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ABSTRACT 

Accumulating evidence from genome wide association studies (GWAS) suggests 
abundant presence of shared genetic influences among complex human traits and 
disorders. A major challenge that often limits our ability to detect and quantify 
shared genetic variation is that current methods of cross-trait analysis are not 
designed to work in scenarios with low or absent genetic correlation. Here we 
introduce a statistical tool BGMG (Bivariate Gaussian Mixture Model of GWAS) 
which can uncover various scenarios of genetic overlap regardless of genetic 
correlation, using GWAS summary statistics from studies with potentially shared 
participants. We perform extensive simulation on synthetic GWAS data to ensure 
that BGMG provides accurate estimates of model parameters in the presence of 
realistic linkage disequilibrium (LD) structure. 

INTRODUCTION 

In recent years, genome-wide association studies (GWASs) have successfully 
detected genetic variants associated with multiple complex human traits or 
disorders, providing important insights into human biology1. Understanding the 
degree to which complex human phenotypes share genetic influences is critical for 
identifying the etiology of phenotypic relationships, which can inform disease 
nosology, diagnostic practice and improve drug development. Most complex human 
phenotypes are known to have a polygenic architecture, i.e. their variation is 
influenced by many genetic variants. Given the large number of human phenotypes 
and the finite number of causal genetic variants, many variants are expected to 
influence more than one phenotype (i.e. exhibit allelic pleiotropy)2,3. This has led to 
cross-trait analyses quantifying genetic overlap becoming a widespread endeavor 
in genetic research, made possible by the public availability of most GWAS 
summary statistics (p-values and z-scores)4,5.  

Currently, the prevailing measure to quantify genetic overlap is genetic correlation. 
The square of genetic correlation gives the proportion of variance that the two traits 
share due to genetic causes. The sign of genetic correlation indicates whether 
genetic effects in both traits are, predominantly, sharing the same or the opposite 
effect direction. Genetic correlation can be quantified from raw genotypes using 
restricted maximum likelihood6 or polygenic risk scores7,8; from a set of single-
nucleotide polymorphisms (SNPs) that pass genome-wide significance threshold 
using Mendelian Randomization9; or from all SNPs, including those that do not 
reach genome-wide significance using Cross-Trait Linkage Disequilibrium Score 
Regression, LDSR10. A limitation to all these methods, however, is their inability to 
capture mixtures of effect directions across shared genetic variants. They only 
report overall positive, negative or no genetic correlation. Recent analyses suggest 
that across traits the correlation in the directionality and size of SNP effects is not 
the same for all mutually associated SNPs10 (see Fig 1 for different cross-trait 
genetic relationships). This is exemplified by the genetic relationship between 
schizophrenia and cognitive function11. Despite consistent estimates of a negative 
genetic correlation between schizophrenia and different cognitive traits12,13, a 
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minority of genetic loci associated with both schizophrenia and cognitive traits 
show schizophrenia risk alleles associated with higher cognitive performance11. 
Moreover, recent analyses suggest that different complex phenotypes are 
influenced by different numbers of causal variants, i.e., some traits are more 
polygenic than others14, a concept in line with the endophenotype hypothesis15. To 
improve our understanding of the polygenic architecture of complex traits and their 
intricate relationships, new statistical tools are needed for quantification of genetic 
overlap. 

Here we introduce the Bivariate Gaussian Mixture Model for GWAS (BGMG), which 
provides a measure of genetic overlap expressed as the proportion of SNPs 
associated with two traits. BGMG incorporates a causal mixture model14 to yield a 
prior distribution of genetic effect sizes, and allows for overlapping samples. To 
estimate polygenic overlap, BGMG models true per-SNP effect sizes as a mixture of 
four bivariate normal distributions, illustrated in Fig 1: two causal components 
specific to each trait; one causal component of SNPs affecting both traits; and a null 
component of SNPs with no effect on either trait. Our statistical model provides a 
probability distribution function relating observed signed test statistics (GWAS z-
scores) to the underlying per-SNP effect sizes, incorporating effects of LD structure, 
minor allele frequency, sample size, cryptic relationships, and sample overlap, to 
capture all these effects on GWAS z-scores. The parameters of the mixture model 
are estimated from the summary statistics by direct optimization of the likelihood 
function. 

