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Abstract

Motivation: Bioinformatics databases grow rapidly and achieve values hardly to imagine a decade ago.
Among numerous bioinformatics processes generating hundreds of GB is multiple sequence alignments of
protein families. Its largest database, i.e., Pfam, consumes 40–230 GB, depending of the variant. Storage
and transfer of such massive data has become a challenge.
Results: We propose a novel compression algorithm, MSAC (Multiple Sequence Alignment Compressor),
designed especially for aligned data. It is based on a generalisation of the positional Burrows–Wheeler
transform for non-binary alphabets. MSAC handles FASTA, as well as Stockholm files. It offers up to six
times better compression ratio than other commonly used compressors, i.e., gzip. Performed experiments
resulted in an analysis of the influence of a protein family size on the compression ratio.
Availability: MSAC is available for free at https://github.com/refresh-bio/msac and http:

//sun.aei.polsl.pl/REFRESH/msac.
Contact: sebastian.deorowicz@polsl.pl
Supplementary material: Supplementary data are available at the publisher Web site.

1 Introduction
In modern times, the sizes of data collected in various fields are huge and
are constantly growing. This has a direct impact on the increasing costs
of IT infrastructure. As far as bioinformatics is concerned a number of
surveys claim that soon the cost related to storage of data will be at least
comparable to the costs of generating these data (Deorowicz & Grabow-
ski, 2013; Stephens et al., 2015). A natural solution to this problem is to
reconsider the need to store all collected data. One could advocate that a
significant part of collected files are rather “temporary” and can be safely
removed after performing the analyses. Unfortunately, this could ruin one
of the fundamentals of science, i.e., reproducibility, as many bioinforma-
tics tools work in a non-deterministic manner. That means that when using
these tools several times, we would obtain similar results, but not always
exactly the same. What is more, the emergence of new bioinformatics sof-
tware allows revealing undiscovered relationships between collected data
and their new biological meaning. Hence, very often the reproducibility is
of high importance, so a number of temporary files are stored for a long
time in many research centres.

To make storage possible compressing data seems to be a primary
solution. Even 25-years old, but still popular gzip algorithm, treated as de

facto standard, allows to reduce many types of data several times. That is
why gzip is a common choice in bioinformatics when storing sequencing
data, protein sequences, etc. Nevertheless, gzip is a universal compressor,
developed mainly to compress textual files with sizes considered to be
small from the modern perspective. Besides, being all-purpose, it cannot
make use of special types of redundancy existing in the bioinformatic
datasets. Therefore, a number of specialised compressors were developed
in recent years.

The most attention was devoted to the field of genome seque-
ncing (Bonfield & Mahoney, 2013; Roguski & Deorowicz, 2014; Numa-
nagić et al., 2016). The obtained compression ratios are sometimes an
order of magnitude better than offered by gzip. Other examples of huge
datasets whose storage is supported by dedicated software are collections
of complete genomes of the same species. Various algorithms for redu-
cing their sizes a few orders of magnitude were proposed (Deorowicz et
al., 2013; Li, 2016). In addition, these algorithms may have offered fast
queries to the compressed data. Results of ChiP-Seq and RNA-seq experi-
ments are another noteworthy example. Solutions capable of compressing
them by the factor of at least a few have been proposed (Wang et al., 2016;
Ravanmehr et al., 2017) very recently.

Storage of protein databases, like Pfam (Fin et al., 2016), is also a chal-
lenge. For example, the recent release of Pfam (v. 31.0) contains 16,712
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2 Deorowicz et al.

protein families and about 5 billion residues. The uncompressed size of
the default variant of the database is about 42 GB. Moreover, its NCBI
variant stores more than 22 billion residues and occupies about 228 GB.
Even when gzip-compressed, the files are still of extraordinary sizes, i.e.,
5.6 GB and 24 GB, respectively.

