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Abstract 
A minimal model for oscillating between quiescent and growth states, dependent on the 
availability of a metabolic resource, is presented. From the yeast metabolic cycles (YMCs), 
metabolic oscillations in oxygen consumption are represented as transitions between quiescent 
and growth states. We consider metabolic resource availability, growth rates, and switching 
rates (between states) to model a relaxation oscillator explaining transitions between these 
states. This bistability model reveals a required communication between the metabolic resource 
that determines oscillations, and the quiescent and growth state cells. Cells in each state reflect 
memory, or hysteresis of their current state, and “push-pull” cells into the other state. Finally, a 
parsimonious argument is made for a specific central metabolite as the controller of switching 
between quiescence and growth states. We discuss how an oscillator built around the 
availability of such a central metabolic resource is sufficient to regulate oscillations between 
growth and quiescence, through committed transitions. 
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Introduction 
 

While all cells can exist in a variety of states, two opposite ends of the spectrum are the 
“growth” state (leading to mitotic division and proliferation), or a non-proliferative “quiescent” 
state. The quiescent state, operationally defined here as a reversibly non-dividing state, is the 
predominant state of all living cells (1, 2). Understanding how cells reversibly transition from a 
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quiescent to a growth state is therefore a fundamental biological question. Current explanations 
for how cells commit to growth and cell division account for metabolic regulation, biomolecule 
synthesis, and regulated progression through the cell cycle, presenting multiple, integrated 
mechanisms of information transfer within a cell that lead to the eventual growth outcome.  
 

However, when a population of genetically identical cells are present in a uniform 
environment, how can individual cells within such a population decide to switch between a 
quiescent (effective “G0”) state and a growth/proliferation state? Indeed, such heterogeneity of 
cell states within populations is widely observed and acknowledged. Numerous examples exist 
in nearly all systems studied, from simple eukaryotes like the budding yeast, to complex 
mammalian systems (3–9), with multiple molecular events correlating with transitions between 
growth and quiescence. For any population transitioning into either of these states, 
experimentalists have asked: (i) what hallmarks allow discrimination between actively 
proliferating and G0 cells? (ii) how do cells transit back and forth between these two states? And 
(iii) how are different signals processed and integrated into an appropriate cellular response? 
The regulation of the final cellular outcome occurs at multiple levels, including differential gene 
expression programs, and signaling responses to growth factors, which can be different 
depending upon the type of cell or organism studied. However, at its very core, this transition 
between quiescent and growth states is a metabolic problem; cells must be in a metabolic state 
capable of committing to growth/proliferation and must sense this state, which pushes cells 
towards growth. Indeed, several lines of evidence now reiterate a primary metabolic determinant 
for cells committing to a growth state (exiting quiescence), or remaining in a quiescent state (7–
15). Given this absolute metabolic requirement to switch to growth, if there is an isogenic 
(“identical”) population of cells present in a uniform environment, how can there be a two-state 
outcome where some cells undergo growth/proliferation, while the rest remain quiescent? 
Surprisingly, there are few rigorous theoretical, mathematical models that can provide a 
conceptual framework sufficient to explain this, and which will provide predictions that can be 
experimentally conceptualized and tested at a molecular level. This is in contrast to the 
extensive, elegant, and often prescient models that have been built to explain progress through 
the classical cell division cycle (CDC), by incorporating existing experimental data of phase-
specific cell-cycle activators and inhibitors (16–19). Such modeling of the CDC has a long 
history (examples include (18–23)), and these types of theoretical studies have revealed 
biological possibilities that were experimentally determined much later (such as (24–27)).  
  

Given this, there is considerable value in building coarse-grained but rigorous theoretical 
models to understand switching between quiescence and growth states. Here, the switching 
between quiescence and growth states could be treated as a biological oscillation (17, 19, 25, 
28), while considering a dependence on a metabolic “resource” as a driver of the oscillator. For 
building such a model, we require extensive experimental data from biological systems where 
metabolic oscillations are demonstrably closely coupled with exiting quiescence/entering the 
CDC. Such data are readily available from the budding yeast, S. cerevisiae. Yeast have been 
the instrumental cellular model in revealing processes that define both the CDC (29) and the 
quiescence cycle (1, 7–9, 30). The classical CDC involves progression through the G1, S, and 
G2/M phases. In contrast, during a quiescence (or effective “G0”) cycle, cells remain non-
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dividing, but can exit quiescence and enter the G1 phase of the cell cycle to subsequently 
complete the CDC. Experimentally dissecting specific processes driving entry into, and exit 
from, quiescence (into the CDC) is challenging in asynchronous, heterogeneous cultures of 
cells. However, metabolically synchronized yeast populations (as manifest by oscillations in 
oxygen consumption) have long been studied in yeast cultures limited for a carbon source 
(glucose or ethanol), and subsequently fed continuously with limited concentrations of glucose 
or ethanol (31, 32). Gene expression studies from such glucose-limited yeast metabolic cycles 
(YMCs) showed that a majority of the genome is expressed highly periodically, further revealing 
the molecular organization of growth and quiescent states (12, 33–35). Genes associated with 
biosynthesis and growth (comprehensively described in (36)) typically peak during a high 
oxygen consumption phase in the YMC (33, 37–39), while genes that mark autophagy, vacuolar 
function and a “quiescence” state peak during a steady, low oxygen consumption phase. 
Strikingly, in these continuous YMC cultures, cell division is tightly gated to a temporal window. 
Cells divide synchronously only once during each metabolic cycle (33, 40–42) and remain in a 
non-dividing state during the rest of the cycle. The non-dividing population in the low oxygen 
consumption phase exhibits most hallmarks of quiescent cells (7, 33, 43–45). Furthermore, in 
each YMC, during the tight temporal window when cells divide, the culture has two visibly 
distinct subpopulations: dividing and nondividing (33, 41, 42). These data have suggested a 
close coupling between the metabolic and the cell division cycles. Importantly, the YMC itself is 
metabolite/nutrient regulated, and controlled by the amount of available glucose. The distinct 
phases of the YMC correspondingly show a separation of metabolic processes (33, 46), and 
several lines of evidence suggest that key metabolite amounts are critical for entering or exiting 
a proliferative or a non-proliferative state (34, 43, 45–47). Thus, these studies provide an 
extensive resource using which a theoretical, mathematical model can be built to sufficiently 
explain oscillations between a “quiescent” state and a “growth” state.   