We show in simulations that our model differentiates cross-trait scenarios with no 
polygenic overlap from scenarios with significant polygenic overlap, regardless of 
genetic correlation. We also show that BGMG estimates of genetic correlation are 
consistent with estimates of cross-trait LDSR and are not affected by sample 
overlap. Altogether, the results demonstrate the feasibility of BGMG for quantifying 
shared polygenic components influencing complex human phenotypes. 

RESULTS 

Overview of BGMG model 
BGMG is based on the idea that at the causal level only a certain proportion of SNPs 
is associated with a trait of interest, while the remaining SNPs have no effect 
(mixture model). In a joint analysis of two traits we expect some SNPs to have an 
effect on both traits; some SNPs to have an effect on one trait but not the other; and 
the majority of SNPs to have no effect on either trait. In this context, the term 
“polygenic overlap” signifies the fraction of causal variants shared between traits, 
exceeding that expected by chance given the polygenicity of those traits. Based on 
these assumptions, BGMG models additive genetic effect sizes β1j, β2j of SNP j on the 
two traits as a mixture of four bivariate Gaussian components: 

            ,   ~  (0,0) + (0, ) + (0, ) + (0, ), (1) 

                  = 0
0 0

, =
0 0
0 , = , (2) 
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where π1 and π2 are weights of the two components affecting the first and the 
second trait; π12 is a weighting of the component affecting both traits; and π0 is the 
fraction of SNPs that are null (non-causal) for both traits, + + + = 1; 

 and  control expected magnitudes of per-variant effect sizes; and ρ12 is the 
coefficient of genetic correlation, which is calculated from the subset of SNPs 
affecting both traits (see the Online Methods). Genome-wide genetic correlation rg 

is related to the parameter ρ12 as = / , where  and  indicate 
total (univariate) proportion of causal SNPs in each of the two traits ( = +

, = + ). All parameters are assumed to be the same for all SNPs. 
 
From the prior probability density function for association coefficients ( , ), 
we derive the likelihood term for observed GWAS signed test statistics, 
incorporating: effects of linkage disequilibrium structure (allelic correlation rij 

between variants i and j); heterozygosity ( =  2 1 −  where pj is the minor 
allele frequency of the j-th variant); number of subjects genotyped per variant (N1j 

and N2j); inflation due to cryptic relatedness  and ; and inflation due to 
sample overlap ρ0. Specifically (see Supplementary Note), 

                   , = , + (0,0), ,    (3) 

∙ = ∙ ∙  

The nine parameters of the model ( , , , , , , , , ) are fit by 
direct optimization of the weighted log likelihood, with weights inversely 
proportional to the LD score16. Confidence intervals for all parameters are 
estimated from the Observed Fishers Information matrix. 

Forcing = 1  (so that = = = 0 ) reduces our model to the same 
assumptions as in cross-trait LD score regression10. Under this constraint our 
model predicts that GWAS signed test statistics follow bivariate Gaussian 
distribution with zero mean and variance-covariance matrix 

Σ = ℓ + , 

i.e., (z1j,z2j) ∼ N(0,Σj), where ℓ = ∑  is the LD score. This model is in perfect 
agreement with cross-trait LD score regression, with expected chi square statistics 

( ) , ( ) and cross-trait correlation ( )  being proportional to the LD 
score of j-th SNP, and parameters , ,  playing the role of LD score 
regression intercepts. The only distinction so far is that we choose to model effect 
sizes that are independent of allele frequency, leading to the incorporation of Hj in 
our model; this factor is absent from the LD score regression model due to the 
assumption there of effect sizes that are inversely proportional to Hj. 
 
Relaxing the constraint π12 = 1, we find that estimating its value from the GWAS 
summary statistics never yields values exceeding = 1%, across a wide range of 
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complex traits. The fact that  is typically much less than 100%  supports 
polygenic model and contradicts omnigenic model17. We show in simulations that 
under polygenic model the measure of π12, i.e., the proportion of causal variants 
affecting both traits, has both sensitivity and specificity in measuring genetic 
overlap. 
 
