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Abstract

Motivation: Gene annotation and pathway databases such as Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes are important tools in Gene Set Test (GST) that describe gene biological functions
and associated pathways. GST aims to establish an association relationship between a gene set of
interest and an annotation. Importantly, GST tests for over-representation of genes in an annotation term.
One implicit assumption of GST is that the gene expression platform captures the complete or a very
large proportion of the genome. However, this assumption is neither satisfied for the increasingly popular
boutique array nor the custom designed gene expression profiling platform. Specifically, conventional
GST is no longer appropriate due to the gene set selection bias induced during the construction of these
platforms.
Results: We propose bcGST, a bias-corrected Gene Set Test by introducing bias correction terms in the
contingency table needed for calculating the Fisher’s Exact Test (FET). The adjustment method works
by estimating the proportion of genes captured on the array with respect to the genome in order to
assist filtration of annotation terms that would otherwise be falsely included or excluded. We illustrate the
practicality of bcGST and its stability through multiple differential gene expression analyses in melanoma
and TCGA cancer studies.
Availability: The bcGST method is made available as a Shiny web application at
http://shiny.maths.usyd.edu.au/bcGST/
Contact: kevin.wang@sydney.edu.au

1 Introduction
Gene expression profiling platforms have enabled researchers to explore
complex human diseases on an ever larger scale. As our knowledge of
disease mechanisms increases, there is a greater need for more targeted and
reproducible analysis requiring ever more sensitive expression platforms
for clinical biomarkers. A boutique array platform is well-suited to tackle
these challenges because the built-in probes are specially designed for
the disease of interest. Depending on manufacturer designs, these probes
can measure signals with greater sensitivity than other platforms such as
microarray and RNA-Seq. This increase in sensitivity is typically achieved
by reducing the number of probes to those directly relevant to the disease

of interest, which increases the noise-to-signal ratio during competitive
hybridisation.

However, this reduction in the number of probes also brings new
challenges to traditional pre-processing tools and statistical analyses
(Jung and Sohn, 2014). Specifically, many bioinformatics and statistical
techniques have been developed for the purpose of biological discovery and
these are not appropriate for targeted platforms like boutique arrays. One
such example is the gene set over-representation test, commonly referred to
as Gene Set Test (GST), originally developed for microarray experiments
(Subramanian et al., 2005; Irizarry et al., 2009). In GST, instead of
interpreting genes directly, these genes are mapped to biologically
meaningful annotations in curated biological databases. Then, by applying
appropriate statistical tests, statistical significance is assigned to the
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annotation terms instead of specific genes. Typically, genes that are
differentially expressed (DE) are of particular interest in GST because these
genes are potential biomarkers which could inform us of the underlying
disease mechanisms if their association with biological functions and
pathways can be established.

When performing GST on boutique arrays, one often ignored issue
is that the probes built onto the gene expression profiling platform do
not necessarily match with the gene set database that is of interest. For
example, most GST databases, such as Gene Ontology (GO) (Consortium,
2000), were built with the whole human genome in mind. As a result, the
intended gene universe when performing GST is the whole genome, or at
least, a genome-wide gene expression profiling platform. The particular
challenge for boutique arrays is that boutique array genes are specialised
by design, and thus in much smaller quantity (ranging from 100 to a
maximum of 1,000 probes) compared to the whole genome. Statistical
testing of annotation terms is therefore restricted to genes on the boutique
arrays. We refer to this issue as gene set selection bias. While there was a
tremendous amount of research into making evermore advanced methods
and accessible web-based tools (Subramanian et al., 2005; Backes et al.,
2007; Zheng and Wang, 2008; Eden et al., 2009; Wu et al., 2010), there is
always an implicit assumption that end-users use a large gene expression
profiling platform in experiments. In light of this, there is a need to develop
a GST methodology which can produce interpretable gene set enrichment
analysis results in the presence of gene set selection bias.