 
Here, we use existing data from the yeast metabolic cycles to build a robust model for 

oscillations between a quiescent and a growth state. Importantly, the model necessitates the 
requirement of a tripartite communication - between the metabolic resource, the quiescent cells, 
and the cells exiting quiescence and entering growth - in order for the cells to sustain oscillation 
between these two states. The model oscillations depend on an underlying bistability, which 
means that cells in either state exhibit hysteresis, or memory, of their states. Finally, using this 
model, we show how two central metabolites, thought to be critical for entry into a growth state, 
satisfy the required criteria for the currency that controls oscillations between these two cell 
states. Collectively, we provide a coarse-grained, sufficiency model to explain how cells can 
oscillate between a quiescent and growth state, depending upon amounts and utilization of an 
internal metabolic currency.  

Results 
Bistable states during yeast metabolic cycles 
 

Yeast cells grown to a high cell density (in batch culture mode) in a chemostat, and 
when subsequently fed limited amounts of glucose medium, spontaneously undergo robust 
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oscillations in oxygen consumption (YMCs) (Figure 1A) and (33, 35), with the period of each 
oscillation ~4 hours (Figure 1A). For these oscillations to occur, the batch culture needs to first 
be starved for a few hours (Figure 1A), during which time all glucose is depleted, and all cells 
enter a non-dividing state. After this starvation, if cells are continuously provided limited 
medium, the oscillations in oxygen consumption spontaneously start and continue indefinitely 
(Figure 1A). Comprehensive gene expression analysis across these oscillations has revealed 
highly periodic transcript expression (33, 48), and proteins encoded by these transcripts can be 
“binned” into three general classes (Figure 1B, 1C). These represent “growth genes” during the 
high oxygen consumption phase, followed by the rapid decrease in oxygen consumption 
coupled with “cell division” (Figure 1B, 1C). The cells exhibiting the “growth” signature go on to 
enter and complete the CDC (42). Finally, the YMC enters a state of ~stable oxygen 
consumption where the gene expression profile revealed a “quiescent” state (Figure 1B, 1C). 
Mitotic cell division is tightly gated to a narrow window (Figure 1B, 1C). Interestingly, in this 
phase, only a fixed fraction of the cells (~35%) (and not all cells) divide during each cycle 
(Figure 1D). During the stable oxygen consumption phase, there are almost no budding cells 
(Figure 1D). It is important to note that given that this is a controlled chemostat system, the 
overall cell number/density is constant throughout these oscillations (33, 35), which is important 
for our later model. Thus, there appears to be an observable, apparent cellular bistability 
occurring during these oscillations in oxygen consumption. The stable, low oxygen consumption 
phase can therefore be envisioned as representing the non-dividing, “quiescent” state (Q), while 
the rapid increase in oxygen consumption followed by the reduction in oxygen consumption 
phase represents the “growth” state (G) (Figure 1E). Considering this, our objective was to build 
a mathematical model that conceptualized the oscillations in oxygen consumption as oscillations 
between these two (Q and G) states. For this, we first envisaged three broad scenarios that 
could result in such an oscillation, and could make biological sense  (Figure 1F): (i) there could 
be the production and secretion of a resource by a sub-population of cells (“feeders”), which is 
taken up by other cells that will go on to divide; (ii) there could be the secretion and 
accumulation of a metabolite that is sensed and taken up by only some cells (but is not 
consumed); (iii) there is a build up of a metabolite, which is consumed by the cells at some 
threshold concentration (Figure 1F). Starting from these scenarios, we built simple models to 
test which one could create an oscillatory system between the two states.   
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FFiigguurree  11::  AAppppaarreenntt  ttwwoo--ssttaattee  bbiissttaabbii ll ii ttyy  dduurriinngg  YYeeaasstt  MMeettaabbooll iicc  CCyycclleess..  

A) A representative YMC, indicating stable oscillations in oxygen consumption (based on 
dissolved oxygen dO2) in yeast cultures, reflecting the yeast metabolic cycle. Note that 
the stable oscillations are driven by restricted feeding. 
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B) A more detailed illustration of each oscillation cycle, also indicating the phases of the 
YMC. 

C) Functional outputs based on gene expression studies (from (33)), which clearly define 
the phases of the YMC into a general “growth/proliferation” phase, and a “quiescence” 
phase. 

D) Observed cell division during the YMC. Cell division is tightly gated to a narrow window 
of the YMC. Note that only a fraction of cells, and not all cells, divide during this window 
of each cycle. 

E) Reducing the oxygen consumption (dO2) oscillation into a two-state (Q and G) system. 
F) Plausible biological scenarios that could result in an oscillation between Q and G 

states. 
 
A “push-pull” model, requiring communication between the Q state, G state and the 
resource, produces oscillatory behavior 
 
Model framework for a two-state yeast population  
 

In order to model such a two-state population of cells, the variables to consider would be 
the following: (a) The fraction of cells in the quiescent state (and consequently the fraction in the 
growth state), (b) some indicator of resource availability (dependent on the accumulation and 
consumption of the resource) which could modulate the switching rate between Q and G states. 
Thus, using this framework, we build the following equations that can describe the dynamics of 
a two-state population of yeast cells in a well-mixed system: 
 

“Change in Q population over time”: = 𝜈𝜈 (1 − 𝑞𝑞) − 𝜈𝜈 𝑞𝑞 − 𝛾𝛾𝛾𝛾(1 − 𝑞𝑞),  (1) 
 

“Change in resource 𝒂𝒂 over time”:  = 𝜎𝜎 − 𝜇𝜇𝜇𝜇(1 − 𝑞𝑞)𝑎𝑎 − 𝛾𝛾(1 − 𝑞𝑞)𝑎𝑎,  (2) 
 

Here, 𝑞𝑞 ≡ 𝑄𝑄/(𝐺𝐺 + 𝑄𝑄) is the fraction of cells in the quiescent state, and 𝑎𝑎 simply represents 
the concentration per cell of a `resource’ (which may be intracellular or extracellular). As 
explained in Methods, these equations model the growth of G cells (with the growth rate being 
represented by the parameter 𝛾𝛾), switching between G and Q states (𝜈𝜈  and 𝜈𝜈 ), as well as 
the accumulation (𝜎𝜎) and consumption (𝜇𝜇) of the resource 𝑎𝑎. They also include the outflux of 
both cells and resource from the chemostat - because the total population of cells is known to 
remain approximately constant, this outflux rate necessarily depends on the growth rate of cells.  
By choosing which of these parameters are zero or non-zero, and how they depend on 𝑞𝑞 and/or 
𝑎𝑎, this framework can be used to model a variety of scenarios, which subsume the broad, 
biological scenarios illustrated in Figure 1E. These mathematically distinct scenarios are 
described below (and illustrated in Figures 2A and 2B): 
 