Using GWAS summary statistics we find that some traits have a strong component 
of shared genetic effects but no genetic correlation. I.e., π12 significantly different 
from zero, but ρ12 is not. A challenge in detection and interpretation of such cases is 
that for polygenic traits we always expect a substantial portion of SNPs to have 
elevated test statistics in both traits due to LD with causal variants, even if no SNPs 
are causally affecting either trait. In our model, we account for this by modeling 
genetic effects at the causal level, and by reporting π12 as significant if it exceeds 
polygenic overlap that we expect by chance from the product . 
 

Simulations 
We perform simulations to validate that the BGMG estimates of polygenic overlap 
(π12) are not affected by spurious association signals arising in large LD blocks, and 
that BGMG estimates of genetic correlation are not inflated by sample overlap. The 
simulations also allow us to compare BGMG estimates of genetic correlation with 
those of LDSR. 

In all simulations we obtain synthetic GWAS results for a panel of N = 100,000 
samples (“individuals”), generated by HapGen218 using 1000 Genomes19 data to 
approximate the LD structure for European ancestry. For each simulation run we 
generated two quantitative traits for each individual by drawing effect sizes 
( , ) from the four component mixture model (1), varying polygenicity of each 
phenotype (  and ), and polygenic overlap (π12). We choose polygenicity of 
each trait ranging from 10−3 (high polygenicity) to 10−4 (medium polygenicity) to 
10−5 (low polygenicity). We also choose between perfect polygenic overlap 
( =  ), partial polygenic overlap set to 10% of polygenicity of the traits 
( =  /10), and random polygenic overlap, which arise by chance if markers 
are spread randomly throughout the genome (independent prior probabilities, so 
that =  ). In all simulations, we set narrow sense SNP heritability of each 
trait to h2 = 0.5. 

Fig. 2 illustrates BGMG components for the four synthetic scenarios, introduced in 
Fig 1, using = = 0.01%  (medium polygenicity). The distribution of GWAS 
effect sizes, shown in Fig. 2, is different from distribution of the causal effect sizes 
shown in Fig. 1, and shows a much larger fraction of variants associated with the 
phenotype of interest, arising through LD.  

Fig. 3 and Supplementary Table 1 show estimates of polygenicity and polygenic 
overlap on synthetic data with realistic LD structure, averaged across 10 simulation 
runs. For high and medium polygenicity the resulting univariate estimates of 
polygenicity,   and , are biased downwards by approximately 10% (relative 
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percentage w.r.t. the expected value). For low polygenicity the estimates are biased 
upwards by a factor of 3, consistently with previously published simulation 
results14. Despite the bias in polygenicity estimates, the relative size of polygenic 
overlap, / , is in a good agreement with expected values (1.0 for complete 
overlap, and 0.1 for partial overlap). For random overlap, BGMG overestimates 

 and the ratio /   has values around 0.01. Simulation results for traits with 
uneven polygenicity (10-fold difference, = 10 , and 100-fold difference, =
100 ) show the same pattern as simulations with equal polygenicity ( = ), 
see Supplementary Table 2. All discrepancies in polygenicity estimates ,  and 

 disappear in simulations without LD structure (see Supplementary Table 3).  

In addition to point estimates of polygenicity we investigated BGMG performance 
using univariate quantile-quantile plots (QQ plots) on logarithmic scale, as shown 
in Supplementary Fig. 1 and 2. The advantage of QQ plots is that they emphasize 
behavior in the tails of a distribution, and provide a valuable visual aid in showing 
how well a model fits data. The overall QQ plot (Supplementary Fig 1) shows 
reasonably good fit across the entire range of p-values. QQ plots stratified by 
heterozygosity, , and LD score, ℓ, (Supplementary Fig 2) show minor mismatches 
for low values of  and ℓ. 

Fig. 4 compares BGMG and LDSR estimates of genetic correlation  and 
corresponding standard errors. These simulations cover scenarios with complete 
and partial polygenic overlap, using the same set of samples (N=100 000) to 
perform GWAS in both traits (i.e. we validate complete sample overlap). The results 
show that the estimates of genetic correlation from BGMG and LDSR are not biased 
by complete sample overlap. Error bars for BGMG are generally larger than LDSR 
because it estimates a larger set of parameters (9 parameters for BGMG model, 6 
parameters for LDSR model). 