To the best of our knowledge, there has been no breakthrough in the
field of compression of such protein datasets so far. An interesting alter-
native could be to use a better universal compressor and the popular 7-zip
program seems to be a reasonable choice. Nevertheless, it consumes a lot
of memory for large files and is relatively slow. What is more important,
it is still a universal tool, thus it does not use knowledge about properties
of these datasets. Therefore, significantly better results should be possible
to obtain if we took this information into account and use it during the
construction of the algorithm.

In this article, we propose a specialised compression algorithm desi-
gned to decrease a size of databases of multiple sequence alignments
(MSA) of protein families. Our tool, MSAC, can compress both FASTA
files containing a single protein family data as well as collections of pro-
teins in Stockholm format (Fin et al., 2016) (used in Pfam database). The
proposed algorithm not only offers several times better compression ratios
than gzip (and significantly better than 7-zip) for large protein families. It
is also much faster in compression than the examined counterparts and has
moderate memory requirements, roughly similar to the input dataset (or a
single family for Stockholm files) size.

2 Methods

2.1 Background

The heart of gzip and 7-zip compressors is a well known Ziv–Lempel
family of algorithms (Ziv & Lempel, 1977; Storer & Szymanski, 1982). Its
key idea is to look for exact copies of some parts of a file being compressed.
When a copy is sufficiently long (usually at least 3 or 4 symbols), then it is
beneficial to store the information about its location and its length instead
of storing its symbols literary. Roughly speaking, both gzip and 7-zip
perform so-called LZ-factoring in which the input sequence of symbols is
transformed into a sequence of tuples that can be of two types: matches
(describing a repetition of a fragment of already processed part of the file)
and literals (single symbols stored when no sufficiently-long match was
found). This sequence of tuples is then coded using one of the entropy
coders like Huffman coder (Huffman, 1952) or range coder (Salomon &
Motta, 2010). In case of MSA files, looking for copies of the fragments
of a text means looking for identical fragments of sequences of various
proteins. In this way long runs of gaps, that supplement alignments, are
stored as copies of some other “lines” of MSA files. Such a strategy leads
to up to 15-fold compression in case of gzip and up to 50-fold for 7-zip,
when compressing large protein families with many gaps.

When considering MSA files several drawbacks of the mentioned
approach can be shown. The first one results from the specificity of an
index structure, which is necessary to search for matches in the part of the
file that has been just processed. Such index structures (like suffix trees,
hash tables) are usually several times larger than the indexed part of the
data. The second disadvantage results from the dependence between the
size of the indexed part and the number of positions that should be exami-
ned when looking for the best match. As a consequence, the operating time
increases together with the growth of the indexed part. To preserve speed,
LZ-compressors have to make a trade-off, e.g., restrict to examining only
some fraction of potential matches. What’s more, defining what “the best
match” means is not clear. Coding of the longest possible match not always
leads to the highest compression ratios. It happens that choosing a shorter
match (or even a literal) at a current position leads to a longer match at the
following position, which in consequence improves the compression ratio.

Besides, in case of MSA files, the sequences are aligned along the columns
and it is unusual to find a long match starting at different column than the
current one. That is why, most of potential candidates for matches could
be omitted during analyses. Finally, this knowledge (inaccessible to uni-
versal compressors) could be used to encode the found matches cheaper,
i.e, using the smaller number of bits.

In the universal compression field there are also different approa-
ches than LZ-based. The two most known families are based on the
Burrows–Wheeler transform (BWT) and prediction by partial matching
(PPM) (Cleary & Witten, 1984). The popular bzip2 program, implemen-
ting Fenwick’s variant (Fenwick, 1996) of the BWT-based compressor, is
a representative of the former family. The Burrows–Wheeler transforma-
tion (Burrows & Wheeler, 1994) of the input sequence is performed at its
first stage. As a result, long parts of the transformed sequence contain only
a few different symbols (or even a single symbol). Such a temporary seque-
nce is then further changed using a move-to-front transformation (Bentley
et al., 1986) and Huffman encoded (Huffman, 1952). In the PPM algori-
thms the statistics of symbol occurrences in various contexts (formed by
preceding symbols) are collected. They are used to estimate the probability
of appearance of each symbol in every single place. Based on this estima-
tion short codewords are assigned to more probable symbols and longer
ones to less probable, with the use of an entropy coder. An interested rea-
der is referred to one of textbooks on data compression, for more detailed
discussion and examples of the LZ-based, BWT-based, and PPM-based
algorithms (Salomon & Motta, 2010).