1. A sub-population of feeder cells (in the Q state) secrete a resource that is sensed by 
other cells that can grow and divide (G state); resource accumulation 𝜎𝜎 increases with 𝑞𝑞. 
Such a scenario can be modelled with the G cells either consuming the resource (𝜇𝜇 ≠ 0), 
or only sensing but not consuming the resource (𝜇𝜇 = 0) in the processes of 
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growing/dividing. Thus, the growth rate in the G state may be a constant, or may depend 
on the level of the resource (e.g., 𝛾𝛾 proportional to 𝑎𝑎). There are three sub-scenarios for 
how cells may switch between the two states: 

a. There is no switching between Q and G states (𝜈𝜈  and 𝜈𝜈  both zero). 
b. There is random switching between Q and G states (𝜈𝜈  and/or 𝜈𝜈  are non-zero 

constants). 
c. Switching between Q and G states is non-random, dependent on cell-cell 

communication and/or the resource level (𝜈𝜈  and 𝜈𝜈  both functions of 𝑞𝑞 and/or 
𝑎𝑎). 

2. All cells produce and secrete a resource that is sensed only by a sub-population of (G) 
cells that can grow and divide, i.e., 𝜎𝜎 is a constant. As in scenario 1, the G cells may or 
may not consume the resource, the growth rate in the G state may or may not depend 
on the level of the resource, and there are three sub-scenarios for how cells may switch 
between the two states: no switching, random switching or non-random switching. 

3. There is a build up of a resource, which is directly supplied from outside into the 
chemostat medium (𝜎𝜎 is a constant). This metabolite is sensed or consumed by the G 
cells when they grow/divide. Again, the growth rate in the G state may or may not 
depend on the level of the resource and switching may work in one of three ways: none, 
random or non-random switching. 

 
While scenarios (2) and (3) are mechanistically very different, they are in fact 

mathematically no different from each other; both result in a constant production of the 
resource. Hence, we need not distinguish between these two. Testing all the scenarios above, 
using equations 1 and 2, we find that oscillations are not possible in the absence of switching, or 
even with random switching (see Supplementary section 1), when there is no substantial time 
delay between resource utilization and division events (as assumed in writing equations 1 and 
2). Thus, scenarios 1c, 2c and 3c are the only possibilities left. This means that the switching 
between Q and G states is a non-random event, and depends not only on the resource, but 
some form of communication between the resource, the cells in the Q state and the cells in the 
G state. 
 

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2017. ; https://doi.org/10.1101/239897doi: bioRxiv preprint 

https://doi.org/10.1101/239897
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
  
FFiigguurree  22::  AA  ““ppuusshh--ppuull ll””  mmooddeell   ffoorr  bbiissttaabbllee  oossccii ll llaatt iioonnss  bbeettwweeeenn  QQ  aanndd  GG  ssttaatteess..  

A) The biologically plausible scenarios from Figure 1F broken down into precise 
categories, and including parameters for growth rate (γ), resource (a), switching rate 
between Q and G states (ν ), and the fraction of quiescent cells (q). 
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B) Schematic illustration of Figure 1A, indicating communication loops (with direction) and 
parameters considered, to test for possible oscillations between Q and G states. 

C) A hysteretic oscillator, based on non-random switching between Q and G states, a 
required communication between Q, G and the resource, and a minimal cell density, 
and the oscillation of the amounts of resource itself that controls this Q and G oscillation 
(see Methods for the equations that produce this dynamics). 

 
Hysteretic oscillator based on the two-state model 
 

A simple way to obtain an oscillator from this two-state model uses the strategy of 
`frustrated bistability’ previously suggested by (49). It requires two ingredients: (1) a negative 
feedback loop between 𝑞𝑞 and 𝑎𝑎, and (2) bistability in 𝑞𝑞 in the absence of the feedback. While 
the first can be achieved in several ways, the two simplest, biologically plausible, scenarios are 
where growing cells consume resource 𝑎𝑎 and: (i) the growth rate 𝛾𝛾 is proportional to the 
resource 𝑎𝑎; or, (ii) one or both switching rates depend on 𝑎𝑎 such that the net switching rate from 
G to Q decreases with 𝑎𝑎. Bistability in 𝑞𝑞 in the absence of the feedback implies that when 𝑎𝑎 is 
kept fixed, for some range of 𝑎𝑎 values, equation 1 should allow two stable steady state levels of 
𝑞𝑞, one lower and one higher. This is shown in Fig 2C left panel, where one can see the high and 
low `branches’ traced by the solid black circles - every point on these branches is a stable 
steady state 𝑞𝑞 can attain for the corresponding 𝑎𝑎 value, using a version of equation 1 derived 
from scenario 3 in Fig 2B (see Methods for the full equation). When the resource 𝑎𝑎 is sufficiently 
small, then there is only one high steady-state level possible for 𝑞𝑞. Similarly, when 𝑎𝑎 is 
sufficiently large, there is only one low steady-state possible. However, for intermediate values 
of 𝑎𝑎, the system exhibits bistability and both low and high steady-state levels co-exist. In this 
bistable region, which steady-state level 𝑞𝑞 attains depends on where it started (i.e., its ‘initial 
condition’). Importantly, in these oscillations, the system exhibits a ‘memory’ (or a ‘hysteresis’) - 
the steady-state level that 𝑞𝑞 eventually settles into depends on the history of the system.  
 

When there exists such bistability, then one can get oscillations from the system 
described by equations 1 and 2, provided the switching rates are a few-fold faster than the rates 
of consumption and accumulation of the resource (49), which is a logical assumption. In that 
case, when 𝑞𝑞 is high, 𝑎𝑎 increases due to lack of consumption, so the system creeps along the 
high branch in Fig 2C left panel (see the trajectory traced by the thin black line) until it hits the 
edge of the bistable region. At that point, cells start switching to the G state, which happens 
relatively rapidly. Thus, the trajectory “falls off” the edge down to the low branch. On the low 
branch, with more G cells, the now increased consumption of the resource causes 𝑎𝑎 to start 
decreasing, leading to the system creeping down along the low branch. When the system 
reaches the left edge of the bistability, the trajectory jumps up to the high branch as cells rapidly 
switch to the Q state. For a range of parameter values, this settles into a stable oscillation, as 
shown in Fig 2C middle panel, which shows how 𝑞𝑞 and 𝑎𝑎 vary with time as one follows the black 
trajectory in Fig 2C left panel. 
 

