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Abstract 

From natural ecology 1–4 to clinical therapy 5–8, cells are often exposed to mixtures of multiple                

drugs. Two competing null models are used to predict the combined effect of drugs: response               

additivity (Bliss) and dosage additivity (Loewe) 9–11. Here, noting that these models diverge with              

increased number of drugs, we contrast their predictions with measurements of Escherichia coli             

growth under combinations of up to 10 different antibiotics. As the number of drugs increases,               

Bliss maintains accuracy while Loewe systematically loses its predictive power. The total            

dosage required for growth inhibition, which Loewe predicts should be fixed, steadily increases             

with the number of drugs, following a square root scaling. This scaling is explained by an                

approximation to Bliss where, inspired by RA Fisher’s classical geometric model 12, dosages of              

independent drugs adds up as orthogonal vectors rather than linearly. This dose-orthogonality            

approximation provides results similar to Bliss, yet uses the dosage language as Loewe and is               

hence easier to implement and intuit. The rejection of dosage additivity in favor of effect               

additivity and dosage orthogonality provides a framework for understanding how multiple drugs            

and stressors add up in nature and the clinic. 
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Main Text: 

In both nature and the clinic, cells are often exposed to combinations of multiple stresses and                

drugs. In natural ecosystems, such as the soil, dozens of microbial species capable of              

producing different antimicrobial compounds coexist in very close proximity, thus exposing           

each-others to a mixture of multiple stressors 1–4. In clinical settings, drug combinations, aimed              

at reducing side effects and counteracting resistance 13–17, are becoming increasingly important            

in treatment for infectious diseases and cancer 5–8,18,19. It is therefore of wide importance to               

understand how cell growth is affected by combinations of multitude of stressors and what are               

thereby the general rules of high-dimensionality drug arithmetics. 

When combined together, drugs can interact to synergize or antagonize each other effects             

relative to a null additive model. Synergy occurs when the combined effect of drugs is larger                

than expected based on their individual effects. Conversely, drugs can also antagonize each             

other, leading to a combined effect that is smaller than expected. These interactions are              

important in clinical settings as a way of increasing treatment potency and selectivity 20–22 or               

slowing selection for resistance 14,17,23. Importantly, the definition of both synergy and            

antagonism relies on comparing the effect of drug combinations with a null model of “additive               

expectation” 6,24–27. 

There are two primary models for the null effect of drug combinations 6,28: the Bliss model 10,29,                 

which assumes response additivity and the Loewe model 9,11, which assumes dose additivity.             

According to Bliss, the combined effect of two drugs is simply the sum of their individual         E1+2         

effects 30, , where is the effect of drug on the normalized growth  E1+2 = E1 + E2   g )/gEi = ( 0 − gi 0       i      
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rate (Fig. 1; when effects are measured based on total yield rather than growth rate, Bliss /gg 0                 

additivity becomes multiplicativity; Supplementary Note 1). In contrast, according to Loewe           

additivity, the effect of drugs in combination is determined not by the sum of their normalized                

effects, but rather by the sum of their normalized dosages, such that their combined effect is the                 

same across all combinations that have the same total normalized dosage. Namely, according             

to Loewe, lines of equal combination effect in drug-dosage space (isoboloes), are linear 26 (Fig.               

1). For example, if two drugs are additive with respect to Loewe, their 50% inhibition isobole is a                  

straight line satisfying , where is the dose of drug and is the dose at   /d /dd 
1 1

 50 + d 
2 2

 50 = 1   d 
i       i   di

 50      

which drug alone causes 50% growth inhibition (IC50). Though conceptually different from  i            

one another, mechanistic support is available for both the Bliss and the Loewe models 31 and                

there is no agreement on which model should generally be used 32–35. Models that implement               

pairwise interaction data as well as higher order interactions can improve multi-drug predictions             

of either Bliss or Loewe 21,36–39. Yet, regardless of pairwise interactions, it remains unknown              

which of these two null models best predict the combined effect of multiple drugs. 

