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ABSTRACT   

Considerable data and analysis support the detection of a supernova at a distance of 
about 50 pc, ~2.6 million years ago. This is possibly related to the extinction event 
around that time and is a member of a series of explosions which formed the Local 
Bubble in the interstellar medium. We build on the assumptions made in previous work, 
and propagate the muon flux from supernova-initiated cosmic rays from the surface to 
the depths of the ocean. We find that the radiation dose from the muons will exceed the 
total present surface dose from all sources at depths up to a kilometer and will persist 
for at least the lifetime of marine megafauna. It is reasonable to hypothesize that this 
increase in radiation load may have contributed to a newly documented marine 
megafaunal extinction at that time.  
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1. Introduction 

There is now considerable confirmatory evidence from multiple sources for a 
supernova (SN) or series thereof over the last ~8 My [1-10]. The strongest signal is 
of an event about 2.5 Ma, which coincides within the uncertainties to the Pliocene-
Pleistocene boundary at which there was elevated extinction (hereafter PP), 
qualifying as a mass extinction by at least one set of criteria [11]. This extinction 
included a major megafaunal extinction which was more severe in coastal waters 
[12].  

The possible terrestrial effect of a nearby SN has long been of interest. A major 
modern attempt to computationally approach the problem was published by Gehrels 
et al. [13], and emphasized the effect of stratospheric ozone depletion and 
concurrent UVB increase at the Earth’s surface as a mechanism for change. Benitez 
et al. noticed the proximity of the SN timing to the PP extinction and proposed the 
UV mechanism as related to the extinction [14]. However, there was also awareness 
of the effect of muons on the subsurface from cosmic ray showers [15]. All of these 
works were limited by a relative lack of information on source electromagnetic and 
cosmic ray (CR) emissions. More recently, new information on prompt and early 
emissions from SNe as well as the timing and distance of relatively recent proximate 
SNe were used as input in a series of computations [16]. We use terrestrial muon 
flux from this study as an input in order to propagate effects into the ocean. 

 

 

2. Base study methods and conclusions 

The work here is a follow-on to a recent fairly comprehensive study [16] modeling the 
best available information on the event indicated by recent data [1-10]. We will 
summarize the assumptions, methods, and results here, but the reader is referred to the 
original publication [16] for detailed information. A SN of type IIP is assumed to have 
taken place about 2.6 Ma, at a distance of 50 pc. We assume that the SN injects 
instantaneously the CR energy 2.5 X 1050 erg with source spectrum Q(E) ~ E-2.2 exp (-
E/Ec) and cutoff energy Ec = 1 PeV. We further assume that both the SN and the Earth 
are within the Local Bubble, having been already formed by SNe earlier in the series [6]. 
The magnetic field in the Local Bubble is assumed to have been largely expelled and 
residing within the walls of this structure; the internal remnant field is turbulent with 
strength B = 0.1 µG. Under these conditions the cosmic ray propagation is essentially 
diffusive. Our results imply a much larger cosmic ray flux than a previous study [13] 
which lacked information recently available. The flux we find at 50 pc is comparable to, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 28, 2017. ; https://doi.org/10.1101/240093doi: bioRxiv preprint 

https://doi.org/10.1101/240093


but has higher energy cosmic rays than assumed in that previous [13] study. The effects 
are correspondingly greater. 

   It was found, based on more recent observations that the immediate flux of 
gamma rays, X-rays, and UV photons from 50 pc is too small to be significant. It was 
found that the flux of blue light from the remnant is large enough to be detrimental to 
wildlife if in the night sky, but only for a timescale of order one month, too short to be 
visible in the fossil record. 

 Cosmic ray propagation in the turbulent field leads to a time-dependent flux at 
the Earth. We reproduce here as Figure 1 the Figure 1B in reference [13]. The units of 
this figure are adjusted so that equal areas under the curve correspond to equal energy 
flux at the Earth. The zero of time is taken to be the arrival of the first prompt photons at 
the Earth. Finally, the boundary conditions are taken to be open, so that the CR 
continue past the Earth. However, in the case of the Local Bubble, the CR should reflect 
off the boundary of the region, and establish an approximately steady-state inside the 
region. The flux shown exceeds the current “galactic cosmic ray” flux at the Earth by 
more than two orders of magnitude at PeV energies. 

