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Abstract

REM Behavior Disorder (RBD) is a serious risk factor for neurodegenerative dis-
eases such as Parkinson’s disease (PD). In this paper we describe deep learning
methods for RBD prognosis classification from electroencephalography (EEG).
We work using a few minutes of eyes-closed resting state EEG data collected
from idiopathic RBD patients (121) and healthy controls (HC, 91). At follow-up
after the EEG acquisition (mean of 4 ±2 years), a subset of the RBD patients
eventually developed either PD (19) or Dementia with Lewy bodies (DLB, 12),
while the rest remained idiopathic RBD. We describe first a deep convolutional
neural network (DCNN) trained with stacked multi-channel spectrograms, treat-
ing the data as in audio or image problems where deep classifiers have proven
highly successful exploiting compositional and translationally invariant features
in the data. Using a multi-layer architecture combining filtering and pooling,
the performance of a small DCNN network typically reaches 80% classification
accuracy. In particular, in the HC vs PD-outcome problem using a single chan-
nel, we can obtain an area under the curve (AUC) of 87%. The trained classifier
can also be used to generate synthetic spectrograms to study what aspects of
the spectrogram are relevant to classification, highlighting the presence of theta
bursts and a decrease of power in the alpha band in future PD or DLB patients.
For comparison, we study a deep recurrent neural network using stacked long-
short term memory network (LSTM) cells [1, 2] or gated-recurrent unit (GRU)
cells [3], with similar results. We conclude that, despite the limitations in scope
of this first study, deep classifiers may provide a key technology to analyze the
EEG dynamics from relatively small datasets and deliver new biomarkers.
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1. Introduction

REM Behavior Disorder (RBD) is a serious risk factor for neurodegenerative
diseases such as Parkinson’s disease (PD). RBD is a parasomnia characterized by
vivid dreaming and dream-enacting behaviors associated with REM sleep with-
out muscle atonia [4]. Idiopathic RBD occurs in the absence of any neurological
disease or other identified cause, is male-predominant and its clinical course is
generally chronic progressive [5]. Several longitudinal studies conducted in sleep
centers have shown that most patients diagnosed with the idiopathic form of
RBD will eventually be diagnosed with a neurological disorder such as Parkin-
son disease (PD) or dementia with Lewy bodies (DLB) [6, 5, 4]. In essence,
idiopathic RBD has been suggested as a prodromal factor of synucleinopathies
(PD, DLB and less frequently multiple system atrophy (MSA) [4]).

RBD has an estimated prevalence of 15-60% in PD and has been proposed
to define a subtype of PD with relatively poor prognosis, reflecting a brainstem-
dominant route of pathology progression (see [7] and references therein) with a
higher risk for dementia or hallucinations. PD with RBD is characterized by
more profound and extensive pathology—not limited to the brainstem—,with
higher synuclein deposition in both cortical and sub-cortical regions.

Electroencephalographic (EEG) and magnetoencephalographic (MEG) sig-
nals contain rich information associated with the computational processes in
the brain. To a large extent, progress in their analysis has been driven by the
study of spectral features in electrode space, which has indeed proven useful
to study the human brain in both health and disease. For example, the “slow-
ing down” of EEG is known to characterize neurodegenerative diseases [8, 9].
However, neuronal activity exhibits non-linear dynamics and non-stationarity
across temporal scales that cannot be studied well using classical approaches.
The field needs novel tools capable of capturing the rich spatio-temporal hierar-
chical structures hidden in these signals. Deep learning algorithms are designed
for the task of exploiting compositional structure in data [10]. In past work, for
example, we have used deep feed forward autoencoders for the analysis of EEG
data to address the issue of feature selection, with promising results [11]. Inter-
estingly, deep learning techniques, in particular, and artificial neural networks
in general are themselves bio-inspired in the brain—the same biological system
generating the electric signals we aim to decode. This suggests they should be
well suited for the task.