Here, measuring bacterial response to antibiotic combinations, we contrast the Bliss and Loewe             

models for an increasing number of drugs, where we show that expectations of these models               

increasingly diverge. Quantitating bacterial response to combinations of up to 10 different drugs,             

we find that the Bliss model maintains accuracy with increased number of drugs, while the               

Loewe model loses its predictive power. Indeed, in contrast to Loewe, which predicts that the               

total drug dosage required for inhibition is constant, we find that total dosage increases              

monotonically with the number of drugs. Interestingly, our data show that this increase follows a               

square-root scaling, inspiring a simple model for orthogonality of dose additivity which follows a              

classical evolutionary optimization principle developed by R. A. Fisher 12. 
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To contrast the Bliss and Loewe models, we calculated how their predictions scale with              

increased number of drugs. As a natural measure of the combined potency of multiple drugs,               

we considered the total drug dosage needed to achieve a given level of inhibition. Defining “total                

dosage” ( ) as the sum of the concentration of the individual drugs weighted by their D               

corresponding IC50’s, , the “combination potency” ( ) is the total dosage that  d /dD = Σ 
 

 
i i

 50     D 
 50      D   

yields 50% growth inhibition. As the number of drugs increases, Loewe additivity predicts         N      

that the combination potency remains fixed, . The prediction of Bliss, on the other      (N )D 50
Loewe = 1         

hand, depends on the individual dose response curves of the different drugs. Assuming a Hill               

equation 40 for the single drug dose response , where is the Hill        /[1 ]E  
i = 1 + (d /d )i

 50  
i
h

  h     

coefficient, and equating the Bliss prediction of the combined effect to 50%,          E  
1...N = ∑

 

i=1..N
Ei    

yields the Bliss predicted scaling of combination potency with the number of drugs:             

. Thus, while Loewe predicts that the total dosage required for(N )D 50
Bliss = N · (2N )− 1 −(1/h)            

inhibition is constant, Bliss predicts that it increases with the number of drugs. The two models                

can therefore best be contrasted by measuring the combined action of increased number of              

drugs. 

We considered 10 mechanistically different antibiotics and measured their effects on the growth             

rate of Escherichia coli populations, individually as well as in combinations of increased number              

of drugs. We chose antibiotics acting on a range of cellular functions, including cell wall               

synthesis, DNA replication, transcription and translation (Table 1). Measuring optical density           

(OD) versus time of bacterial growth on gradients of each of the individual drugs, we determined                

the dose response curve for each of the drugs (Fig. 2a, Extended Data Figs 1-4, Extended    (d )g  
i              

Data Tables 1 and 2). These dose response curves are well fit by Hill functions, with Hill                 
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coefficients of the individual drugs ranging from 1 to 6.9 (Extended Data Figs 5 and 6). These                 

fits also define the concentrations  of 50% inhibition for each of the drugs in isolation.di
 50   

Moving to drug pairs, we measured their combination potency and compared it to Bliss and               

Loewe predictions. We first measured the full response surface across 2-D dose gradients for              

two drug pairs: Tetracycline and Ciprofloxacin (TET-CIP) and Tetracycline and Erythromycin           

(TET-ERY), representing well-known examples of antibiotic antagonism and synergy (Figs 2b           

and 2c, response surface and IC50 isoboles) 41,42. Using the growth measurements of the              

individual drug gradients , we derived the response surface and the IC50 isobole   )E (di
 
i           

predictions of Loewe (straight line connecting the points and ) and Bliss (the set        d , ][ 1
 50 0   0, ][ d2

 50      

of all points satisfying , Methods). As expected, the measured   d , ][  
1 d

 
2   ) ) 0%E (d1

 
1 + E (d2

 
2 = 5       

IC50 isobole lie above these predictions for the TET-CIP pair (indicating antagonism) and below              

for the TET-ERY pair (indicating synergy). While these two-dimensional gradients allow clear            

definition of synergy and antagonism, they require many growth measurements and become            

combinatorially prohibitive in a high-dimensional multi-drug space.  