This paper presents a bias-corrected GST, abbreviated as bcGST, a
novel method that enables the application of GST in the absence of large
parts of the genome, as we typically encounter in boutique arrays. Using
a published microarray and TCGA RNA-Seq data, we create synthetic
simulations of boutique array simulation to examine the advantages and
practicality of bcGST. The bcGST method corrects for the gene set
selection bias effect by reducing false negatives during scoring gene set
significance. We further demonstrate bcGST’s ability to yield stable gene
set test results in the presence of gene set selection bias. Application of
bcGST to a real boutique array study and a TCGA RNA-Seq data revealed
key cancer pathways despite low concordance between the two platforms.
We also developed a Shiny (Chang et al., 2017) web application for the
bcGST method. This application enables the detection and exploration of
genesets through interactive visualisation and adjustments.

2 Materials and Methods

2.1 Datasets

2.1.1 Microarray melanoma data
A published gene expression study (Schramm et al., 2013) from stage
III melanoma patients was used to illustrate our methods. The platform
used was Illumina Human WG-6 BeadChip microarray, version 3. In this
study, a good prognosis group (n = 25) was defined as those samples
with more than four years survival with no sign of relapse and a poor
prognosis group (n = 22) as those samples that died within one year
of metastasis. Raw data were processed using the NEQC method (Shi
et al., 2010). Negative control probes were used for background correction
and quantile normalisation used both negative and positive probes. The
normalised data has 23,460 probes, corresponding to 17,934 unique gene
symbols.

2.1.2 TCGA cancer gene expression data
The Cancer Genome Atlas (TCGA) RNA-Seq expression and clinical
information (Weinstein et al., 2013) were downloaded using the R (R
Development Core Team, 2017) package ExperimentHub (Maintainer,
2016) from Gene Expression Omnibus (GEO) with submission ID
GSE62944, on 11 October 2016. The voom method available in the

limma (Ritchie et al., 2015) package was used to normalise RNA-
Seq count data so the processed data could be analysed using available
microarray analysis methodologies (Law et al., 2014).

There were 23,368 genes across all 19 cancers. We used this pan-cancer
data in two ways. First, for the purpose of creating simulated boutique array
experiments, patients with either tumour status or vital status missing
were discarded. Differential gene expression analysis was performed
between good prognosis patients who were both tumour-free and alive,
against poor prognosis patients who carried tumours and died. Under this
classification, cancers with less than 10 samples in either prognosis groups
were eliminated. Second, for the purpose of demonstrating our method on
a real boutique array dataset, we selected from the TCGA data the Skin
Cutaneous Melanoma (SKCM) patients with American Joint Committee
on Cancer (AJCC) tumour stage classification.

2.1.3 NanoString customised panel
This is a customised gene expression profiling panel containing 800 genes
designed to cover a broad spectrum of melanoma biology, immune-related
genes, cellular functions, and signalling pathway transcriptional targets.
See Table S3 for a complete list of genes. Similar to other boutique array
panels, the manufacturer argues that due to gene co-expression, a well-
designed boutique array can measure gene expression with a smaller set
of probes and is expected to capture a significant amount of expression
variability (NanoString Technologies, 2015).

Due to the non-negligible differences between how microarrays, RNA-
Seq and NanoString collect signals from their respective panels (Robinson
et al., 2015; Chen et al., 2016; Nookaew et al., 2012; Guo et al., 2013),
we used this panel in two different ways. First, for the purpose of creating
simulated boutique array experiments, we are only interested in the induced
biological knowledge that the NanoString genes bring to the analysis.
Hence in all simulations, we only used the NanoString gene symbols
to subset genes from the larger platforms, namely the microarray and
RNA-Seq data described above. Second, we used the gene expression
profiles of 95 samples from a study of the effect of targeted therapy
and immunotherapy for BRAF-mutant patients in melanoma (Silva et al.,
2017). Normalisation was performed using the NanoStringQCPro

package (Nickles D et al., 2017) with content normalisation.