2.2 General idea of the proposed algorithm

To overcome the problems with indexing of huge files and make use of the
alignment property of the MSA files we decided not to follow the obvious
strategy of implementing the LZ-based algorithms adopted for MSA data.
Rather than that, we focused on the recently proposed, positional Burrows–
Wheeler transform (PBWT) (Durbin, 2014). Its name reflects that it was
motivated by the classical Burrows–Wheller transform. Nevertheless, it
was designed to transform aligned bit vectors to allow faster queries for
genotype data. Later, Li used the PBWT to develop a specialised com-
pressor of genotype datasets (Li, 2016). One of the assets of the PBWT
is its memory frugality as no large index structures (required not only by
LZ-based algorithms, but also by classical BWT-based and PPM-based
ones) are necessary. Instead, the original PBWT processes rather short bit
vectors (of values 0 and 1) one by one.

The PBWT was defined for bit vectors, but fortunately it can be simply
generalized to larger alphabets. In the next section we propose such a
generalisation. Then, we adopt some transforms known from the BWT-
based compressors to obtain the novel algorithm for the MSA data.

2.3 Positional Burrows–Wheeler transform for non-binary
alphabets

Let Σ be an alphabet of symbols {0, 1, . . . , σ − 1}. Let S be an ordered
collection of equal-length sequences {S1, S2, . . . , Sn}. The length of
each sequence is denoted by ` and for each valid i: Si = si1s

i
2 . . . s

i
`.

Each sij is a symbol from the alphabet Σ. A substring of Si from jth
to kth symbols is defined as Si

j,k = sijs
i
j+1 . . . s

i
k . A special type of a

substring is a suffix of a sequence: Si
j,` = sijs

i
j+1 . . . s

i
`. The S can be

seen as a matrix of n rows and ` columns. For simplicity of presentation
it is convenient to define also a jth column of S as Sj = s1js

2
j . . . s

n
j .

Finally, by sortj(S) we denote the collection S lexicographically sorted
according to the suffixes starting at (j + 1)th symbol.

The generalised positional Burrows–Wheeler transform (gPBWT)
changes S into P , where P is defined in the following way. The last
column of P is equal to the last column of S, i.e., P` = S`. To obtain
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procedure gPBWT(S)
Input: S — ordered collection of n sequences each of length `
Output: P — ordered collection of n sequences each of length `,

where P is gPBWT(S)

1 prev_ordering ← {1, 2, . . . , n}
2 for j ← ` downto 1 do

{Find histogram of symbols in current column}
3 for c← 0 to σ − 1 do H[c]← 0

4 for i← 1 to n do H[Sj
i ]← H[Sj

i ] + 1

{Find cumulative histogram}
5 H∗[0]← 0

6 for c← 1 to σ − 1 do H∗[c]← H∗[c− 1] +H[c− 1]

{Determine new ordering}
7 for i← 1 to n do
8 s← Sj

prev_ordering[i]

9 H∗[s]← H∗[s] + 1

10 p← H∗[s]

11 cur_ordering[p]← prev_ordering[i]
{Permute current column}

12 for i← 1 to n do P j
i ← Sj

prev_ordering[i]

{Update ordering for next column}
13 prev_ordering ← cur_ordering

procedure rev-gPBWT(S)
Input: P — ordered collection of n sequences each of length `,

where P is gPBWT(S)
Output: S — ordered collection of n sequences each of length `

1 prev_ordering ← {1, 2, . . . , n}
2 for j ← ` downto 1 do

{Permute current column}
3 for i← 1 to n do Sj

prev_ordering[i] ← P j
i

{Find histogram of symbols in current column}
4 for c← 0 to σ − 1 do H[c]← 0

5 for i← 1 to n do H[Sj
i ]← H[Sj

i ] + 1

{Find cumulative histogram}
6 H∗[0]← 0

7 for c← 1 to σ − 1 do H∗[c]← H∗[c− 1] +H[c− 1]