To effectively sample the concentrations space of multiple drugs, we performed growth            

measurements along a “co-potent” line 38, a curve in concentration space where the individual              

drugs have equal potencies in isolation ( , Figs 2b-e). This co-potent      ) ) .. )E (d1
 
1 = E (d2

 
2 = . = E (dN

 
N      

line sampling method vastly reduces the dimensionality of required measurements while           

guaranteeing that null models are evaluated in a region in drug concentration space where all               

drugs are active, rather than one in which the combined effect is dominated by a subset of                 

drugs. Identifying the point on the co-potent line where growth is inhibited by    d , , .., )P = ( 1 d2 . dN           

50% yields the combination potency, . This measured combination potency was     d /dD 50
Data = Σ 

i
 
i i

 50       
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contrasted with the expected potencies and , defined as the points along the     D 50
Bliss   D 50

Loewe        

co-potent line where the single-drug based calculations of Bliss and Loewe predict 50%             

inhibition (Supplementary Methods). The interaction between drugs was then defined as the            

deviation between the observed and predicted potencies of the combination          

, which captures the extent of antagonism ( ) and synergy ( ) ε = log D /D(  50
Data

 50
Model)        ε > 0    ε < 0  

(Figs 2d and 2e).  

Measuring combination effects for all drug pairs, we find that their joint potencies are similarly               

well-predicted by both the Bliss and the Loewe models. For each of the 45 drug pairs, we                 

measured their dose response along co-potent concentration gradient and determined their           

combination potency, (supplementary methods, Fig. 2f, Extended Data Fig. 4).  D 50
Data          

Comparing these combination potencies with predictions of the Bliss and Loewe null models, we              

find that both positive ( , antagonism) and negative ( , synergism) deviations are    ε > 0     ε < 0     

prevalent with respect to either model (Figs 2f and 2g). This prevalence of both antagonism and                

synergy among drug pairs overwhelms any small deviations between the two models (Fig. 2g;              

0.40; 0.41; =0.06, t-test: P=0.49). Further, clustering(ε )σ Bliss =  (ε )σ Loewe = −< < εBliss > εLoewe >      

drugs based on these pairwise interactions, defined with respect to either Bliss or Loewe, leads               

to similar grouping by mechanism of action (Extended Data Fig. 7; possible small advantage to               

Bliss in resolving fine functionality differences) 43. The similarity of pairwise null predictions, the              

prevalence and magnitude of pairwise interactions with respect to both models, and their similar              

correlation with cellular function, prohibit distinction of the Loewe and Bliss null models based              

on drug pairs. 

However, for increasing numbers of drugs, we find that their combined effect is well predicted by                

Bliss, while the Loewe prediction systematically diverges. Given that predictions of the two             
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models should diverge with increased number of drugs, we measured the combined effect of              

multiple combinations with a varying number of antibiotics. We chose 35 combinations of three              

to ten antibiotics, including 8 randomly chosen sets from each combination size of =3, 5 and 7             N     

drugs, all 10 sets of 9 drugs, and the whole 10-drug set (Figs 3a and 3b, Extended Data Fig. 8).                    

Following the procedure used for the drug pairs, we measured the combined effect of each               

multi-drug set as a function of total dosage along co-potent lines and identified their combination               

potencies . Contrasting these measured potencies with the predicted potencies of Bliss and D 
50             

Loewe based on the single-drug measurements, we find that the Bliss model maintain good              

accuracy regardless of the number of drugs, while the accuracy of Loewe model declines as the                

number of drugs increases (Fig. 3c). The multiplicative form of the Bliss model (more suitable for                

yield measurements, Supplementary Note 1) is less predictive than the additive form, yet still              

much better compared to Loewe (Extended Data Fig. 9). We conclude that the Loewe model,               

predicting that the total dosage required for inhibition is fixed regardless of the number of drugs,                

can be rejected as a general predictor for the potency of multi-drug combinations.  

Next, we tested how the potency of drug combinations, namely the total dosage required for               

inhibition, varies with the number of drugs. To account for any slight experimental deviations              

from the ideal co-potent line, we use a natural entropy-like definition of an effective number of                

drugs which is based on the uniformity of the individual drug effects ( equals if all N  
ef f             N  

ef f   N    

drugs have the same effect; is slightly smaller than N when these effects are uneven; and                

converges to 1 at the extreme case when a single drug dominates and all the other have no                  

effect; see definition of in Fig. 4 caption). Contrary to the Loewe prediction, we find that the    N  
ef f               

total dosage required for inhibition increases with the effective number of drugs (Fig. 4a).              