Non-random switching is necessary for this kind of oscillation, where 𝜈𝜈  and/or 𝜈𝜈  are 
functions of 𝑞𝑞. This can be interpreted as a form of ‘quorum/cell number sensing’- implying 
some form of cell-cell communication (or some cell density dependent phenomenon). More 
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specifically, we find that choosing either 𝜈𝜈  to be a decreasing step-function of 𝑞𝑞, or 𝜈𝜈  to be 
an increasing step-function of 𝑞𝑞 (as in Fig 2C), or both, is sufficient to produce frustrated 
bistability (see supplementary Fig S1). Other shapes that we have not explored may also 
produce oscillations. However, our purpose here is not to find the ‘best-fit’ model, but rather to 
demonstrate the basic ingredients which are sufficient to produce hysteretic oscillations that are 
similar to the experimental observations. The requirement for 𝜈𝜈  to be a decreasing step-
function of 𝑞𝑞, or 𝜈𝜈  to be an increasing step-function of 𝑞𝑞, is basically a requirement for a 
“push-pull” mechanism - the more the Q cells, the more other Q cells get pulled to remain in that 
state, and the more G cells get pushed to switch away from their state. Irrespective of the 
precise molecular means by which this is achieved, cell-cell communication is a necessary 
ingredient for implementing such a push-pull mechanism. 
 
Mismatch between the shape of the oscillations in the model and the experiment 
 

The annotations in Fig 2C right panel, which zooms in to show one period of oscillation, 
highlight an interesting failure of the model oscillations when compared with the experimental 
observations. The model oscillations exhibit a fast drop in 𝑞𝑞 when exiting the predominantly 
quiescent phase, followed by a slow(er) rise, and then a rapid rise back to a high 𝑞𝑞 level. 
Experimentally, dO2 levels (which we equate with 𝑞𝑞) show a fast drop, a slow further drop, and 
then a rapid rise (see Fig 1B), which is the opposite of what is seen in the present model. In the 
model, the shape observed arises entirely from the shape of the lower branch of 𝑞𝑞 steady-states 
in Fig 2C, left panel. Because this lower branch starts at a 𝑞𝑞 value of around 0.6-0.7 and then 
decreases as 𝑎𝑎 increases, therefore there is a slow rise after the first fast drop in 𝑞𝑞. However, if 
such a model has to explain the shape of the experimental dO2 oscillations, the lower branch 
must instead increase as 𝑎𝑎 increases. We can show that this is not possible when the only way 
the resource affects the quiescent fraction is via 𝛾𝛾 being proportional to 𝑎𝑎, as in the equations 
that produced Fig 2C (see supplementary Fig S2). Instead, one way to produce a shape that 
matches experiments is by making the following choice within scenario 3c: 𝛾𝛾 (growth rate) 
constant, 𝜈𝜈  a decreasing step-function of 𝑞𝑞 such that the position of the step (the value of 𝑞𝑞 at 
which the step occurs - K in Fig 3A) increases with 𝑎𝑎, and both the high and low levels of the 
step decrease with 𝑎𝑎 (see Fig 3A, and the full equations in Methods). In that case, as shown in 
Fig 3B, the equations produce the correct (fast drop -> slow drop -> fast rise) shape.  
 

What do the above choices on parameters mean in terms of processes potentially 
happening in the cells? A simple possible explanation for this is that even within each state (Q 
or G), there is a heterogeneity in the population. This can arise, for example, from differences in 
the amounts of an internal resource within each cell, which in turn can affect the switching rate. 
Our model and equations may therefore represent a broader, coarse-grained effective behavior 
of the switching rate, which is averaged over many cells, all of which differ a bit from each other, 
but are distinguished sufficiently between the two states. This would in fact be exactly what one 
would expect if the resource controlling oscillations is constantly produced and utilized, at 
slightly different rates or times in each cell. 
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FFiigguurree  33::  FFiixxiinngg  tthhee  ppaatttteerrnn  ooff  tthhee  oossccii ll llaatt iioonn  

A) Altering the communication loops between Q, G and a, to change the overall step-
function. Here γ (growth rate) is constant, ν  is a decreasing step-function of q, and 
both the high and low levels of the step decrease with a 

B) Resultant oscillations obtained (see Methods for the equations that produce this 
dynamics). Note that now the fast drop is followed by a slow drop, and then a fast rise, 
similar to the experimentally observed oscillations in Fig 1. 
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Predicting oscillatory outcomes based on resource availability 
 

We have used scenario 3c to produce oscillations in Figures 2 and 3 above. We reiterate 
that mathematically scenarios 2 and 3 are the same, so scenario 2c can produce exactly the 
same oscillations. Further, we also find that scenario 1c (where the resource is not supplied 
externally, but produced/secreted by only the Q cells) is also capable of producing similar 
oscillations, based on some constrained choices for how the production rate of the resource (𝜎𝜎) 
depends on 𝑞𝑞 and final 𝑎𝑎 (see supplementary Fig S3). Thus, while scenarios 3c and 2c are 
identical, all three scenarios, 1c, 2c, 3c, with appropriate choices for how the switching rates, 
and production and consumption depend on the resource and fraction of quiescent cells, are 
sufficient to explain the YMC oscillations. Scenario 2c and 3c are largely indistinguishable, and 
both are biologically plausible. Given our experimental understanding of the YMC (and the need 
for a consumable resource, glucose, to control the oscillations), we think scenario 3c is most 
likely (and we will explore this further in a subsequent section). 
 
Breakdown of the oscillations. 
 

In Figs 2 and 3 above, we have chosen the particular “default” values of each of the 
model parameters such that the oscillation period became approximately 4 hours, to match the 
experimental observations in Fig 1. Of course, varying these parameter values changes the time 
period, and for large enough variation the oscillation may also disappear. Our model predicts 
how the oscillation shape and period will vary, and when oscillations will break down, in 
response to experimentally tunable parameters. For instance, Figure 4A shows how the 
oscillations change as the resource production rate, 𝜎𝜎, is varied around its default value, for the 
same equations that produced the oscillations in Figs 2 and 3. When 𝜎𝜎 is decreased below the 
default value, the oscillation period initially increases without significant change in the shape of 
the oscillations. For low enough 𝜎𝜎, the model first exhibits damped oscillations, and then as 𝜎𝜎 is 
lowered further, the model exhibits the absence of oscillations, with 𝑞𝑞 settling into a high steady-
state value (see also supplementary Fig S4 for more such plots) (Figure 4A). When 𝜎𝜎 is 
increased from its default value, we again find that the period initially decreases without much 
change in the shape. We are able to produce oscillations having a time period as low as ~2.5 
hours (see Figure 4A(iii)). When 𝜎𝜎 is increased beyond this, the oscillation period starts 
increasing again, and the slow drop phase of the oscillation starts becoming pronounced (see 
supplementary Fig S4). Eventually, the oscillations disappear, with 𝑞𝑞 settling into a (relatively) 
low steady-state value. These predictions largely mirror known experimental observations, 
where decreasing or increasing feed rate (at these scales) control oscillations similarly.  
 