2.2 Simulated boutique array experiments

Given the microarray and TCGA RNA-Seq data, we took the subset of
NanoString PanCancer panel genes to construct smaller datasets which
resemble data collected from boutique array experiments. We will refer
to these sub-datasets as “simulated boutique arrays” or just “simulations"
because they contain gene expression measurements for specialised gene
sets without actually performing the experiments. Such simulations
allowed for a higher degree of control for our proposed correction
method and eliminate possible experimental inconsistencies. No further
normalisation or data processing was performed on the simulations. During
the evaluation, the original inference results from the larger platforms (i.e.
microarray and TCGA RNA-Seq) were treated as the gold standard against
which inference results from the simulations are compared.

The first experiment was simulated with respect to the Stage III
microarray, in which there were 663 genes common to both platforms.
The second experiment was simulated with respect to the TCGA RNA-
Seq data, with 775 genes common to both platforms, across all cancer
types. All samples were retained during construction of the simulations.

2.2.1 Differential expression and GO analysis
We used empirical Bayes moderated t-test statistics (Smyth, 2004)
implemented in the limma package from R (R Development Core Team,

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted December 28, 2017. ; https://doi.org/10.1101/240234doi: bioRxiv preprint 

https://doi.org/10.1101/240234


i
i

“BiorXiv_bcGST” — 2017/12/27 — 20:54 — page 3 — #3 i
i

i
i

i
i

3

2017) to perform differential gene expression analysis between patient
groups in each dataset.

In the simulation studies, microarray experiment genes with a p-value
less than 0.01 were considered as differentially expressed (DE). For the
TCGA data, genes with a p-value less than 0.005 were considered as DE.
These thresholds were chosen to yield a reasonable number of DE genes
so that we have a reasonable mapping of annotation terms. We further
discarded TCGA cancer datasets with fewer than 5 differentially expressed
genes on the simulated boutique array, the full list of which are on Table
S1a.

In the real data application, differential gene expression analysis was
performed between patients who were classified as AJCC Stage IVC and
those samples in either Stage IVA, IVB or IIIC (pooled). We used a less
conservative p-value of0.05 on both the NanoString and the TCGA SKCM
RNA-Seq data as a cut-off for a gene to be considered DE. Table S1b shows
a list of samples.

In the simulation study, DE genes were then mapped to the GO database
via Entrez ID. Enrichment tests and further parameter extractions were all
performed through topGO package (Alexa, 2015). We considered only
the ontology branch “Biological Processes” of the GO database, keeping
only terms with at least 10 annotated genes, and further discarded all
GO terms with missing or undefined parameters from our analysis. In
the real data application, we used the BioCarta pathway downloaded
from the Molecular Signatures Database from Broad Institute, version
6.0 (Subramanian et al., 2005; Liberzon et al., 2011).

2.3 Gene Set Enrichment Analysis

2.3.1 Fisher’s Exact Test parameters
We used Fisher’s Exact Test (FET) to test for over-representation of
differentially expressed (DE) genes with the GO annotation terms. Under
the null hypothesis that relative proportions of one gene set are independent
of a second gene set, parameters on a two-by-two contingency table follow
a hypergeometric distribution, so a p-value can be calculated based on this
distribution.

To clarify the relationships between boutique array genes, differentially
expressed genes and genes assigned to pathways, we have tabulated the
number of genes in each category in Table 1a and Table 1b.

In a FET, we refer to all genes under consideration as the “gene
universe”. Depending on the gene expression profiling platform being
used, the gene universe will change accordingly. For example, if we wish
to make inference only within a boutique array, then we simply take the
gene universe to be the boutique array. Equation (1) computes the one-
sided FET p-value, where numbers (a, b, e and f ) are defined in Table
1a, for each pathway under consideration. If the whole genome is the
gene universe, then the p-value is calculated using Equation (2), where the
numbers (a+ c, b+ d, e+ g and f + h) are shown in Table 1c. As most
curated biological annotation databases like GO and Kyoto Encyclopedia
of Genes and Genomes (KEGG) were developed with respect to the whole
genome, it is therefore important to know which gene universe is under
consideration. Misspecifying the gene universe as the boutique array genes
when the whole genome is intended can induce gene set selection bias into
GST, see Figure 1.

