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Gene regulation is one of the most ubiquitous processes in biology. But while the catalog of bacterial genomes
continues to expand rapidly, we remain ignorant about how almost all of the genes in these genomes are regulated. At
present, characterizing the molecular mechanisms by which individual regulatory sequences operate requires focused
efforts using low-throughput methods. Here we show how a combination of massively parallel reporter assays, mass
spectrometry, and information-theoretic modeling can be used to dissect bacterial promoters in a systematic and
scalable way. We demonstrate this method on both well-studied and previously uncharacterized promoters in the enteric
bacterium Escherichia coli. In all cases we recover nucleotide-resolution models of promoter mechanism. For some
promoters, including previously unannotated ones, the approach allowed us to further extract quantitative biophysical
models describing input-output relationships. This method opens up the possibility of exhaustively dissecting the
mechanisms of promoter function in E. coli and a wide range of other bacteria.

The sequencing revolution has left in its wake an enormous1

challenge: the rapidly expanding catalog of sequenced genomes2

is far outpacing a sequence-level understanding of how the3

genes in these genomes are regulated. This ignorance extends4

from viruses to bacteria to archaea to eukaryotes. Even in5

E. coli, the model organism in which transcriptional regula-6

tion is best understood, we still have no indication if or how7

more than half of the genes are regulated (Fig. S1; see also8

RegulonDB (1) or EcoCyc (2)). In other model bacteria such9

as Bacillus subtilis, Caulobacter crescentus, Vibrio harveyii,10

or Pseudomonas aeruginosa, far fewer genes have established11

regulatory mechanisms (3–5).12

New approaches are needed for studying regulatory archi-13

tecture in these and other bacteria. Although an arsenal of14

genetic and biochemical methods have been developed for15

dissecting promoter function at individual bacterial promoters16

(reviewed in Minchin et al. (6)), these methods are not readily17

parallelized. As a result, they will likely not lead to a com-18

prehensive understanding of full regulatory genomes anytime19

soon. RNA sequencing, chromatin immunoprecipitation, and20

other high-throughput techniques are increasingly being used21

to study gene regulation in E. coli (7–11), but these methods22

are incapable of revealing either the nucleotide-resolution loca-23

tion of all functional transcription factor binding sites, or the24

way in which interactions between DNA-bound transcription25

factors and RNA polymerase modulate transcription.26

In recent years a variety of massively parallel reporter27

assays have been developed for dissecting the functional ar-28

chitecture of transcriptional regulatory sequences in bacteria,29

yeast, and metazoans. These technologies have been used to30

infer biophysical models of well-studied loci, to characterize31

synthetic promoters constructed from known binding sites,32

and to search for new transcriptional regulatory sequences (12–33

18). CRISPR assays have also shown promise for identifying34

longer range enhancer-promoter interactions in mammalian 35

cells (19). However, no approach for using massively parallel 36

reporter technologies to decipher the functional mechanisms of 37

previously uncharacterized regulatory sequences has yet been 38

established. 39

Here we describe a systematic and scalable approach for 40

dissecting the functional architecture of previously uncharac- 41

terized bacterial promoters at nucleotide resolution using a 42

combination of genetic, functional, and biochemical measure- 43

ments. First, a massively parallel reporter assay (Sort-Seq 44

(12)) is performed on a promoter in multiple growth conditions 45

in order to identify functional transcription factor binding sites. 46

DNA affinity chromatography and mass spectrometry (20, 21) 47

are then used to identify the regulatory proteins that recognize 48

these sites. In this way one is able to identify both the func- 49

tional transcription factor binding sites and cognate transcrip- 50

tion factors in previously unstudied promoters. Subsequent 51

massively parallel assays are then performed in gene-deletion 52

strains to provide additional validation of the identified regu- 53

lators. The reporter data thus generated is also used to infer 54

sequence-dependent quantitative models of transcriptional reg- 55

ulation. In what follows, we first illustrate the overarching 56

logic of our approach through application to four previously 57

annotated promoters: lacZYA, relBE, marRAB, and yebG. 58

We then apply this strategy to the previously uncharacterized 59

promoters of purT, xylE, and dgoRKADT, demonstrating the 60

ability to go from complete regulatory ignorance to explicit 61

quantitative models of a promoter’s input-output behavior. 62

Results 63

To dissect how a promoter is regulated, we begin by performing 64

Sort-Seq (12). As shown in Fig. 1A, Sort-Seq works by first 65

generating a library of cells, each of which contains a mutated 66
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promoter that drives expression of GFP from a low copy67