The resource production rate 𝜎𝜎 is a parameter that can be tuned relatively easily in a 
chemostat by controlling the amount of fresh glucose or ethanol being supplied per unit time. 
However, another parameter that may be tunable by genetic modifications is 𝛾𝛾, the growth rate 
of cells when they are in the G state. Fig 4B shows how the oscillations vary as 𝛾𝛾 is varied. The 
results are qualitatively similar but inverse to what was observed with 𝜎𝜎 variation - an increase 
in 𝛾𝛾 results in decreasing period, damped oscillations and eventually no oscillations, while a 
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decrease first results in an increase of period, then a distorted shape and decreasing period 
(see supplementary Fig S5 for more such plots). 
 

 
 
FFiigguurree  44::  BBrreeaakkddoowwnn  ooff  oossccii ll llaatt iioonnss..  

A) Varying the rate of production of resource σ. (i) σ = 0.346  hr , (ii) σ = 0.400  hr  
(default parameters, same as Fig 3), (iii) σ = 0.866  hr . 

B) Varying the growth rate of cells γ. (i) γ = 0.500  hr , (ii) γ = 1.665  hr  (default 
parameters, same as Fig 3), (iii) γ = 2.000  hr . 

 
Acetyl-CoA and NADPH satisfy the requirements of the consumable resource that 
controls oscillations between Q and G states 
 

Based on our model, the metabolic resource oscillates with a unique pattern, and this 
drives the oscillation between the Q and G states. Here, the resource builds up within the cell, 
and is highest at the point of commitment to the switch to the G state (Figure 5A). It is then 
rapidly consumed to fall below a certain threshold, resetting the oscillation, after which the cycle 
of building up for consumption resumes. When superimposed to the actual YMC phases (and 
the Q to G switch), this build-up of the resource would necessitate highest amounts of this 
resource at the beginning of the phase where cells commit to entering high oxygen consumption 
(Figure 5A). A second implication of this model is that once this resource hits the threshold 
level, the growth phase is committed, and cells will grow unimpeded as they consume this 
resource. This means that once committed to the growth switch, the growth/division rate is 
constant and now no longer variable based on other factors. Therefore, in order for any 
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metabolite to be the resource that controls the oscillation between the two states, this molecule 
must fully satisfy the above criteria. Furthermore, for completing this switch to the G state, the 
metabolite must be able to drive all the downstream biological events for growth. So do any 
central metabolites satisfy these requirements, and could therefore be the internal resource that 
controls these Q-G oscillations? 
 

 
  
FFiigguurree  55::  AAcceettyyll--CCooAA  ssaatt iissff iieess  tthhee  rreeqquuiirreemmeennttss  ffoorr  tthhee  mmeettaabbooll iicc  rreessoouurrccee  
ccoonnttrrooll ll iinngg  tthhee  QQ  aanndd  GG  oossccii ll llaatt iioonnss..  

A) Predicted pattern of oscillation of the resource, during the Q and G oscillations, based 
on the model (top panel, same as Fig 3), and experimentally observed oscillations of 
acetyl-CoA and NADPH during the dO2 oscillations (bottom panel). 
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B) Predicted phase portrait of the the fraction of quiescent cells vs the resource per cell 
based on the model (top panel), and experimentally observed oscillations in dO2 and 
acetyl-CoA. 

C) Acetyl-CoA as a central regulator of a switch to the growth (G) state. The schematic 
illustrates a cascade of biological processes leading to growth that acetyl-CoA amounts 
regulate (coupled with coincident, required NADPH utilization).  

  
Comprehensive datasets of oscillating metabolites in the YMC exist (46, 50). From these 

studies, the oscillations of two metabolites, acetyl-CoA and NADPH, fully fit the criteria 
demanded by our model. The acetyl-CoA and NADPH oscillations as a function of the metabolic 
cycle, and transitions between the Q and G state are shown in Figure 5A and 5B. The 
oscillations of acetyl-CoA during the YMC almost perfectly superimposes with the oscillation 
pattern of the theoretical metabolic resource predicted by the model (Figure 5A). Strikingly, the 
phase diagram of the fraction of quiescent cells vs the amount of resource in the cell almost 
perfectly reflects experimental data for the dO2 oscillations plotted against acetyl-CoA amounts 
(Figure 5B). This is despite the fact that the experimental data for acetyl-CoA is of low 
resolution, with only a few sampling/time points covered, and also only reflects overall (bulk 
population) measurements of acetyl-CoA, suggesting that the actual phase diagram might be 
even more similar.  
 

