided Wilcoxon signed rank, 
n=3361 pairs;  zval=4.05, p=4.9E-5; zval=7.91, p=2.4E-15; zval=10.33, p=4.9E-25; 
zval=12.33, p=6.0E-35;  ***:p<0.001) 
b. Projection onto the decoding axis determined during the sound period of trial-averaged 
reference (blue) and target (ref) activity during the passive (dark colors) and the active 
(light colors) sessions and index of target enhancement by task engagement (as in 
Fig5&8). Time bins of various size were used to define the decoding vector for projection. 
Note that for easy comparison with the Fisher discriminant analysis, decoding was done 
on each session individually and then the results for all sessions were averaged.   
c. As in b, for decoding vector defined using Fisher discriminant analysis. 
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Fig S10.  
a. Schematic illustrating the relationship of ‘signal’ (decoding weight) and ‘noise’ correlations between units. 
Dots represent the mean target and references responses for two fictive neurons,  whereas ellipses show the 
variance. Negative but not positive noise correlations improve stimulus discrimination for units that have the 
same sign of decoding weight (ie both are target-preferring or both are reference preferring) whereas the 
opposite if true of units with opposite sign decoding weights.  
b. Average noise correlations for units with the same or opposite sign of decoding weight in the passive (left) 
or engaged (right) state. In the engaged state noise correlations strongly shift towards reduced correlations 
for all bin sizes used in the analysis.  
c. Cumulative distribution of noise correlations for units with the same or opposite sign of decoding weight 
in the passive (left) or engaged (right) state. Note that the distributions are similar in the passive state 
whereas in the active state there is a clear shift of the noise correlations for units of opposite decoding 
weight sign towards lower values. There is a clear enhancement of negative correlation values. 
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Fig S11.  
Three different tasks are considered: aversive tone detect (a-d), appetitive tone detect (e-h) and frequency 
range discrimination (i-l). Note that all analysis in this figure is done after excluding lick-responsive units for 
these tasks using the method described in Fig 4.  
a, e, i. Top: Schematic of trial structure illustrating reference and target trials. Gray arrows show response 
window for the aversive tasks. Bottom: Licking frequency during correct target (red), reference (blue) and 
target error (gray) trials. Error bars are s.e.m over all trials.  
b, f, j. Accuracy of stimulus classification in passive and engaged states. In grey, chance level performance 
evaluated on label-shuffled trials. Error bars represent 1 std calculated over 400 cross-validations.  
c,g,k. Mean classifier accuracy during the post-sound silence period in passive and engaged conditions. Gray 
dotted lines give 95% confidence interval of shuffled trials. Error bars represent 95% confidence intervals. 
Note that accuracy is systematically above chance level in both conditions but does not change between the 
passive to the engaged state. (n=400 cross validations; p=0.21,0.18,0.055)  
d,h,l. Classifier evolution in the passive (left) and engaged (right) state is shown in color as the correlation 
between decoding vectors at one time (y-axis) versus another (x-axis). Squares with below chance 
correlation values are shown in grey. For the appetitive tone detect task the overlap between sound onset 
and sound offset periods is not calculated as the difference in trial durations causes different overlaps in 
time on a trial to trial basis between the two. Note that the sound and silence periods in all tasks rely on 
different decoding vectors and in the case of the frequency range discrimination task, there is a progressive 
shift in the engaged state between decoders. 
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Figure S12  
 a,d,g Projection of onto the decoding axis determined during the post-sound silence period of trial-averaged 
reference (blue) and target (ref) activity during the passive (dark colors) and the active (light colors) 
sessions. A baseline value computed from pre-stimulus spontaneous activity was subtracted for each 
neuron, so that the origin corresponds to the projection of spontaneous activity (shown by black line). Note 
that there is a tendency for the target-driven activity to be further from the baseline in the active state 
and/or the reference-driven activity to be closer. The periods used to construct the decoding axis are shaded 
in gray. Error bars represent 1 std calculated using decoding vectors from cross-validation (n=400).   
b,e,h Index of target enhancement by task engagement based on projections using the decoding axis 
determined during post-sound silence. In green same index instead giving the same weight to all units. The 
difference between the green and black curved indicates that the change in asymmetry induced by task 
engagement cannot be detected using the population averaged firing rate alone.  Error bars represent 1 std 
calculated using decoding vectors from cross-validation (n=400).  
c,f,i Comparison of reference/target asymmetry for evoked responses in different states during the post-
sound silence compared to different baselines given by passive or engaged spontaneous activity. 
Reference/target asymmetry is the difference of the distance of target and reference projected data to a 
given baseline. We examine three cases: (i) passive evoked responses, distances calculated relative to 
engaged spontaneous activity; (ii) engaged evoked responses, distances calculated relative to passive 
spontaneous activity; (iii) engaged evoked responses, distances calculated relative to engaged spontaneous 
activity. In all three cases, the engaged decoding axis was used for projections. Error bars represent 95% 
confidence intervals.(n=400 cross validations; Aversive Tone detect: p(col1,col3)<0.0025 & p(col2,col3)=0.92; 
Appetitive tone detect; p(col1,col3<0.025 & p(col2,col3)=0.94; Frequency range discrimination: 
p(col1,col3)<0.0025 &  p(col2,col3)=0.9; **: p<0.01). 
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