 For many decades, the dominant effect considered for terrestrial life from a 
nearby SN was ozone depletion. High energy photons and CR can ionize and 
dissociate molecules in the atmosphere, particularly N2. Through a complicated chain of 
chemical reactions [17], the resultants catalyze the depletion of O3 with a recovery 
timescale of 5-10 years after the ionizing flux ends. In the recent study, the CR flux was 
taken to be constant at the level of 100 years. In this case, a globally averaged ozone 
depletion of order 25% was established as the equilibrium result. It was estimated that 
this would result in an approximately 50% increase in UVB at the surface. This is much 
larger than the few percent increase induced by chlorofluorocarbons in the recent past. 
It would no doubt be detrimental, but not a mass extinction level event. Rainout would 
contribute a slow but steady addition of nitrate fertilizer to the ground [13]. Ionization in 
the troposphere might contribute to an increase in cloud-to-ground lighting, but 
consideration of this is beyond the scope of this article. 

 Radiation on the ground will consist primarily of neutrons and muons. Although 
the neutron flux increased, the amount at ground level would constitute a very small 
radiation dose. The tables of Atri and Melott [18] were convolved with the resultant 
cosmic ray spectra to determine muon flux on the ground. This muon dose was found to 
increase by a factor of about 150 at the 100 year CR flux level, and would build up to 
about 1 Sv in 30 years, which would have a substantial effect on the cancer and 
mutation rates. Larger and longer-lived organisms will experience a greater relative 
increase in radiation dose, which may be related to a marine megafaunal extinction at 
the Pliocene-Pleistocene boundary [12]. 
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3. Computing the muon dose in the oceans 

In order to estimate the radiation dose caused by cosmic ray muons as a function of the 
depth in the oceans we employed a 3D Monte Carlo approach to characterize the 
energy deposition of these particles along their trajectories, using data from [16] as the 
initial conditions at the surface of the oceans. For this we used the Geant4 framework 
[19] which provides all functionalities necessary to simulate the radiation-matter 
interactions in water with a few percent precision and over the whole energy range 
considered [20]. Muons can transfer part of their energy to the material directly or via 
production of secondary particles close to their trajectory through ionization, 
Bremsstrahlung, pair production and nuclear processes which were all taken into 
account in our calculations. In this method the trajectories can be resumed by the 
occurrence of the particle decay or due to capture at rest. As shown in [15], the 
generated secondaries are mostly electrons and gammas and they will likely cause a 
lateral displacement of ∼1m so still typically inside the large volumes we are interested 
in. 

The geometry adopted for the simulation was a water column with 100km of height 
and 30km wide. The starting muon positions were homogeneously sampled within a 
horizontal area of 2 x 2 km2 centered on top of the column to ensure particles always 
propagating within the material and to avoid unwanted boundary effects. Propagation 
directions were sampled according to the muon angular distributions on earth’s surface 
[21]. After propagating the muons through the material and fixing all with the same initial 
energy E, the average deposited energy per particle ΔE’(E,z) was calculated in smaller 
volumes positioned at different z depths in the water column. These were block volumes 
of area A = 1 x 1 km2 also centered in the column z-axis and with a thin h = 1m height 
such that the dose rate due to a flux φ(E) could be obtained as function of depth. The 
dose rate was then calculated as: 

���� � � Δ�′��, ��
	
ρ

����

����

�φ
�� ��, 

where is the water density and Emin and Emax configure the energy range of the fluxes as 
from [16]. 

4. Results of muon computations 

Figure 2 shows the values obtained for annual dose as function of depth. The solid 
black line without markers shows the typical annual dose at the present time. The dose 
from muons in the ocean exceeds the present dose for 10 kyr with open boundary 
conditions on the cosmic rays from the SN. It even exceeds the average dose from all 
sources at the Earth’s surface for up to 1 kyr depending on depth—for depths from 100 
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m to 1 km. Again, with the CR confining boundary of the Local Bubble, the dose can be 
expected to last longer. 