Multiple lines of experimental data also suggest that these two metabolites are key in 
controlling exit from quiescence and entry into growth (14, 34, 43, 45–47, 51). Based on our 
knowledge of the metabolic prerequisites for entering growth, and known functional endpoints or 
outcomes of these two molecules (Figure 5C), we can make a parsimony based argument 
suggesting that oscillations in these two metabolites are sufficient to control oscillations between 
the Q and G state. Particularly, several lines of study suggest that the entry into growth (from 
quiescence) depends on carbon source utilization (9, 15, 43, 44). Studies from the yeast 
metabolic cycle show that the oscillations depend upon carbon sources (primarily glucose) (33, 
35), and oscillations can be reset (to enter the growth program) by adding acetate, 
acetaldehyde, etc. (33, 43). Notably, all these carbon sources end up being converted to acetyl-
CoA, and then utilized (Figure 5C). Second, a growth program will require not just sufficient 
energy (ATP) to sustain the anabolic processes within it, but also activate a program boosting 
anabolic processes that lead to cell division, including making enough lipid moieties required for 
cell membranes and other constituents of a new cell. Acetyl-CoA satisfies all these 
requirements (Figure 5C): it directly enters the TCA cycle to generate ATP (52); it can be 
utilized for the biosynthesis of numerous cellular metabolites, including fatty acids, sterols, and 
amino acids (Lehninger); and directly regulates cell growth and ribosome biogenesis by the 
acetylation of histones at “growth promoting genes”, especially histones at ribosome subunit, 
tRNA and ribi genes, and activates their transcription by the SAGA complex  (43). The genes 
that breakdown storage carbohydrates (such as glycogen and trehalose) that produce acetyl-
CoA all peak before the maximal acetyl-CoA concentration (33, 48). Finally, the exit from 
quiescence requires the liquidation of these storage carbohydrates (15, 44, 45), and conversion 
to acetyl-CoA (and the subsequent gene expression program) (45). Perturbations in the ability 
to sense and utilize acetyl-CoA (particularly for the gene expression program) completely 
abolish oscillations (43). Physiologically, this anabolic commitment also absolutely requires the 
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process of reduction for anabolic biosynthesis, and this reductive capacity is supplied by 
NADPH (52) (Figure 5C). NADPH is primarily synthesized from the pentose phosphate 
pathway, which branches from this same central carbon network (Figure 5C), and this NADPH 
will fuel the required reductive biosynthesis to make molecules required for anabolism (Figure 
5C). Finally, genes encoding proteins that increase the synthesis of NADPH are similarly 
coincident with those that lead to the generation of acetyl-CoA, and disrupting NADPH 
production slightly results in a collapse of oscillations (33, 46). Without a necessary coupling of 
the two molecules, the overall process of entry to growth cannot be completed. There is 
substantial data, particularly from the studies of various cancers, to show the close coupling of 
acetyl-CoA and NADPH for growth (53), as well as direct evidence of acetyl-CoA promoting 
NADPH synthesis (54, 55). Summarizing, based on the pattern of oscillation of the resource 
predicted by our model, acetyl-CoA and NADPH (based on production and utilization) satisfy 
requirements to be the molecules that control the Q-G state oscillations.  

Discussion 
 

In this study, we present a simple bistability model to explain how the amounts of an 
internal metabolic resource can determine oscillations between a quiescent and growth state. 
For this, we relied on extensive data coming from the YMC, and represented the oscillations in 
dissolved oxygen (seen during YMCs) as a reflection of growth and quiescent states (Figure 1). 
Our model incorporates factors dependent on growth rate and amounts of the resource, as well 
as switching rates (between the G and Q states) (Figures 2-4).  Importantly, the model 
emphasizes a necessary communication between the cells in the quiescent state and the 
growth state, both of which interact with the metabolic resource during such transitions (Figures 
2 and 3). Quiescent cells “push” cells in the growth state into quiescence, and “pull” other 
quiescent cells to remain quiescent, with the feedback requirements imposed by the resource 
being distinct and opposite for the Q and G states. Given this communication requirement 
between the Q and G states, our model suggests that such oscillations will eventually 
breakdown when the cell numbers are small and cells are no longer in contact with each other 
(something that has been experimentally observed (42)). This model also provides insight into 
understanding the “growth/division” rate of cells once committed to growth. While healthy 
debates continue on the rate of growth in a cell and stages of the cell cycle (36, 56–59) our 
model supports a fixed “growth rate” once the metabolic resource has crossed its threshold 
concentration, and triggered a committed growth program, after which the growth and division 
process is no longer dependent on available nutrients. This is consistent with studies of the 
CDC, which is built around committed, “no return” steps that proceed at constant, predictable 
rates once committed to. Finally, using a parsimony based argument, we suggest that acetyl-
CoA (along with NADPH) satisfies all requirements for the resource that drive these oscillations 
between the Q and G states (Figure 5). We reiterate that our model only provides a paradigm to 
explain how the oscillations in an internal metabolic resource is sufficient to control oscillations 
between quiescent and growth states. This allows for (but doesn’t include) other necessary 
elements in cells (e.g., unique gene transcription programs), that may also be required to build a 
more detailed model for Q-G oscillations.  
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The kind of oscillator we have built falls under the class of “relaxation oscillators”, which 

have been used to model a very wide variety of phenomena, ranging from electronic oscillations 
to oscillating chemical reactions (60, 61). These are a subset of several possible types of 
oscillators that arise in biological systems, and are especially relevant for the CDC (19, 28, 62, 
63). Relaxation oscillators typically involve the cyclic slow build-up of some quantity, like charge 
in a capacitor, until it reaches a threshold level which then triggers a “discharge” event, resulting 
in a rapid drop of the quantity. Thus, relaxation oscillators are often characterised by processes 
happening on two very different timescales, with the time period mainly determined by the slow 
process (17, 19, 28, 62, 63). This is why, in contrast to linear, harmonic oscillators, they can 
produce non-smooth oscillations like a square or sawtooth waveform. The YMC oscillations 
show a clear signature of multiple timescales - in Fig 1 it is evident that the exit from quiescence 
(fast drop in dO2), as well as the re-entry into quiescence (fast rise in dO2), happen at much 
faster timescales than the other phases of the oscillation. In our relaxation oscillator model of 
the YMC, these differing timescales arise from the fact that the switching rates are an order of 
magnitude larger than the rates of production and consumption of the resource, and even the 
growth rate of the cells. The latter processes are therefore what determine the time period of the 
YMC. Within the class of relaxation oscillators, our models fall into a sub-class that depends on 
an underlying bistability, which is `frustrated’ (49). The bistability, and the resultant hysteresis, 
are what determine the threshold points at which the behaviour of the system rapidly switches 
between accumulating or consuming the metabolic resource. Interestingly, our model 
necessitates a strong hysteresis element within these Q and G state cells. The phenomenon of 
hysteresis has been extremely well studied (and established) particularly during many phases of 
the classical CDC, or proliferation cycle ((16, 19, 24, 63–68) and many more). In contrast, a 
hysteresis phenomenon has not been extensively explored when cells transition between a 
growth state and an effective quiescence state. Yet, in such conditions where the transition 
between the two states is substantially determined by a metabolic oscillator, as seen in the YMC 
and several other studies from simple models like yeast, the hysteresis phenomenon is both 
clearly and apparently revealed by our model. Given this, experimental studies can be designed 
to dissect the nature of this hysteresis phenomenon. 
 