Equation (1) is the standard way of calculating over-representation p-
value using FET. Here, the hypothesis is the DE gene list is not associated
with the pathway under consideration. The competitive alternative
hypothesis is that there is an over-representation of DE genes in the
pathway, hence we formulated a one-sided test. In Table 1a, a is the
number of differentially expressed genes among all genes on the pathway
in a boutique array, and b, c, . . . , h are defined similarly by reading their
corresponding column and row label in Table 1a and Table 1b.

Table 1a. Contingency table of boutique array genes, split according to if these
are differentially expressed and assigned to a given pathway.

Boutique array gene universe DE not DE

Pathway a b

Not pathway e f

Table 1b. Contingency table of non-boutique array genes, split according to if
these are differentially expressed and assigned to a given pathway.

Non-boutique array gene universe DE not DE

Pathway c d

Not pathway g h

Table 1c. Contingency table of all genes in a genome-wide gene universe, split
according to if these are differentially expressed and assigned to a given pathway.

Genome-wide gene universe DE not DE

Pathway a + c b + d

Not pathway e + g f + h

Pr(X ≥ a) =

a+e∑
k=a

(a+b
k

)( e+f
(a+e)−k

)
(a+b+e+f

a+e

) (1)

Pr(X ≥ a+ c) =

a+c+e+g∑
k=a+c

(a+b+c+d
k

)( e+f+g+h
(a+c+e+g)−k

)
(a+b+c+d+e+f+g+h

a+c+e+g

) (2)

2.4 FET p-value grid and bcGST

In a boutique array experiment, for each pathway, parameters a and e in
Table 1a and 1c are known while parameters c and g in Table 1b and 1c
are unknown. We denote α = a

a+c
and β = e

e+g
to represent different

proportion of DE genes built onto the boutique array (see Results for more
detail on the interpretation of these two parameters). If the value ofα andβ
is known, then we can compute estimates (rounded to the nearest integer if
necessary) of the unobserved c and g parameters through ĉ = a(1/α−1)

and ĝ = e(1/β − 1), respectively. The number of DE genes can then be
estimated with a+ ĉ+ e+ ĝ and the value a+ b+ c+ d can be obtained
from curated pathway database, thus completing the contingency table in
Table 1c. In the process of doing so, we calculated a FET p-value by taking
into account the missing genes on the boutique array, and thus this process
would allow us to correct for the gene set selection bias in a boutique array
GST.

However, when performing a real boutique array experiment, the
precise value of α and β is never known. We thus propose a visualisation-
inspired technique to evaluate the FET p-value over a grid of α and β
values. The rationale behind this grid construction is that a higher value
of α and β means more DE genes was built onto the boutique array,
these proportions represent the severity of gene set selection bias for
each pathway term. If the p-value associated with a pathway is always
significant regardless ofα and β, then we can conclude its initial statistical
significance was not likely to be driven by these proportions and thus the
gene set selection bias. Thus, we may conclude the statistical significance
is robust against this bias.

To perform this computation, we will first define a range of plausible
values for α and β, which can be as large as [0, 1] × [0, 1], where either
parameter can take any value between 0 and 1. For each (α, β) pair on
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this grid, we can calculate unknown FET contingency table parameters as
described above, thus obtaining a grid of FET p-values.

To simplify interpretations, we propose to further summarise the FET
p-value grid into a single statistic. For each pathway or annotated term, a
natural way to condense this grid information is to count the number of
times which the p-value fall below a pre-determined significance threshold.
This defines a grid count statistic, and we can thus consider a pathway to
be robust against the induced gene set selection bias if this count statistic
is high when compared to the size of the αβ grid. The bcGST method
we are proposing is consist of both the grid of p-values and the grid count
statistic.