DISCUSSION 

Here we introduce BGMG, a new statistical tool for cross-trait analysis using GWAS 
summary statistics which builds on a Gaussian mixture modelling framework. 
BGMG offers two major advances compared to other currently available cross-trait 
analyses. First, BGMG allows for a mixture of same and opposite allelic effect 
directions among the shared genetic component, which is likely a pervasive 
occurrence given the large number of causal variants influencing traits and their 
distinct genetic etiologies11-13,20,21. Second, BGMG takes into account the unique 
polygenic architecture underlying each complex trait, which widely differs between 
traits, both in terms of the number of causal SNPs and the effect sizes of the causal 
SNPs14,22,23. Thus, BGMG enables a more complete quantification of polygenic 
overlap in various cross-trait scenarios than provided by other available tools 
estimating genetic overlap7-10,24,25. 

Using simulations, we show that BGMG robustly captures the degree of shared 
genetic components for various scenarios of polygenic overlap, with (Fig. 3) and 
without (Fig. 4) genetic correlation, and demonstrate that BGMG estimates are not 
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inflated by sample overlap (Fig. 4). Simulation results also reveal a small bias in 
polygenicity estimates (Supplementary Tables 1-4), which we expect to fix in our 
future work by more elaborate handling of the LD structure and switching our 
simulation pipeline to the standard GWAS association model which includes genetic 
covariates. 

The BGMG model is based on a causal mixture model which gives a biologically 
more plausible prior distribution of genetic effect sizes compared to the 
“infinitesimal” model applied by other available cross-trait analyses23,26. Causal 
mixture model is also known as a spike-and-slab distribution of effect sizes, and 
represents the most common way to perform simulations10,16,27,28. A notable 
strength of the spike-and-slab model is the significant improvement of polygenic 
risk scores29-31. 

Lack of correlation between two variables of course does not imply independence. 
By using simulated GWAS data, here we show that some scenarios of polygenic 
overlap not captured by genetic correlation tools are uncovered by BGMG (Fig. 4). 
BGMG controls for the probability that some SNPs will, by chance or due to LD 
structure given high polygenicity, be jointly associated with two traits. In addition 
to offering insights into shared genetic architectures of complex traits, the BGMG 
modelling framework can be used to improve power for SNP discovery by 
estimating the posterior effect size of SNPs associated with one trait given the test 
statistics in another trait. Moreover, we expect that more accurately estimated 
effect sizes will improve predictive power of polygenic risk scores. 

The BGMG model has some limitations. First, the model assumes similar LD 
structure among studies and is not currently applicable for analysis across different 
ethnicities. Second, the model assumes that causal variants are uniformly 
distributed across the genome. We plan to address this limitation by incorporating 
genomic annotations, known to be differentially enriched for true associations32. 
Third, individual parameters of the mixture model might have lower estimation 
accuracy than their combinations – for example, we observe larger estimation 
errors for  and  compared to the heritability estimate ℎ ∝  (due to 
inversely-correlated errors). Fourth, lack of significant estimates of polygenic 
overlap using BGMG does not exclude the possibility that some SNPs associations 
may indeed be linked to both traits, but less than expected by chance. 

In conclusion, BGMG represents a useful addition to the tool-box for cross-trait 
GWAS analysis. By appropriately taking into account the intricate polygenic 
architectures of complex phenotypes BGMG allows for measures of polygenic 
overlap beyond genetic correlation. We expect this to lead to new insights into the 
pleiotropic nature of human genetic etiology. BGMG is available as a 
MATLAB/Octave package (see URLs; will be released after publication). 
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FIGURES AND TABLES 