Moreover, this inhibitory total dosage seems to obey a simple scaling law: it increases as the                
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square root of the effective number of drugs ( , least square fit yields:        N )D 50 = ( ef f
α      

)..48 .03α = 0 ± 0   

The square root scaling of the inhibitory dosage with number of drugs can be explained by an                 

approximation to Bliss, inspired by the classical optimization principle of Fisher’s geometric            

model of adaptation 12. Fisher’s model describes the fitness in a space of independent         f      N   

orthogonal phenotypes and assumes that it declines as a function of the euclidean distance              

from an optimal point ( , where and are phenotypic distances from the    f = e−r2   r2 = ∑
 

i=1..N
xi

2   xi       

optimal point). For a given fitness value, the phenotypic distances therefore decline as          xi     /1 √N  

and their sum, , increases as . The analogy of drug dosages with Fisher’s   D = ∑
 

i=1..N
x 
i    √N         

phenotypes explains the square root scaling of total inhibitory dosage with number of drugs and               

underscores that drug concentrations should be summed not linearly by simple addition as in              

Loewe, but rather as the geometric sum of orthogonal vectors (Fig. 4b; Of course, orthogonality               

is a null idealization from which drug combinations can deviate due to synergy or antagonism, or                

when similar drugs act along the same axis). This Fisher’s inspired “dose-orthogonality” model             

can also be derived as an approximation of Bliss additivity at the limit of small dosages                

(Supplementary Note 2). Indeed, we find that even strongly interacting drug pairs assume more              

circular isoboles for small fitness effects (Figs 2b, 2c, 4c). Similarly to Bliss and in contrast to                 

Loewe, combination potency predictions of the dose-othethognality model (derived by          

intersecting the co-potent lines with spherical IC50 isoboloes , Methods), are        (d /d )∑
 

 
i i

 50 2 = 1    

consistent with the drug combination measurements (Fig. 4d). Yet, unlike Bliss these predictions             

do not require fine measurements of the minute individual drug effects , but rather depend           (d )Ei i     
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on the more robust measurements of their individual IC50 dosages, . Using Loewe’s dose          di
 50     

language, the dose-orthogonality model provides an intuitive and robust approximation of Bliss            

(Extended Data Table 3), which predict the potency of drug combinations similarly well and              

explain the square-root scaling law of potency with number of drugs.  

Our measurements reject the Loewe model of dosage-additivity for predicting combination of            

multiple diverse drugs, favoring the Bliss effect-additivity and motivating a simple model of             

dosage-orthogonality. In contrast to Loewe additivity, which predicts that the total dosage            

required for inhibition is fixed, we find that the total inhibitory dosage increases with the number                

of drugs, following a square root scaling law. This general reduction in potency with increased               

number of drugs implies that bacterial inhibition by multi-drug combinations may be require             

higher total drug dosages than classically anticipated. The square root scaling supports a model              

for drug additivity where dosages of independent drugs add up orthogonally rather than linearly.              

This dosage-orthogonality model provides an approximation to Bliss, yet it uses dosage            

arithmetics which allows a more robust implementation and simple intuition. It will be interesting              

to explore the generality of these results and the limit on the number of orthogonal               

pharmacological axes as more antibiotics and stresses are added, as well as beyond the              

minimal inhibitory concentration and in more complex systems such as in cancer therapy.             

Throughout such clinical systems and natural ecologies, our findings provide a uniform            

framework for understanding the null arithmetics of many-drug combinations.  
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Figure 1: Schematic depiction of effect-additivity (Bliss) and dosage-additivity (Loewe).          

Given fitness as a function of dosage of each of the individual drugs ( , dose response             f i = 1 − Ei    

curves, black solid lines), Bliss and Loewe models predict the fitness at any           f  1+2 = 1 − E1+2    

given point in the drug concentration space. The Bliss prediction assumes additivity  d , ]P = [ 1 d2            

of normalized drug effects, , where and are the individual drug effects at    E1+2
Bliss = E1 + E2   E1   E2        

their cognate concentrations (cyan and red piles, respectively). The Loewe model, on the other              

hand, assumes additivity of normalized drug dosage, such that the combined drug effect is fixed               

along linear lines of constant total normalized dosage (yellow, equals 50% in the         E1+2
Loewe      

example point , and more generally is given by solving for : , where is  P          E  /d /dd1 1
 E + d2 2

 E = 1   di
 E   

the concentration of drug  that leads to inhibition level ).i E   
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Figure 2: Pairwise measurements do not resolve the Bliss and Loewe models of             

additivity. a, Representing single drug dose response curve showing normalized growth rate            

along a concentration gradient of TET (black dots, replicates), Hill equation fit (/gg 0              