3 Results

3.1 Gene-set selection bias presents a unique challenge to
GST in boutique array experiments

Gene set selection bias is a particularly challenging problem for
boutique arrays. A large proportion of genes and their associated
pathways/annotation terms are left out due to the design of the boutique
array and so the parameters in Table 1b will be completely ignored in the
analysis. Statistical significance of annotation terms is therefore biased
towards the genes on the boutique arrays due to selection bias. This bias is
present even in the case of well-designed boutique arrays. See the Materials
and Methods section for the detailed statistical formulation of the selection
bias problem.

Figure 1 shows a scatter plot comparing FET p-values from the Stage
III melanoma microarray experiment and simulated NanoString boutique
array for 2,078 common GO terms. Here we regard the microarray p-values
as the “truth” against which we compare the simulated boutique array p-
values. The simulated boutique array FET provided correct decisions for
most GO terms. There is strong monotonicity between the p-values derived
from the two gene universes as we should expect from a specialised cancer
gene panel. While a change in statistical significance was anticipated,
1,519 (73%) GO terms exhibited a larger p-value. Furthermore, the
majority of false decisions originated from false negatives; that is, GO
terms which were significant in the underlying microarray, but failed to be
judged as significant in the simulation. Our bcGST method addresses this
issue of gene-set selection bias.

3.2 P-value correction is needed to account for selection
bias in boutique arrays

In practice, depending on the gene expression profiling platform being
used, its gene universe should change accordingly. For example, in an
Affymetrix array, the built gene-set covers the whole genome most of the
time. However, if we wish to analyse with a boutique array, then the gene
universe for the boutique array is much smaller in comparison. In reference
to Table 1a, the gene universe has a total of a + b + c + d, the sum of
all the parameters in the contingency table. In the case of the NanoString
platform, the collection of genes is at most 800 genes. Performing a GST
directly in the latter case will result in biased p-value calculations. To this
end, we developed a correction method to account for such selection bias.

The bcGST method relies on two key ratios. For a typical gene set
of interest, say an annotation term in GO, the first ratio α represents the
proportion of DE genes on the boutique array compared to all DE genes in
the genome present in the pathway. Similarly, the second ratioβ represents
the proportion of DE genes on the boutique array compared to all DE genes
in the genome absent from the pathway. Using the notations from Table
1a and 1b,

α =
a

a+ c
, and β =

e

e+ g
. (3)
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Fig. 1. A scatter plot of 2,078 Gene Ontology (GO) terms common to both the microarray
data and the simulated boutique array data. The x- and y-axes are the FDR-adjusted FET p-
values from the microarray and simulated boutique array on a − log10 scale, respectively.
1,519 out of 2,078 (73%) points are below the line of no change (y = x, black dashed
line). By dividing the figure at FDR-adjusted p-values< 0.05 for both gene universes, we
can further confirm the majority of false decisions made by FET p-values came from false
negatives.

For example looking at GO:0023014, signal transduction by protein
phosphorylation, had a p-value of 0.24 in the simulation above. Letα andβ
take values, 0.35 and 0.10 respectively; that is, the boutique array captures
35% and 10% of DE genes present and absent from the microarray. Then
we can find ĉ = a(1/α−1) and ĝ = e(1/β−1), which are estimates of
the unobserved parameters c and g in a typical boutique array experiment.
These estimates allow us to complete a FET contingency table. Thus, a
plausible bias-corrected p-value from our GST analysis is 0.003 instead.
Note that this correction depends strongly on the selected (assumed but
unknown) values of α and β.

3.3 The bcGST method corrects for false negatives for
unknown α and β

We propose to use bcGST, a three-step-grid-based approach to examine
the statistical significance of annotation terms under a range of α and β
values. First, we consider a range of α and β values, thus constructing a
grid. Second, for each pair of ratios, we complete the contingency table and
perform FET for each (α, β) pair. This yields a grid of p-values. Third, by
counting the number of p-values that fall below a certain level of statistical
significance, we construct a count statistic which can better assess the
statistical significance of annotation terms. We use the bcGST approach
to correct for statistical significance as a result of gene-set selection bias
and we will refer to the grid count statistic as the “bcGST statistic".