Deep recurrent neural networks (RNNs), are known to be potentially Turing
complete [12], although, general RNN architectures are notoriously difficult to
train [2]. In other work we studied a particular class of RNNs called Echo State
Networks (ESNs) that combine the power of RNNs for classification of temporal
patterns and ease of training [13]. The main idea behind ESNs and other “reser-
voir computation” approaches is to use semi-randomly connected, large, fixed
recurrent neural networks where each node/neuron in the reservoir is activated
in a non-linear fashion. The interior nodes with random weights constitute what
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is called the “dynamic reservoir” of the network. The dynamics of the reservoir
provides a feature representation map of the input signals into a much larger
dimensional space (in a sense much like a kernel method). Using such an ESN,
we obtained an accuracy of 85% in a binary, class-balanced classification prob-
lem (healthy controls versus PD patients) using an earlier, smaller dataset [13].
The main limitations of this approach, in our view, were the computational cost
of developing the dynamics of large random networks and the associated need
for feature selection (e.g., which subset of frequency bands and channels to use
as inputs to simplify the computational burden).

In [14], we explored algorithmic complexity metrics of EEG spectrograms,
in a further attempt at deriving information from the dynamics of EEG signals
in RBD patients, with good results, indicating that such metrics may be useful
per se for classification or scoring. However, the estimation of such interesting
but ad-hoc metrics may in general lack the power of machine learning methods
where the relevant features are found directly by the algorithms.

1.1. Deep learning from spectrogram representation

Here we explore first a deep learning approach inspired by recent successes
in image classification using deep convolutional neural networks (DCNNs), de-
signed to exploit invariances and capture compositional features in the data (see
e.g., [2, 10, 12]). These systems have been largely developed to deal with im-
age data, i.e., 2D arrays, possibly from different channels, or audio data (as in
[15]), and, more recently, with EEG data as well [16, 17]. Thus, inputs to such
networks are data cubes (image per channel). In the same vein, we aimed to
work here with the spectrograms of EEG channel data, i.e., 2D time-frequency
maps. Such representations represent temporal dynamics as essentially images
with the equivalent of image depth provided by multiple available EEG channels
(or, e.g., current source density maps or cortically mapped quantities from dif-
ferent spatial locations). Using such representation, we avoid the need to select
frequency bands or channels in the process of features selection. This approach
essentially treats EEG channel data as an audio file, and our approach mimics
similar uses of deep networks in that domain.

RNNs can also be used to classify images, e.g., using image pixel rows as time
series. This is particularly appropriate in our case, given the good performance
we obtained using ESNs on temporal spectral data. We study here also the use
of stacked architectures of long-short term memory network (LSTM) or gated-
recurrent unit (GRU) cells, which have shown good representational power and
can be trained using backpropagation [1, 3].

Our general assumption is that some relevant aspects in EEG data from our
datasets are contained in compositional features embedded in the time-frequency
representation. This assumption is not unique to our particular classification
domain, but should hold of EEG in general. In particular, we expect that
deep networks may be able to efficiently learn to identify features in the time-
frequency domain associated to bursting events across frequency bands that
may help separate classes, as in “bump analysis” [18]. Bursting events are
hypothesized to be representative of transient synchronies of neural populations,
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which are known to be affected in neurodegenerative diseases such as Parkinson’s
or Alzheimer’s disease [19].

Finally, we note that we have made no attempt to optimize these architec-
tures. In particular, no fine-tuning of hyper parameters has been carried out
using a validation set approach, something we leave for further work. Our aim
has been to implement a proof of concept of the idea that deep learning ap-
proaches can provide value for the analysis of time-frequency representations of
EEG data.

2. EEG dataset

Idiopathic RBD patients (called henceforth RBD for data analysis labeling)
and healthy controls were recruited at the Center for Advanced Research in Sleep
Medicine of the Hôpital du Sacrè-Cœur de Montral. All patients with full EEG
montage for resting-state EEG recording at baseline and with at least one follow-
up examination after the baseline visit were included in the study. The first valid
EEG for each patient enrolled in the study was considered baseline. Participants
also underwent a complete neurological examination by a neurologist specialized
in movement disorders and a cognitive assessment by a neuropsychologist. No
controls reported abnormal motor activity during sleep or showed cognitive
impairment on neuropsychological testing. The protocol was approved by the
hospital’s ethics committee, and all participants gave their written informed
consent to participate. For more details on the protocol and on the patient
population statistics (age and gender distribution, follow up time, etc.), see [9].
The cohort used here is the same as the one described in [14].