Figure 1: Components of causal mixture model in four extreme scenarios of 
polygenic overlap (synthetic data). Each point represents a SNP; horizontal and 
vertical axis show SNP causal effect sizes ,  on the first and on the second traits, 
respectively. Each component is simulated to have 0.01% of markers, randomly 
spread throughout the entire genome. Fig. 1A shows a scenario where causal 
variants do not overlap between the two traits. Fig. 1B shows an additional 
component of variants affecting both traits with the same (concordant) direction of 
effects. Fig. 1C adds a fourth component of markers that affect the two phenotypes in 
the opposite (discordant) direction. Finally, Fig. 1D shows a scenario similar to Fig. 
1C, but with no clear separation between concordant and discordant components. In 
scenarios 1C and 1D genetic correlation is zero despite polygenic overlap. 
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Figure 2: Density plot of the effect sizes from simulated GWAS data, N=100 000, using 
the same underlying causal mixture model as shown in Fig 1. Color indicates bivariate 
density of SNPs; horizontal and vertical axes show GWAS effect size estimate for the 
first and second traits, respectively. 
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Figure 3: Estimates of polygenicity and polygenic overlap on synthetic data, in the 
absence of genetic correlation (ρ12 = 0). Rows correspond to three levels of 
polygenic overlap: perfect polygenic overlap ( =  ), partial polygenic overlap 
equal to 10% of the polygenicity of the traits ( =  /10), and random polygenic 
overlap, which arise by chance if markers are spread randomly throughout the 
genome ( =  ). The simulations were performed with complete overlap of 
GWAS samples (N = 100,000), heritability h2 of 0.5, and equal polygenicity in both 
traits ( = = ) ranging from 10−3 (high polygenicity), 10−4 (medium 
polygenicity) to 10−5 (low polygenicity). The average of 10 simulations is shown 
with averaged estimated standard errors. 
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Figure 4: Estimates of genetic correlation from Bivariate Mixture Model for GWAS 
(BGMG) and Cross-trait LD Score Regression (LDSR), with complete sample overlap 
(N = 100,000) and without sample overlap (N = 50,000 in each sample) between 
GWAS studies. In all simulations ρ12 is fixed at 0.5. Expected genome-wide genetic 
correlation is rg = 0.5 for complete polygenic overlap, and rg = 0.05 for partial 
polygenic overlap. 
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ONLINE METHODS 

This article is accompanied by a Supplementary Note with further details. 

Model for bivariate distribution of GWAS z-scores. We use method of moments to 
derive the following model for GWAS z-scores (see Supplementary note): 

                         , = , + (0,0),  (4) 

,  ~ (0,0) + 0, Σ + 

                                              + 0, Σ + , 0, Σ , , 
where ⋅ = ℓ ⋅/η  are SNP-adjusted weights of four mixture component; Σ⋅ = η Σ⋅ are 

SNP-adjusted variance-covariance matrices; ℓ = ∑  is the LD score; and η⋅ = ⋅ℓ +

(1 − ⋅)
∑

∑  
 can be interpreted as shape parameter that affects fourth and higher 

moments of the distribution. This model explains second moments [ ] , 
[ ], [ ] and fourth moments [ ], [ ], [ ] of z score distribution, 

and is consistent with a mixture model of sparse and ubiquitous effects33,34. Note that the 
model involves the forth power of allelic correlation , which is directly proportional to 
kurtosis (measure of heavy tails) of z-score distribution. 

LD score estimation. To estimate LD scores, we follow the procedure from LD score 
regression method10,16,27. For r2, we calculate unbiased estimate35 of r2 across 1 
centimorgan (cm) window without cutoff for small r2 value. For r4, we lacked analytical 
expression for unbiased estimate, and instead calculated the ratio ∑  / ∑   across 
biased estimates of r2 and r4 with cutoff ≥ 0.05 . For simulations LD scores were 
estimated from the genotypes that we use to produce synthetic GWAS data. 