Figure 2 shows a heatmap of p-values for GO:0044711 (single-
organism biosynthetic process) and GO:0023014 (signal transduction by
protein phosphorylation). Under a conventional significance level of 0.05,
both of these terms would be judged as non-significant. If we use a equally
spaced (α, β) grid of size 400 to compute the grid count statistic, that
is, counting the number of grid points that have an associated FET p-
value < 0.05, we obtain bcGST statistic value of 157 for GO:0044711
and 353 for GO:0023014, respectively. Since a comprehensive range of
α and β values were considered, the almost two-fold difference in the
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Fig. 2. A pair of GO terms with similar simulated boutique array FET p-values, but noticeably different microarray FET p-values and bcGST statistics. The heatmaps are on a − log10

scale, capped at 20 for ease of reading. Grid points with a p-value less than 0.05 are marked with a “+" symbol. (Left) GO:0044711, single-organism biosynthetic process, microarray p-value
= 0.23, simulated boutique array p-value = 0.43, bcGST statistics = 157/400. (Right) GO:0023014, signal transduction by protein phosphorylation, microarray p-value = 0.005, simulated
boutique array p-value = 0.24, bcGST statistics = 353/400.

bcGST statistics between these two GO terms provides a good indication
that the latter is more likely to be considered significant in a genome-
wide microarray. This is indeed the case, the microarray p-value for
GO:0044711 is 0.230 and the p-value for GO:0023014 is 0.005. This is
one example where our bcGST statistic successfully prevents false negative
conclusion (for GO:0023014).

Figure 3 is similar to Figure 1 but all GO terms are now coloured by
grouping the bcGST statistic into four low-count/high-count categories.
We note that 82% of false negatives received moderately high (> 300 grid
points) or very high counts (> 350 grid points). The high bcGST statistics
provide evidence for these GO terms from being incorrectly judged as non-
significant. Thus, this count statistic supplements the boutique array FET
results in overcoming the problem of false negatives caused by gene-set
selection bias.

3.4 GST results are sensitive to two highly variable key
ratios

If we are given a pair ofα and β, then we can complete a FET contingency
table using the genome or some genome-wide gene expression platform as
the gene universe. However, each estimate of the (α, β) pair only assumes
one plausible level of gene-set selection bias. By running a boutique array
simulation on the TCGA data, we show that inference results are very
sensitive to these two ratios and that both ratios are difficult to estimate.
Hence, a single estimate of these ratios does not yield stable results. This
(α, β) induced instability is avoided through the proposed gird-based
approach in bcGST.

3.4.1 Heterogeneity of α
First, by considering running the boutique array simulation on a set
of the TCGA gene expression data, we can show that α is highly
heterogeneous within and between different cancer datasets. Figure 4
shows the distribution of both α and β ratios for 2,219 common GO terms
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Fig. 3. Colouring the previous scatter plot with four categories of low to high grid count
statistics. We have significantly increased detections of GO terms in the false negative
(lower right) region; 244 out of 283 (86%) GO terms had bcGST statistics higher than 300
out of a 400 αβ grid cells. The high count categories of bcGST statistics supplement the
singular boutique array p-values with an extra layer of interpretability on the annotation
terms’ stability across a range of possible α and β values.

between 11 cancers. The parameter α is highly variable within individual
datasets, indicated by the upper boxplot tails extending towards 1 and
a large number of zeros. Despite having an overall median around 0.14
across all cancer datasets, the boxplots show that the distribution of α
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values also differ between cancers. Such variability makes estimating α
for every GO term difficult, and therefore statistical conclusions will be
more prone to errors.

3.4.2 Sensitivity of β
The ratio β also has a strong overall influence on the FET p-value. We can
examine this by further studying the simulated boutique array results on
the skin cutaneous melanoma (SKCM) data in TCGA.