{Determine new ordering}
8 for i← 1 to n do
9 s← Sj

prev_ordering[i]

10 H∗[s]← H∗[s] + 1

11 p← H∗[s]

12 cur_ordering[p]← prev_ordering[i]
{Update ordering for next column}

13 prev_ordering ← cur_ordering

Fig. 1. Pseudocodes of the generalised PBWT algorithm (left) and its reverse (right)

Pj we sort the sequences of S according to their suffixes starting from the
(j + 1)th symbol and pick the jth column, i.e., Pj = (sortj(S))j .

The original PBWT by Durbin transforms bit vectors with the prefix-
sorting order. We decided to present the gPBWT algorithm in the suffix-
sorting order just to be more similar to the original BWT definition. It is
worth to mention that both orderings for PBWT and gPBWT are equivalent
in the sense that it is enough to reverse the input sequences to switch
between the variants.

What is important from the performance point of view, the sortj(S)

can be easily obtained from sortj+1(S). Moreover, in practice it suffices
to store the ordering of indices of the S sequences and no coping of the
complete sequences of S is made. The pseudocodes of algorithms for
determination of the gPBWT and its reverse are presented in Fig. 1. In the
gPWBT construction, for the jth column, we calculate the histogram H

of symbols at the jth column. Then we compute the cumulative statistics
H∗, whereH∗[c] stores the information about the total number of symbols
lexicographically smaller than c in the jth column. In the next step, we
make use of the ordering of suffixes obtained when processing (j + 1)th
column and H∗ to obtain the ordering according to the suffixes starting
from the jth column. Finally, we permute the symbols of the jth column
of S to obtain the jth symbol ofP using the ordering according to suffixes
of S starting form the (j + 1)th symbol. The reverse gPBWT algorithm
performs essentially the same steps, but some of them in the opposite order.

Let us focus now on the time and space complexity of the gPWBT
computation. For each column we have to initialize arrayH and calculate
arrayH∗ which is made inO(σ) time. Determination of the new ordering,
as well as performing the permutation takes O(n) time. Since there are
` columns, the total time complexity of both the forward as well as the
reverse gPBWT algorithms is O(max(n, σ), `). In case of sufficiently
large collections S, i.e., when the number of sequences n is not smaller
than the alphabet size σ, the time complexity reduces to O(n`), which is
linear in terms of the total number of symbols in the input dataset S. Since
the only data that must be stored in memory consists of the previous and
current orderings and the statisticsH andH∗, the space complexity of the
algorithm is just O(max(n, σ)), which for sufficiently large collections
is just O(n).

2.4 Novel compression algorithm

The compression algorithm we propose in the article is able to handle
both FASTA and Stockholm files. FASTA files contain a single (aligned)
protein family whereas Stockholm files can be seen as a concatenation of
alignments of many protein families supplemented by some metadata. For
simplicity we start with the description of the variant for FASTA files.

The general scheme of the proposed compression algorithm is presen-
ted in Fig. 2. In the first stage, the input FASTA file is read into the memory
(Read-and-Split block). The ids of the sequences are concatenated into a
single string to be transferred to the LZMA block where they are compres-
sed using the LZMA algorithm (used for example in the 7-zip program).
The raw protein sequences are transferred to the Transpose block for the
transposition of the matrix (containing the protein sequences in the form
of rows). The columns of the matrix S (rows of the transposed S) are
transferred to the gPBWT block from the last to the first one. In this block
they are transformed by the gPBWT algorithm described in the previous
subsection.

Each permuted column is then transferred separately to the WFC
block. This block implements the weighted frequency count transform
(WFC) (Deorowicz, 2002). The WFC transform changes the column of
symbols over any alphabet into a column of integers. Roughly speaking,
for each position of the column which is transformed, WFC predicts a rank
for each alphabet symbol (the smaller the rank, the more frequently the
alphabet symbol appeared in the former part of the column). Then the cur-
rent symbol is replaced by its rank. The output of this block is a column of
integers. The integers are usually small and majority of them (sometimes
even up to 90 percent) are zeroes.