  Muons’ dose can also be characterized as a function of their energy at a certain 
depth instead of the initial energies at the surface. Figure 3 presents the differential 
dose as a function of energy for when the flux reaches its maximum (100 years after the 
supernova event) for two different oceanic depths and also at the surface. The 
differential dose due to the present muon flux at the surface is also shown for 
comparison. The small contribution to the dose from the very low energy part of the 
spectrum (<1GeV) increases with depth surpassing the surface contribution as can be 
observed at z = 250 m. This is due to the muons energy loss as they traverse water, 
shifting muons at mid energy range to lower energies. This was also noticed in a similar 
analysis in [15]. However, this contribution will decrease faster with higher depths such 
that it goes below the surface curve again at z = 500 m. This energy loss also renders 
the flattening and decrease of both underwater curves observed up to ~100 GeV. 
 The muon stopping power is within the same order of magnitude across the 
whole energy range considered in this analysis [16] with a steep increase only below 
the minimum and above the maximum energy values shown [20,21]. Simulation 
indicates that only muons arriving at water surface with energy above ~64 GeV and 
~125 GeV reach z = 250 m and z = 500 m depths, respectively. This is in agreement 
with the stopping power estimate of ~2.5 MeV/cm for these energies. Muons with 
energies above 200 GeV contribute with 24%, 42%, and 52% of the deposited dose for 
z=0, 250m, and 500m, respectively, after 100 years from the SN event. Therefore, high 
energy muons can reach deeper in the oceans being the more relevant agent of 
biological damage as depth increases. In contrast, this contribution to the present dose 
at the surface amounts to only 7.7%. 
  

5. Estimates of biological effects and the Pliocene-Pleistocene extinction 

The PP event qualifies as a mass extinction by one quantitative analysis [11], but 
analysis here is complicated by the fact that there were a number of simultaneous 
changes, including a marine megafaunal extinction [12], extinction of bivalves in the 
western Atlantic area [22], and extinctions, vegetation changes, and hominid evolution 
in Africa [23]. Causes generally associated with PP are climate change (many 
glaciations and a generally cooler climate in the Pleistocene) and the closing of the 
Isthmus of Panama as North and South America joined. The latter caused changes in 
ocean currents, affecting temperatures and nutrient levels in the Caribbean and western 
Atlantic Ocean. It also caused an exchange of fauna between North and South America. 
The two had evolved in isolation from one another, and many extinctions occurred as 
species out-competed one another. Deforestation in northeast Africa may have been 
related to climate change. For all these reasons, evaluation of effects from the SN is 
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complicated. It may possibly be connected to climate change [24], but this is a 
controversial claim. Here, we are concerned with the effects of the muons. 

 Muons normally constitute a variable approximate 10% of the radiation dose on 
the ground. Figure 2 shows that this dose goes up by more than two orders of 
magnitude as a result of secondaries from the SNCRs. The dose from various sources 
to organisms in the ocean should be less than on land, due to the short range of various 
emissions. Alphas from 22Rn, a primary source on land should be reduced. The mass 
fraction of this isotope in water above the thermocline (about the top km) is comparable 
to that in air [25]. The muons, which are highly penetrating, will constitute a relatively 
much larger increase in radiation dose in the upper hundreds of meters of water than 
they will in deep ocean or on land. 

 There will also be a differential effect based on the size of organisms. Again, 
most natural radiation is not penetrating, and will constitute a surface effect. Muon 
irradiation will effectively penetrate any organisms, and so constitute a volume effect. 
Larger organisms are largely self-shielded from most natural radiation sources, but not 
from muons. The larger the organism, the larger will be the relative increase in radiation 
dose. 

 While it can be argued that the muons generally constitute a small increase in the 
radiation dose inducing mutations and cancer [16], large organisms in the top few 
hundred meters of the ocean will experience a much larger relative increase in radiation 
dose during the period of SNCR irradiation. It is therefore tempting to associate this with 
the PP megafaunal extinction, which was concentrated in coastal waters [12]. Both 
large size and a habitat in the upper ocean would constitute high risk factors, as the 
organisms would experience a greater relative increase in radiation dose from the 
muons. 
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Figure Captions 

 

Figure 1. This is a very slightly modified reproduction of Figure 1B from reference [13], 
the time-dependent cosmic ray flux at the Earth from a SN at 50 pc, propagating 
diffusively through a tangle 0.1 µG magnetic field. It takes 10,000 years for the flux to 
return to normal levels (solid black line). However, a steady-state would be reached 
inside the Local Bubble with magnetic field compressed into the walls. Reproduced 
courtesy American Astronomical Society. 
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Figure 2: Estimated annual dose caused by muons in the oceans due to cosmic ray flux 
from a SN at 50 pc. The horizontal dashed line indicates the current total dose from all 
sources at Earth’s surface while the solid black line indicates current muon’s dose in the 
ocean from the SN as function of depth. 
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Figure 3: Estimated differential dose caused by muons in terrestrial oceans due to 
cosmic ray flux after 100 years from a SN at 50 pc distance for different depths. The 
present differential dose is shown for comparison. 
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