As in previous work [9, 13, 14], the first level data in this study consisted of
resting-state EEG collected from awake patients using 14 scalp electrodes. The
recording protocol consisted of conditions with periods of “eyes open” of variable
duration (∼ 2.5 minutes) followed by periods of “eyes closed” in which patients
were not asked to perform any particular task. EEG signals were digitized
with 16 bit resolution at a sampling rate of 256 S/s. The amplification device
implemented hardware band pass filtering between 0.3 and 100 Hz and notch
filtering at 60 Hz to minimize the influence of power line noise. All recordings
were referenced to linked ears. The dataset includes a total of 121 patients
diagnosed of REM (random eye movement sleep) Behavioral Disorder (RBD)
(of which 118 passed the quality tests) and 85 healthy controls (of which only
74 provided sufficient quality data) without sleep complaints in which RBD was
excluded1. EEG data was collected in every patient at baseline, i.e., when they
were still RBD. After 1-10 years of clinical follow-up, 14 patients developed
Parkinson disease (PD), 13 Lewy body dementia (DLB) and the remaining 91
remained idiopathic. Our classification efforts here focuses on the previously
studied HC vs. PD dual problem.

1We note, however, that several HC were not followed up.
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Figure 1: Generation of spectrogram stack for a subject from preprocessed (artifact rejection,
referencing, detrending) EEG data.

2.1. Preprocessing and generation of spectrograms

To create the spectrogram dataset (the frames) was processed using Fourier
analysis (FFT) after detrending data blocks of 1 second with a Hann window
(FFT resolution is 2 Hz) (see Figure 1). To create the spectrogram frames, 20
second 14 channel artifact-free sequences were collected for each subject, using a
sliding window of 1 second. FFT amplitude bins in the band 4-44 Hz were used.
The data frames are thus multidimensional arrays of the form [channels (14)]
x [FFTbins (21)] x [Epochs (20)]. The number of frames per subject was set
to 148, representing about 2.5 minutes of data. We selected a minimal suitable
number of frames per subject so that each subject provided the same number of
frames. For training, datasets were balanced by random replication of subjects
in the class with fewer subjects. For testing, we used a leave-pair-out strategy,
with one subject from each class. Thus, both the training and test sets were
balanced. Finally, the data was centered and normalized to unit variance for
each frequency and channel.

3. Convolutional network architecture

The network (which we call SpectNet), implemented in Tensorflow (Python),
is a relatively simple four hidden-layer convolutional net with pooling (see Fig-
ure 2). Dropout has been used as the only regularization. All EEG channels
may be used in the input cube.

Our design philosophy has been to enable the network to find local features
first and create larger views of data with some temporal (but not frequency)
shift invariance via max-pooling.

The network has been trained using a cross-entropy loss function to classify
frames (not subjects). It has been evaluated both on frames and, more impor-
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Figure 2: A. DCNN sample model displaying input, convolution with pooling layers, and
some hidden-unit layers. The output, here for the binary classification problem using one-hot
encoding, is a two node layer. B. Synthetic description of architecture. C. Shallow neural
network architecture. D. Deep RNN using LSTM or GRU cells.

tantly, on subjects by averaging subject frame scores and choosing the maximal
probability class, i.e., using a 50% threshold.

For development purposes, we have also tested the performance of this
DCNN on a synthetic dataset consisting of gaussian radial functions randomly
placed on the spectrogram time axis but with variable stability in frequency,
width and amplitude (i.e, by adding some jitter top these parameters). Frame
classification accuracy was high and relatively robust to jitter (∼95-100%, de-
pending on parameters).

4. RNN network architecture

The architectures for the RNNs consisted of stacked LSTM [1, 2] or GRU
cells [3]. The architecture chosen includes 3 stacked cells, where each cell uses as
input the outputs of the previous one. Each cell typically used about 32 hidden
units, and dropout was used to regularize it. The performance of LSTM and
GRU variants was very similar.
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Problem N (train/test
group)

Frame
train/Test
ACC

Subject Test
ACC (AUC)

DCNN: HC vs PD 2x73 / 2x1 80% / 73% 80% (87%)

RNN: HC vs PD 2x73 / 2x1 77% / 74% 81% (87%)

DCNN: HC+RBD vs PD+DLB 2x159 / 2x1 73% / 68% 73% (78%)

RNN: HC+RBD vs PD+DLB 2x159 / 2x1 76% / 68% 72% (77%)

Table 1: Performance in different problems using 1 EEG channel (P4). From left to right: Neu-
ral Network used and problem addressed (group and whether binary or multiclass); Number
of subjects in training and test sets per group (always balanced); train and test performance
on frames; test accuracy and leave-pair-out (LPO) the area-under-the-curve metric (AUC) on
subjects [20].