Finally: Given the existing frameworks to describe Q-G state oscillations, our model is 
necessarily coarse grained, and is intended only to build a more rigorous conceptual framework 
within which to investigate the process of cells switching between quiescence and growth 
states. For instance, it is straightforward to extend our models, by adding space and diffusion 
processes, to account for scenarios where nutrients are not well mixed and equally accessible, 
and where there is a high degree of spatial rigidity within cell populations. Currently, existing 
experimental approaches to study such metabolically-driven Q-G oscillations are very limited. 
Crude readouts, such as oxygen consumption, have very limited resolution even to show the Q 
and G states, as the bistability begins to break down. Gene expression analysis (even when 
done in single cells) is a late, end-point readout which cannot explain this bistability but instead 
occurs after a switch. The key to experimentally studying such bistability, therefore, will be the 
development of in vivo intracellular metabolic sensors with excellent dynamic range and 
sensitivity, for metabolites like acetyl-CoA or NADPH. This will allow the development of more 
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precise models to predict commitment steps, and identify differences within the population of 
cells, that will help understand reversibility (between states), hysteresis and other apparent 
phenomena.  

Methods 
Experimental methods and data sets:  
 
Chemostat culture and cell division datasets: All dO2 data were obtained from YMCs set up 
similar to already published data (33, 46, 48). In these studies, yeast cells were grown in 
chemostat cultures  using semi-defined medium, and yeast metabolic cycles were set up as 
described earlier (33, 69). Data for cell division across three metabolic cycles was obtained from 
earlier studies (33, 42). YMC gene expression and metabolite datasets: Gene expression 
datasets were obtained from (33, 48), and metabolite oscillation datasets were obtained from 
(43, 46, 47, 50), including acetyl-CoA oscillation datasets. 
 
Two-state model with switching between the states and growth in only one of the states  
 
Let 𝑄𝑄(𝑡𝑡) be the number of cells in the quiescent state at time 𝑡𝑡, and 𝐺𝐺(𝑡𝑡) the number of cells in 
the growing/dividing state. A model for a well-mixed chemostat that includes switching between 
these states, as well as dilution from the chemostat outflux, can be described by the following 
equations: 
 
= 𝜈𝜈 𝐺𝐺 − 𝜈𝜈 𝑄𝑄 − 𝜙𝜙(𝑡𝑡)𝑄𝑄,   (3) 

= 𝛾𝛾𝛾𝛾−𝜈𝜈 𝐺𝐺 + 𝜈𝜈 𝑄𝑄 − 𝜙𝜙(𝑡𝑡)𝐺𝐺,  (4) 
 
where each 𝜈𝜈 represents a switching rate, 𝜙𝜙 is the chemostat outflux rate (which could vary with 
time), and 𝛾𝛾 is the growth rate of cells in the growing/dividing state. Let's further assume the 
chemostat is working in a mode that maintains the total population (or optical density) of cells at 
some constant level, i.e., the outflux from the chemostat balances the growth of cells at all 
times, which means 𝜙𝜙(𝑡𝑡) = 𝛾𝛾𝛾𝛾/(𝐺𝐺 + 𝑄𝑄). In this case, the population dynamics can be described 
by a single equation:  
 
= 𝜈𝜈 (1 − 𝑞𝑞) − 𝜈𝜈 𝑞𝑞 − 𝛾𝛾𝛾𝛾(1 − 𝑞𝑞),  (5) 

where 𝑞𝑞 ≡ 𝑄𝑄/(𝐺𝐺 + 𝑄𝑄) is the fraction of cells in the quiescent state. This is the same as equation 
1 in the Results section. 
 
Next, we assume that the cells contain some `resource’ that they require for growth. Let 𝑎𝑎(𝑡𝑡) 
denote the concentration per cell of this resource at time t, and let 𝜎𝜎 denote the (constant) rate 
at which additional amounts of this resource enter each cell from the surroundings (where the 
resource is replenished due to the influx of fresh medium into the chemostat). 𝑎𝑎 is depleted both 
by dilution due to the outflux (at a rate 𝛾𝛾(1 − 𝑞𝑞) as explained above), as well as by consumption 
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by growing cells (this rate is also proportional to 𝛾𝛾(1 − 𝑞𝑞), which is the net rate of production of 
new cells). The dynamics of this resource can thus be described by the equation: 
 

= 𝜎𝜎 − 𝜇𝜇𝜇𝜇(1 − 𝑞𝑞)𝑎𝑎 − 𝛾𝛾(1 − 𝑞𝑞)𝑎𝑎,  (6) 
where 𝜇𝜇 is a proportionality constant that sets just how much resource is consumed by a 
growing cell, compared to the amount that is depleted by dilution. This is the same as equation 
2 in the Results section. 
 
In writing equations 5 and 6, we have assumed that all cells have the same amount of this 
internal resource 𝑎𝑎. A less restrictive assumption that still gives the same equation is to assume 
that 𝑎𝑎 represents the average concentration of the resource across the population of cells. 
Further, the same equations also model the case where the resource is not an intracellular one, 
but an extracellular one - 𝜎𝜎 then is just reinterpreted as the rate at which the resource is added 
to the extracellular medium either by an external feed or by secretion of the resource by the 
cells themselves (e.g., by making 𝜎𝜎 dependent on 𝑞𝑞).  
 
To produce Fig 2C, we make the following choices (within scenario 3c): 
𝛾𝛾 = 0.32×𝑎𝑎  ℎ𝑟𝑟 , 𝜎𝜎 = 0.32  ℎ𝑟𝑟 , 𝜇𝜇 = 1,𝜈𝜈 = 0.32  ℎ𝑟𝑟 , 𝜈𝜈 = [1 + 1.8×𝜃𝜃(𝑞𝑞 − 0.9)]×32  ℎ𝑟𝑟 , 
where 𝜃𝜃(𝑥𝑥) is the step-function, which is zero for 𝑥𝑥 < 0 and unity for 𝑥𝑥 > 0.  We approximate the 

step function using a Hill equation with a very high Hill coefficient: 𝜃𝜃 𝑥𝑥 − 𝐾𝐾 = . 

 
To produce Fig 3B, 5A and 5B, we make the following choices (within scenario 3c): 
𝛾𝛾 = 1.665  ℎ𝑟𝑟 , 𝜎𝜎 = 0.3996  ℎ𝑟𝑟 , 𝜇𝜇 = 1,𝜈𝜈 = 𝑣𝑣[1 − 0.99×𝜃𝜃(𝑞𝑞 − 𝐾𝐾)],  𝐾𝐾 = 𝑎𝑎 /(0.75 + 𝑎𝑎 ), 
𝑣𝑣 = (0.165 − 0.125𝐾𝐾)  ℎ𝑟𝑟 , 𝜈𝜈 = 16.65  ℎ𝑟𝑟 , where 𝜃𝜃(𝑥𝑥) is the step-function, which is zero for 
𝑥𝑥 < 0 and unity for 𝑥𝑥 > 0 (approximated as above).  Figure 4 panels are made using the same 
equations, but varying the values of  𝜎𝜎 and  𝛾𝛾. 
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Supplementary material for
A minimal ”push-pull” bistability model explains metabolite dependent

oscillations between quiescent and proliferative cell states.