In the next stage the zero-run-length-encoding transform (Fenwick,
1996a), RLE-0 block, replaces the repetitions of zeroes using a simple
coding scheme: 0 is replaced by 0a, 00 → 0b, 000 → 0a0a, 0000 →
0a0b, 00000→ 0b0a, 000000→ 0b0b, 0000000→ 0a0a0a, etc. This
reduces the length of columns noticeably.

In the next stage, the column is entropy coded. For this purpose we use
a range coder (Salomon & Motta, 2010) (RangeCoder block). This coder
assigns short codewords to frequent symbols and longer to the rare ones,
which results in significant reduction of the space necessary to represent the
input sequence. Since the frequency of symbols in the input of this block

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 28, 2017. ; https://doi.org/10.1101/240341doi: bioRxiv preprint 

https://doi.org/10.1101/240341


i
i

i
i

i
i

i
i

4 Deorowicz et al.
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Protein sequences
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compressed

file

Fig. 2. Scheme of the proposed compression algorithm

could differ by a few orders of magnitude (which causes some problems
to entropy coders), we employ a simple modelling. For each symbol we
initially encode a flag indicating whether it is 0a, 0b, 1, or something
larger. In most cases we are ready here, but when the symbol belongs to
the last group (it is larger than 1), we proceed in the following way. We
encode the group id of the symbol, where the available groups are: {2, 3},
{4, . . . , 7}, {8, . . . , 15}, {16, . . . , 31}, {32, . . . , 63}. Then we encode
the value of the symbol withing a group. The maximal value of the integer
(63) reflects the fact that the allowed symbols in the input sequences are
lower- and upper-case letters, and a few special values, i.e., ‘-’, ‘.’, ‘*’.

To improve the compression ratio even more, the symbols within a
group are encoded in contexts, i.e., the probability of appearance of each
symbol (necessary for range coder) is estimated taking into account a
short-time history. For example, the context for the flags is defined by up
to 5 recently encoded flags. The contexts for group ids and symbols inside
groups are composed from up to 3 recently encoded group ids. Finally the
compressed sequences for each column and the LZMA-compressed ids
are collected in a single output file (Store block).

The compression of Stockholm files containing alignments of many
protein families is similar. The file is processed in parts where each part
contains a single family. At the beginning the family data are split into
metadata and alignment data. The metadata are LZMA compressed while
the alignment data are compressed using the algorithm for the FASTA files.

Our algorithm was implemented in the C++14 programming langu-
age. To make use of the multi-core architecture of modern CPUs, it is
implemented using the C++ native threads. The main thread is responsible
for Read-and-Split and Store stages, as well as it controls the execution.
The stages Transpose, gPBWT, RLE-0, and RangeCoder are made by
their own threads. As WFC is the most time consuming, it is executed
by up to 4 separate threads (each of them independently processes some
subset of columns). The software was compiled using GCC 6.2 with -O3
optimization enabled.

3 Results
The test platform was equipped with two Intel Xeon E5-2670 v3 CPUs
(clocked at 2.3 GHz, 24 physical cores in total) and 128 GiB of RAM. In
the experiments we limited the number of threads used by the compressors
to four. As the test datasets we picked the default Pfam v. 31.0 collection
of protein sequences (Fin et al., 2016). The Stockholm file with the whole
collection has size of 41.6 GB and contains 16,479 protein families. To
examine the scalability of our software by the growing sizes of collections,
we evaluated also the larger variants of Pfam database: Uniprot and NCBI.
They are two and five times larger, respectively, than the default collection.

Currently, gzip is the most commonly used compressor for MSA data,
so it was an obvious choice as the benchmark. Alas, gzip is a single-
threaded application, so for a fair comparison we used its multi-threaded
variant, i.e., pigz. As, to the best of our knowledge, there are no specialised

compressors for MSA files, we examined one more universal tool, namely
7-zip. It is quite often used when the better compression ratio is required,
and the slower compression and decompression speeds could be accepted.