5. Classification performance assessment

Classification performance has been evaluated in two ways in a leave-pair
out framework (LPO) with a subject from each class. First, by working with
balanced dataset using the accuracy metric (probability of good a classification),
and second, by using the area under the curve (AUC) [20]. To map out the
classification performance of the DCNN for different parameter sets, we have
implemented a set of algorithms in Python (using the Tensorflow module [21])
as described by the following pseudocode:

REPEAT N times (experiments):
1- Choose (random, balanced) training and test subject sets (leave-pair-out)
2- Augment smaller set by random replication of subjects
3- Optimize the NN using stochastic gradient descent with frames as inputs
4- Evaluate per-frame performance on training and test set
5- Evaluate per-subject performance averaging frame outputs

END
Compute mean and standard deviation of performances over the N experiments

For each frame, the classifier outputs (softmax) the probability of the frame
belonging to each class and, as explained above, after averaging over frames
per subject we obtain the probability of the subject belonging to each class.
Classification is implemented by choosing the class with maximal probability.

The results from classification are shown in Table 1. For comparison, using
a shallow architecture neural network resulted in about 10% less ACC or AUC
(in line with our results using SVM classifiers [22, 23]). Figure 6 provides the
performance in the HC-PD problem using different EEG channels.

6. Interpretation

Once a network is trained, it can be used to explore which inputs optimally
excite network nodes, including the outputs [24]. The algorithm for doing this
is essentially maximizing a particular class score using gradient descent, and
starting from a random noise image. An example of the resulting images us-
ing the DCNN above can be seen in Figure 4. This is particularly interesting
technique, as it provides new insights on pathological features in EEG.

We also checked to see that the trained network was approximately invariant
to translation of optimized input images, as expected.
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7. Discussion

Our results using deep networks are complementary to earlier work with this
type of data using SVMs and ESN/RNNs. However, we deem this approach
superior for various reasons. First, it largely mitigates the need for feature
selection. Secondly, results represent an improvement over our previous efforts,
increasing performance by about 5–10% [22, 23].

We note in passing that one of the potential issues with our dataset is the
presence of healthy controls without follow up, which may be a confound. We
hope to remedy this by enlarging our database and by improving our diagnosis
and follow up methodologies.

Future steps include the exploration of this approach with larger datasets as
well as continuous refinement of the work done so far, including a more extensive
exploration of network architecture and regularization schemes, including the
use of deeper architectures, improved data augmentation, alternative data seg-
mentation and normalization schemes. With regard to data preprocessing, we
should consider improved spectral estimation using advanced techniques such
as state-space estimation and multitapering—as in [25], and working with cor-
tically or scalp-mapped EEG data prior creation of spectrograms.

Finally, we note that the techniques used here can be extended to other EEG
related problems, such as brain computer interfaces or sleep scoring, epilepsy
or data cleaning, where the advantages, deep learning approaches may prove
useful as well.
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Figure 3: Sample images produced by maximizing network outputs for a given class. This
particular network was trained using P4 electrode data on the problem of HC vs PD+DLB
(i.e., HC vs RBDs that will develop synucleinopathy or SNP). The main features are the
presence of 10 Hz bursts in the HC image (top) compared to more persistent 6–8 Hz power
in the pathological spectrogram (bottom). The difference is displayed at the bottom.
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Figure 4: Sample images produced by maximizing network outputs for a given class. This
particular network was trained using P4 electrode channel data on the problem of HC vs PD.
The main features are the presence of 10 Hz bursts in the HC image (top) compared to more
persistent 6 Hz power in the pathological spectrogram (bottom). The difference is displayed
at the bottom.
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Figure 5: A. RNN Frame score histogram per class (HC in blue, PD in orange) using a single
channel. B. Subject mean score. In this particular run, ACC=80%, AUC=87% (both ±1%).
There are clearly some subjects that do not classify correctly (this is consistent with DCNN
approach results). The PD outlier is unusual in terms of other metrics, such as slow2fast ratio
(EEG slowing) or complexity (see [14]).
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Figure 6: Top: Accuracy and AUC per channel (averages and SEM over 2000 folds). Occipital
and parietal electrodes provide better discrimination. Top: DCNN architecture. Bottom:
RNN.
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