, black line) and the IC50 ( , green dashed line). Inset: growth/g /[1 ]g 0 = 1 + (d /d ) 
TET

 50
TET  

hTET       d 50
TET       

rates were calculated by fitting OD600 measurements over time (black) to exponential function, g              

(cyan and red). b-c, Response surface showing growth rates (grayscaleDO = OD0 · 2g·t + ODBG            

indicated in panel A) over 2-D grid gradient (dots) of the antagonistic antibiotic pair TET-CIP (b)                

and the synergistic pair TET-ERY (c). The measured IC50 isoboles (green) are contrasted with              

Bliss (purple) and Loewe (orange) predictions. Indicated are the co-potent lines (circles), the             

corresponding co-potent single drugs (black x’s for TET, black diamonds for CIP and ERY), and               

the IC50’s (green symbols). d-e, Dose response along the co-potent line of the two drug               

mixtures (TET-CIP, d; TET-ERY, e) as a function of total dosage . Measured           /d /dD = d1 1
50 + d2 2

50   

normalized growth rates of the combined drugs (Mix) are contrasted with Bliss and Loewe              

predictions based on the single-drug data (shown below). Data-Model deviation,          

, indicates the difference between measured ( ) and predicted (og(D /D )ε = l 50
Data

50
Model       D 50

Data    

) combination potencies. All symbols correspond to those in panels b-c. f-g,D 50
Bliss/Loewe             

Data-Model deviations for each of the two models are presented as interaction matrix (f) and               

box plot (g). No significant difference between the models in their predictions of measured              

pairwise potencies (t-test, P=0.49). 
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Figure 3: Loewe model of additivity loses its predictive power with increased number of              

combined drugs. a, An example of dose response along co-potent line of a mixture of 7 drugs.                 

Measured normalized growth rate (gray scale) and combined potency of the Mix are         D 50
Data      

contrasted with Bliss and Loewe predictions calculated based the single drug measurements            

(below). b, Combination potency ( , green) is contrasted with predictions of Bliss ( ,    D 50
Data         D 50

Bliss  

purple) and Loewe ( , yellow) for 35 different combinations of 3 to 10 drugs (black   D 50
Loewe             
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squares). c, Deviation of each of the models from the data is plotted as a           (D /D )ε = log 
 50
Data

 50
Model      

function of number of drugs, showing that the Loewe predictions deviate from the data with               

increased number of drugs, while Bliss predictions remain accurate. 
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Figure 4: A square-root scaling law of inhibitory total dosage with effective number of              

drugs is explained by a simple dosage-orthogonality model. a, Combination potency,           D 50
Data  
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of all 80 different drug combinations is plotted as a function of effective number of drugs (                N ef f =

exp( log ), where , and are the single drug individual effects at their− ∑
 

i
pi pi   /pi = Ei ∑

 

j
Ej   (d )Ei i          

cognate concentrations; colors represent the actual number of drugs, ). In contrast to Loewe,         N      

which assumes that the total dosage required for inhibition is fixed (yellow line), the total dosage                

increases as square root of the effective number of drugs (black line, fit of yields              )D 
 50 = (N  

ef f
α   

, 0.95 confidence interval). b, The square-root scaling is explained by a Fisher.49 .03α = 0 ± 0              

inspired dose-orthogonality model, which assumes that for small perturbations the dosages of            

independent drugs should be added as orthogonal vectors rather than linearly as in Loewe.              

Hence isoboles of inhibition are spherical surfaces defined by (Fisher,   %X        /d )∑
 

i
(d 
i i

 X 2 = 1   

bottom, circles in two-drug space, blue line) instead of linear surfaces (Loewe, top, straight lines               

in two-drug space, yellow line). c, Indeed, even for strongly interacting drug pairs CIP-TET (top)               

and ERY-TET (bottom), isoboles (grey lines) become more circular (Fisher prediction, blue)            

rather than linear (Loewe prediction, yellow) as the inhibitory effect X approaches zero. d,              

Data-model deviation of all the combinations of more than two drugs for  (D /D )ε = log 
 50
Data

 50
Model            

each of the three models. The data strongly reject Loewe and is instead consistent with both                

Fisher and Bliss (t-test: Loewe, P<10 -16; Bliss, P=0.26; Fisher, P=0.1).  
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