MSAC was designed for both separate FASTA files (each file contai-
ning one protein family data) and collections stored in Stockholm files.
Initially we evaluated the compression of the whole Stockholm files. The
results given in Table 1 show that our compressor achieves the compres-
sion ratio (defined as the size of the original file divided by the size of the
compressed file, so the higher the value, the better) about 24, which is 3.5
times better than the ratio offered by gzip. In real numbers, the default
Pfam collection can be stored in as little as 1.74 GB (compared to 5.6 GB
for gzip). MSAC compression ratio is also 37 percent better than that of
7zip. Similar observations can be made for Uniprot and NCBI variants of
Pfam database.

Regarding compression times, MSAC is significantly faster than gzip
and 7-zip in compression but slower in decompression. In real numbers,
we were able to compress the 42 GB Pfam database in less than 45 minutes
and decompress it in less than 15 minutes, which should be acceptable for
typical scenarios.

The evaluated compressors differ significantly in their architecture,
so it would be interesting to take a closer look at how they perform for
protein families of different size. Therefore, we extracted all protein fami-
lies and stored them in separate FASTA files. The summary of sizes and
(de)compression times is given in Table 1. More details can be found in
Figure 3. We grouped the FASTA files according to their sizes into disjoint
subsets. The smallest size for each subset is presented at the horizontal
axis, e.g., the value of 100K means that the bars above refer to files of
sizes between 100 KB (including) and 250 KB. The height of a single bar
represents the average compression ratio obtained for a given subset, while
the number above the bar reflects cardinality of the subset. The largest file
in this experiment was slightly smaller than 1 GB. As one can see, for
all size ranges (except for the smallest one containing files below 1 KB)
the best compression ratio was obtained by MSAC. More importantly, the
ratio rapidly increases with the size of the file. A similar trend is observed
for gzip and 7zip, but their compression-ratio growth is slower.

The FASTA file size is only one of possible indicators related to MSA.
We investigated also the number of sequences and the number of columns.
Figure ?? shows the compression ratios for all families, i.e., each subplot
contains 16,479 points. The left subplots show the advantage of MSAC
over 7zip (defined as the size of 7-zip-compressed file divided by the size
of MSAC-compressed file), while the right subplots show the advantage
of MSAC over gzip. Since the number of points in the plots are large, for
clarity we assigned a color to each of them. The color represents the rank of
the advantage (over 7-zip or gzip) in group of files of comparable size (or
comparable number of sequences for subfigures c and d; or comparable
number of columns—subfigures e and f). By comparable we mean 10
percent neighbourhood. For example, to assign a color to some file of size
1 MB (subfigure a) we picked the advantages over 7-zip for all files up to
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Table 1. Compression results for complete collections of Pfam database.

Dataset No. of No. of File pigz 7zip MSAC
families sequences size size c-time d-time size c-time d-time size c-time d-time

Stockholm files
Pfam-A 16,479 31,051,470 41.6 5.60 4,723 227 2.38 6,130 379 1.74 2,766 874
Pfam-Uniprot 16,712 84,689,547 82.3 8.73 9,504 404 3.30 13,968 632 2.63 3,600 1,904
Pfam-NCBI 16,712 177,952,603 227.7 26.93 24,413 1,185 10.35 41,329 1,811 8.82 28,486 4,723

FASTA files
Pfam-A 16,479 31,051,470 31.9 4.83 4,495 132 2.13 9,590 831 1.55 1,400 1,072
Pfam-Uniprot 16,712 84,689,547 81.2 8.49 9,225 459 3.32 22,331 1,233 2.64 4,173 2,249
Pfam-NCBI 16,712 177,952,603 179.4 19.46 22,962 948 6.55 48,163 1,977 4.97 7,412 4,495

The top rows show the compression for a single Stockholm file for each collection. The bottom rows are for separate FASTA files (single file for each
family) without metadata. File sizes are in GBs and times are in seconds. “c-time” means compression time and “d-time” means decompression
time. Bold font means the best results.
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Fig. 3. Compression ratios for subsets of Pfam collection. The sets are of given size (in bytes), e.g., the 100K set contains all files with sizes in range [100KB, 250KB]. The number
above the bars shows the number of families in a subset.