Sandeep Krishna and Sunil Laxman

1 Absence of oscillations

For reference, the equations we use are:

dq

dt
= νGQ(1 − q) − νQGq − γ(1 − q)q, (1)

da

dt
= σ − γ(1 − q)a. (2)

To produce Fig 2C in the main text, we then used: γ = 0.32 × a hr−1, σ = 0.32 hr−1, µ = 1, νQG =
0.32 hr−1, νGQ = [1 + 1.8 × θ(q − 0.9)] × 32 hr−1, where θ(x) is the step-function, approximated by a
Hill equation with a high Hill coefficient of 20. To produce Fig 3B, 5A and 5B in the main text, we
used: γ = 1.665 hr−1, σ = 0.3996 hr−1, µ = 1, νQG = ν[1 − 0.99 × θ(q − K)],K = a2/(0.752 + a2), ν =
(0.165 − 0.125K) hr−1, νGQ = 16.65 hr−1.

1.1 No oscillations in the absence of switching

When both νGQ and νQG are zero, then equation 1 above becomes:

dq

dt
= −γ(1 − q)q. (3)

As long as γ is always positive, irrespective of its dependence on a, this has only one stable steady-state
solution: q = 0 (not surprising because the rate of change of q is always negative). And this is globally
stable, i.e., every initial value of q (except q = 1) will flow to q = 0. The q = 1 state is an unstable steady
state, i.e., any fluctuations away from it, however small, will result in the system moving to q = 0. Thus,
there can be no oscillations in the absence of switching.

1.2 No oscillations with constant parameters

When all the parameters in equations 1 and 2 are constants, then no oscillations are possible because eq. 1
becomes independent of eq. 2, and therefore, being a one dimensional ordinary differential equation without
explicit time-dependence, cannot show oscillations (an oscillation in q requires that dq

dt take both positive
and negative values for the same value of q, for at least some range of q, and this is not possible for a 1D
ordinary differential equation).

1.3 No oscillations for random switching

A less restrictive assumption is that νGQ and νQG are constants (which includes zero - we’ve already examined
the case where both are zero above), but γ may be a function of a and σ may be a function of q and/or a. In
the scenarios we examine, γ may be an increasing function of a (all scenarios), while σ may be an increasing
function of q (scenario 1). In this situation, the dependence of each variable on the other is ‘monotonic’
(dq
dt is a decreasing function of a, while da

dt is an increasing function of q). Equations with such monotonic
dependencies have been studied mathematically in detail in refs. (Pigolotti, Krishna, Jensen (2007) Proc.
Natl. Acad. Sci 104, 6533; Tiana, Krishna, Pigolotti, Jensen, Sneppen (2007) Phys. Biol. 4, R1), which show
explicitly that when such a coupled set of equations has only two variables (here, q and a), then sustained
oscillations are not possible. Intuitively, there is not enough time delay in such a small two-leg feedback loop
to destabilise the overall negative feedback that pulls the variables into a single stable steady-state value.
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Figure S1: Switching rate dependence on q that is sufficient to produce oscillations. We have
already shown, in Fig 2C in the main text, that choosing νQG to be constant and νGQ to be an increasing
function of q is sufficient to produce oscillations: νQG = 0.32 hr−1, νGQ = [1 + 1.8 × θ(q − 0.9)] × 32 hr−1,
where θ(x) is the step-function, approximated by a Hill equation with a high Hill coefficient of 20. (Left
panel) shows that choosing νGQ constant and νQG to be a decreasing function of q is also sufficient: νQG =
[16−15.68×θ(q−0.75)] hr−1, νGQ = 96 hr−1 (all other parameters same as in Fig 2C, except σ = 1.13 hr1).
(Right panel) shows that choosing both as the above type of step function is also sufficient: νQG =
[16 − 15.68 × θ(q − 0.75)] hr−1, νGQ = [1 + 1.8 × θ(q − 0.4)] × 32 hr−1 (all other parameters same as in Fig
2C, except σ = 1.13 hr1).
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Figure S2: γ proportional to a produces the wrong shape of oscillations. In our scenario 3c equations
used to generate Fig 2 in the main text, the lower branch of steady-states can be calculated as those that
satisfy: 0 = νGQ(1 − q) − νQGq − γ(1 − q)q, where νGQ = 32 hr−1 (the lower value of the step function)
and νQG = 0.32 hr−1. The plot visualises, schematically, the solutions of this equation as the point where
the curve γq(1 − q) intersects the straight line νGQ(1 − q) − νQGq. It is evident that if γ is an increasing
function of a, then the solution, i.e., the steady-state of q, is a decreasing function of a. As explained in the
main text, this is the opposite of what is required to get the correct shape of oscillations.
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Figure S3: Oscillations can also be produced in Scenario 1c. Scenario 1c differs from Scenario 2c/3c
in that σ is a function of q, not a constant, and potentially there is no consumption of the resource. Thus,
the governing equation for q is no different from scenarios 2c/3c. Therefore, the bistability structure can be
made mathematically identical by making exactly the same choices for νGQ, νQG and γ, as we made in Fig
3 in the main text. In order to get oscillations from this bistability structure, the requirement is that the
second equation’s ‘null cline’ pass between the lower and upper branches of steady states without intersection
them (see ref. 50 in main text). The null cline is the line traced by the values of q and a that satisfy da

dt = 0
(dashed lines in Figs 2, 3 and 5 in the main text). For scenario 1, it is easy to find σ functions that are
dependent on q in such a way as to do this, whether there is consumption of the resource or not. For example:
(left panel) oscillations obtained in the extreme case of no consumption, when σ = 0.3996×a hr−1, µ = 0;
(right panel) oscillations obtained when σ = 0.3996 × a hr−1, µ = 0.5 (half of what was used in Fig 3 in
the main text). In both plots, all other parameters are chosen as in Fig 3 in the main text.
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Figure S4: Varying σ in equations that produced Fig 3,4 in the main text. Top to bottom:
σ = 0.2664, 0.3463, 0.3596, 0.3996, 0.8658, 1.3320, 1.4652 hr−1.
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Figure S5: Varying γ in equations that produced Fig 3,4 in the main text. Top to bottom:
γ = 0.4163, 0.4995, 0.8325, 1.6650, 1.8315, 1.9980, 2.4975 hr−1.
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