Figure 5 is a ‘spaghetti’ plot of p-values for all GO terms. By fixing
four selected β values, we can see the collective change of all GO terms
across different values ofα. The general trend of p-values is very sensitive
to small changes in β, particular for smaller α values; which we know
from Figure 4 is a particular feature of α. This is to be expected since
even though the range of β is smaller than that of α, the construction of
β involves the parameter g, which is the number of non-boutique array
DE genes absent from pathways - a number which we expect to be large
in applications. Small changes to this parameter will tend to produce very
different estimates for other parameters.
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Fig. 4. Boxplots of α and β for 11 different cancers, using a simulated boutique array on
the TCGA data. The cancers are ordered by number of DE genes on the simulated boutique
array. We observed high stability for β across different cancers (except ovarian caner) and
α is much more heterogeneous within each cancer. This suggests the estimation of α will
be difficult both within and between different cancers. Thus we should expect a grid-based
approach to be more flexible in accommodating its instability and also robust against disease
heterogeneity.

3.4.3 Biological significance
Figure 5 contains special features that enhance biological significance as
follows. First, we selected four β values obtained from the TCGA cancer
datasets, ranging from the cancer of lowest median β value (COAD)
to the highest median β value (OV). This provides us with a realistic
expectation of the range ofβ in cancer studies which we could use in future
visualisation heatmaps and computation of bcGST statistics. Second, over
this selected range of β, we split the GO terms into those which are
associated with MAP kinase (blue) and those which that are not (red).
We computed the median of each grouped GO terms for each α value and
also shaded the 25th percentile and the 75th percentile band for each group.
Since the MAP kinase pathway is known to be associated with melanoma,
we expect the GO terms associated with MAP kinase to be statistically
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Fig. 5. Each panel in the Figure holds a β value fixed. α is on the x-axis, and − log10

of the p-value is on the y-axis. Each faint black line in the diagram is a GO term, with
the thick black horizontal line respond to the − log10(0.05) threshold. The β grid points
were chosen to be equally spaced over 0.01 (β value for COAD in TCGA simulation) and
0.16 (β value for OV in TCGA simulation. We note the MAP kinase-associated GO terms
held their statistical significance across all values α for all values of β, a feature which we
consider to be robust against gene set selection bias.

significant across all α, for all selected β values, when compared to the
rest of GO terms. We observed this trend in this plot, thus affirming these
MAP kinase-associated terms retained higher their statistical significance
than the rest of GO terms, and hence we can conclude these are robust
against changes in both α and β. This figure allows us to see how p-values
of a particular term (or a group of terms) changes with respect to other
terms, under a range of possible gene-set selection bias.

3.5 bcGST statistic outperforms non-bias-corrected
p-values as a classifier

While the bcGST grid count statistic has the ability to supplement non-bias-
corrected p-values from a boutique array to recover false negatives induced
by gene set selection bias on a boutique array; it can also be used as a
classifier in itself to determine the significance of annotation terms. Similar
to how receiver operating characteristic (ROC) curves are constructed,
classification can be achieved by setting an appropriate threshold on the
counts, with those pathways exceeding this threshold being judged as
significant.

Figure S1 shows the ROC curve for the bcGST statistic and the FDR-
adjusted FET p-values in our simulated boutique array. bcGST statistic is
able to achieve similar true negative rate with a much lower false negative
rate compare to simulation. This ability to reduce false negatives makes the
count statistic strongly competitive against the conventional FET p-value
approach on top of its robustness to bias.

3.6 Application to real boutique array data revealed
meaningful biological results

Focusing on a comparison of AJCC tumour stage between the real
melanoma NanoString data and the TCGA - SKCM data, we were able
to show the value of our method. First, we can see that in practice, the
concordance of p-values on two different platforms is not guaranteed to be
strong as evident in Figure S2. This reaffirms the need for a correction
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method in the space of pathway enrichment analysis. Our grid count
statistic is able to add extra insights into how stable the pathway results
are. Using the same αβ grid of 400 on the BioCarta pathway database, we
showed that, attaining high bcGST count statistic value for a number of
pathways is possible despite low significance on either platform. Some of
these pathways include well-known pathways such as MAPk, ERK, EGF
and MET, see Table S2.