Fit procedure. We fit the model by direct optimization of weighted log likelihood 

                                                          ( ) = ∑ log( ( | )), (5) 

where = ( , , , , , , , , )  is a vector of all parameters being 
optimized, and weights  chosen inversely proportional to the LD score. Optimization is 
done by Nelder-Mead Simplex Method36 as implemented in MATLAB’s fminsearch. 
First, we fit univariate parameters separately for each trait (i.e. , ,  for the first 
trait, and similarly for the second trait). We employ a sequence of optimizations to ensure 
robust convergence. First, we use infinitesimal model = 1  to find ,  and to 
initialize ; second, we use constraint = ,  to find initial values of  and . 
Third, we use unconstrained optimization to jointly optimize , , , and repeat the 
same procedure to find  , , . In bivariate optimization we again use infinitesimal 
model = 1 to initialize  and , and then proceed with unconstrained optimization 
of all parameters. 
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Standard error estimation. We estimate standard errors of all parameters from 
observed Fisher’s information, which is the standard method in likelihood optimization 
theory. The limitation of this method is that it is not suitable for parameters near their 
boundary, which is especially applicable to mixture weights ,  and . To avoid this 
problem we apply transformations — MATLAB’s logit() for , , , exp() for 

, , , , and erf() for , , and estimated variance-covariance matrix of errors 
in the transformed parameter space. We validated that our estimates based on observed 
Fisher’s information are in good agreement with block jack knife estimates. To estimate 
standard errors for functions of the parameters, such as  and ℎ , we incorporate linear 
correlation among parameter errors in transformed space. We sample N=1000 
realizations of the parameter vector, calculating the function (e.g.,  or ℎ ) on each of 
them, and report the 95% confidence interval and standard errors. 

Genetic correlation. Parameter  in BGMG model plays the role of genetic correlation, 
calculated from a subset of variants affecting both traits. Genome-wide genetic 
correlation, calculated across all SNPs, is related to  by the following formula that 
involves polygenicity  and  of the traits, and polygenic overlap : 

                                                                = /  (6) 

For traits with K-fold difference in polygenicity ( = ) this formula predicts an 
upper bound on genome-wide genetic correlation: ≤  /√ , where equality holds if 
causal variants of the less polygenic trait form a subset of the higher-polygenic trait 
markers.  

Large LD blocks. We use inverse LD score weighting to avoid overcounting evidence 
from large LD blocks. An alternative approach, also available in the BGMG 
implementation, is to perform random pruning – a stochastic procedure that average log 
likelihood function across repeatedly selected subsets  of variants such that for each pair 
of variants , ∈  the squared allelic correlation  falls below certain threshold. Given  
iterations of random pruning the log-likelihood function can be calculated as follows: 

                                                   ( ) = ∑ ∑ log( ( |∈ )) (7) 

which is equivalent to weighted log-likelihood ( ) = ∑ log( ( | )) with weights 
= | : ∈ |/ , | | denotes cardinality of set S. We refer to this as “random-pruning 

induced weights”. Empirically, estimates based on inverse LD weighting are consistent 
with estimates based on random-pruning induced weights with cutoff = 0.1. 

SNPs in the analysis. To enable direct comparison of our model with LD score regression 
we use the same set of SNPs in our log likelihood optimization, which consist of approx. 
1.1 million variants, subset of 1000 Genomes and HapMap337, with MAF >= 0.05, 
ambiguous SNPs excluded, imputation INFO above 0.9, MHC and other long-range LD 
regions excluded. This set of SNPs is also used to calculate weights in log-likelihood 
optimization. Calculation of the LD scores ℓ  and shape parameter  are based on the 
approx. 10 million SNPs, available from 1000 Genomes Phase 3 data. 
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Simulations. We generated genotypes for 105 unrelated simulated samples using 
HapGen218. To generate a quantitative phenotype  of k-th sample we use simple 
additive genetic model, = ∑ + , where  is the number of reference alleles 
for j-th SNP on k-th sample,  is causal effect size drawn according to bivariate model (1), 
and  is the residual vector drawn from normal distribution with zero mean and variance 
chosen in a way that sets heritability ℎ = ( )/ ( )  to a predefined level. To 
generate GWAS p-values we note that the regression slope, , and the Pearson 
correlation coefficient, = ( , ⋅ ), are assumed to be -distributed. These quantities 

have the same -value: = / = / ( ) =  √ − 2/ 1 −  , and therefore 

the same p-value, equal to Student’s t cumulative distribution function (cdf) with − 2 
degrees of freedom: , = 2 (− , − 2), where N is the sample size. Since we are 
not here dealing with covariates, we calculated p-value from correlation , which is 
slightly faster than from estimating the regression coefficient. 
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