10 percent smaller and 10 percent larger. Then we ranked the results and
calculated the percentile. Thus, the yellow color represents the median
values in the neighbourhood.

As one can observe, all medians are always above 1.0 for 7-zip and there
is a growing tendency in the advantage for very small and very large files.
Similar observations can be made, when the size of the family is defined as
the number of sequences (subfigure c), but for growing number of columns
(subfigure e) the trend is less clear. The maximal advantage over gzip is
much larger in real numbers (up to 7.5, compared to 2.1 for 7-zip). For
tiny files (smaller than 300 bytes), the median of the advantage is below
1.0, which means that gzip performs better. Nevertheless, compressing of
such small files is considered to be useless, as the gains are negligible.

It is also noteworthy to say that the largest single protein family from
Pfam-NCBI (PF07690.15) consumes about 4.36 GB of space. MSAC was
able to reduce this to 81.7 MB (150.2 MB for 7-zip nad 543.5 MB for
pigz). The MSAC compression and decompression times were 120 s and
95 s, respectively (791 s and 33 s for 7-zip; 778 s and 13 s for pigz). As
the modern algorithms for MSA determination, like MAFFT (Katoh &
Standley, 2013), Clustal Omega (Sievers et al., 2011), PASTA (Mirarab et
al., 2015), FAMSA (Deorowicz et al., 2016), to name a few, are able to
process families containing more than 100,000 sequences in a few hours

(or even less) at modern workstations, and the resulting alignments some-
times consume tens of GB, the ability of MSAC to significantly reduce the
necessary space in a very-short time is remarkable.

4 Discussion
The Pfam database is a growing collection of protein families. The raw
data for its default variant occupy about 42 GB, which causes problems
with both storage and data transfer. Currently, the most popular method to
reduce the file sizes is the commonly known, universal compressor—gzip
program. When applied to the basic Pfam dataset it allows to reduce the
space to about 5.6 GB. From the practical point of view, application of
gzip still leads to important gains, but we can be almost sure that the size
of the discussed collection will be growing in the near future. Even now,
the largest variant of Pfam v. 31.0 consumes ∼230 GB for raw data and
∼30 GB, when gzip-compressed.

In this article, we proposed a novel compression algorithm for multiple
sequence alignments files. The algorithm works in a few stages. A gene-
ralisation of the positional Burrows–Wheeler transform for non-binary
alphabets is performed as the first stage. Then, transforms adopted from the
literature are determined, namely weighted frequency counter transform
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Fig. 4. Comparison of the advantage of MSAC over 7zip (left column) and gzip (right column) compressors. The analyzes are for various: file sizes (subfigures a and b), number of sequences
(subfigures c and d), and number of columns (subfigures e and f). Each point represents one of 16,479 files. The point color represent the percentile in the neighbourhood (defined as 10
percent difference in the size, sequence number, and column number, respectively).

(WFC) followed by run length encoding transform (RLE-0). Finally, the
modelling stage for the entropy coder is executed.

The experiments made for three variants of the largest existing protein
family database, Pfam, showed that MSAC offers on average more than
3 times better compression ratio than gzip for the whole collection of
families. The advantage over 7-zip is smaller, but still significant. What
is important, MSAC advantage over gzip and 7zip grows for growing
family size, which is promising, as in the future the protein families will
be definitely larger. Even today, it seems that the very good compression

ratio and good compression and decompression speeds allows to consider
MSAC as a replacement for gzip for those that suffers from huge size of
MSA collections.
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Numanagić, I. et al. Comparison of high-throughput sequencing data compression
tools. Nat. Methods 13(12), 1005–1008 (2016).

Ravanmehr, V., Kim, M., Wang, Z., and Milenković, O. ChIPWig: a random access-
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