3.7 A Shiny-based application enable interactive
visualisation of adjusted-GST results for boutique array.

The bcGST statistics is dependent on choices of:

• (α, β) grid resolution
• p-value significance threshold, and
• number of significant grid points to qualify for robustness against gene

selection bias.

Providing a strict reference manual for these parameters is unrealistic
and prohibitive. Hence we have built a Shiny application to assist
this. Users can upload their own boutique array dataset, change
and choose these parameters accordingly to visualise the effects
on the final pathway analyses. The application is available at
http://shiny.maths.usyd.edu.au/bcGST

4 Discussion
The widespread use of boutique arrays has improved sensitivity of gene
expression measurements in addition to its relatively lower cost compared
to platforms such as genome-wide RNA-Seq profiling. These arrays have
advantages in both prediction and prognostic assessment for patients.
However, researchers should also be aware of the risk of applying
methodologies developed for similarly-purposed profiling platforms onto
boutique arrays without justification and modification. Here, we evaluated
the use of Fisher’s Exact Test, a classical tool in gene set enrichment
analysis in a boutique array platform and proposed a grid count statistic
that adjusts the over-representation p-value for boutique array GST
interpretation.

The bcGST statistic allows us to examine the stability of p-values for
each annotation term over different levels of induced gene set selection
bias. For each annotation term, each count represents a statistically
significant conclusion, assuming a particular level of gene-set selection
bias in a boutique array experiment. A higher bcGST statistic therefore
implies the statistical significance will be stable across different levels of
bias, and thus the significance is less likely to be driven by the gene-set
selection induced in the construction of the boutique array.

The gene set selection bias issue is not unique to boutique array
platforms. The main issue in this context is that statistical tools like the FET
are only interpretable with respect to the correct underlying gene universe.
For example, with the mass spectrometry platform in proteomics studies,
where the technology was shown to only capture up to 84% of the total
annotated protein-coding genes in humans (Kim et al., 2014). The effects
of gene set selection bias on this platform remain to be explored.

The bcGST grid count statistic depends on the number of grid points
and the spacing between the grid points. Due to the heterogeneity ofα over
the interval [0, 1], choosing equal spacings is one possible natural choice.
Typically, the values associated with constructing β is much larger in
magnitude, thus we recommend to construct the grid over a more restricted
interval with equal or non-linear spacing. Being aware of this issue should
allow us to take note of more drastic changes in inference results. Such
changes were observed in Figure 5 with comparing the β = 0.01 panel,

where the slopes of a majority of GO terms were large relative to three
other panels of β.

It is well demonstrated in the literature that different normalisation
methods can yield wildly different and incomparable results (Law et al.,
2014; Dillies et al., 2013). In practice, normalisation on a boutique array
has additional analytic challenges due to the small number of genes. In the
interest of generating more comparable results, we did not perform any
additional normalisation on the simulated data after we subset the boutique
array genes from the microarray and the RNA-seq platforms. This enables
us to put a greater focus on the effect of boutique arrays as opposed
to the effect of normalisation. In practice, the effect of normalisation
will be combined with gene set selection bias as normalisation methods
typically utilises additional information from non-expressed genes or
control probes. This combination of effects will add extra challenge to
adjustment methods.

5 Conclusion
Gene set selection bias is a significant issue with boutique array technology.
Such bias is expected to affect the downstream analysis and appropriate
adjustment methods are required to derive valid results. When performing
gene set test on the boutique array data, we propose a grid-based evaluation
technique, bcGST, along with a count statistic that is robust against
the gene set selection bias, to provide interpretable visualisations which
outperform a conventional p-value approach. Meaningful biological results
were obtained when applied to real world data. A Shiny application is
available to facilitate interactive visualisation of the results.
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