plasmid (5-10 copies per cell (22)) and provides a read-out68

of transcriptional state. We use fluorescence-activated cell69

sorting (FACS) to sort cells into multiple bins gated by their70

fluorescence level and then sequence the mutated plasmids71

from each bin. We found it sufficient to sort the libraries72

into four bins and generated data sets of about 0.5-2 million73

sequences across the sorted bins (Fig. S3A-D). To identify74

putative binding sites, we calculate ’expression shift’ plots that75

show the average change in fluorescence when each position of76

the regulatory DNA is mutated (Fig. 1B, top plot). Mutations77

to the DNA will in general disrupt binding of transcription78

factors (23), so regions with a positive shift are suggestive of79

binding by a repressor, while a negative shift suggests binding80

by an activator or RNA polymerase (RNAP).81

The identified binding sites are further interrogated by82

performing information-based modeling with the Sort-Seq83

data. Here we generate energy matrix models (12, 24) that84

describe the sequence-dependent energy of interaction of a85

transcription factor at each putative binding site. For each86

matrix, we use a convention that the wild-type sequence is87

set to have an energy of zero (see example energy matrix in88

Fig. 1B). Mutations that enhance binding are identified in blue,89

while mutations that weaken binding are identified in red. We90

also use these energy matrices to generate sequence logos (25)91

which provides a useful visualization of the sequence-specificity92

(see above matrix in Fig. 1B).93

In order to identify the putative transcription factors, we94

next perform DNA affinity chromatography experiments using95

DNA oligonucleotides containing the binding sites identified96

by Sort-Seq. Here we apply a stable isotopic labeling of cell97

culture (SILAC (26)) approach, which enables us to perform98

a second reference affinity chromatography that is simultane-99

ously analyzed by mass spectrometry. We perform chromatog-100

raphy using magnetic beads with tethered oligonucleotides101

containing the putative binding site (Fig. 1C). Our reference102

purification is performed identically, except that the binding103

site has been mutated away. The abundance of each protein104

is determined by mass spectrometry and used to calculate105

protein enrichment ratios, with the target transcription factor106

expected to exhibit a ratio greater than one. The reference pu-107

rification ensures that non-specifically bound proteins will have108

a protein enrichment near one. This mass spectrometry data109

and the energy matrix models provide insight into the identity110

of each regulatory factor and potential regulatory mechanisms.111

In certain instances these insights then allow us to probe the112

Sort-Seq data further through additional information-based113

modeling using thermodynamic models of gene regulation. As114

further validation of binding by an identified regulator, we also115

perform Sort-Seq experiments in gene deletion strains, which116

should no longer show the associated positive or negative shift117

in expression at their binding site.118

Sort-Seq recovers the regulatory features of well-char-119

acterized promoters.120

To first demonstrate Sort-Seq as a tool to discover regulatory121

binding sites de novo we began by looking at the promoters122

of lacZYA (lac), relBE (rel), and marRAB (mar). These pro-123

moters have been studied extensively (27–29) and provide a124

useful testbed of distinct regulatory motifs. To proceed we con-125

structed libraries for each promoter by mutating their known126

regulatory binding sites. (See Supplemental Information Sec-127
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Fig. 1. Overview of approach to characterize transcriptional
regulatory DNA, using Sort-Seq and mass spectrometry. (A)
Schematic of Sort-Seq. A promoter plasmid library is placed upstream
of GFP and is transformed into cells. The cells are sorted into four bins
by FACS and after regrowth, plasmids are purified and sequenced. The
entire intergenic region associated with a promoter is included on the
plasmid and a separate downstream ribosomal binding site sequence is
used for translation of the GFP gene. The fluorescence histograms show
the fluorescence from a library of the rel promoter and the resulting
sorted bins. (B) Regulatory binding sites are identified by calculating
the average expression shift due to mutation at each position. In the
schematic, positive expression shifts are suggestive of binding by re-
pressors, while negative shifts would suggest binding by an activator or
RNAP. Quantitative models can be inferred to describe the associated
DNA-protein interactions. An example energy matrix that describes
the binding energy between an as yet unknown transcription factor to
the DNA is shown. By convention, the wild-type nucleotides have zero
energy, with blue squares identifying mutations that enhance binding
(negative energy), and where red squares reduce binding (positive en-
ergy). The wild-type sequence is written above the matrix. (C) DNA
affinity chromatography and mass spectrometry is used to identify the
putative transcription factor (TF) for an identified repressor site. DNA
oligonucleotides containing the target binding site are tethered to mag-
netic beads and used to purify the target transcription factor from cell
lysate. Protein abundance is determined by mass spectrometry and a
protein enrichment is calculated as the ratio in abundance relative to a
second reference experiment where the target sequence is mutated away.

tion B and Fig. S3E,F for additional characterization). We 128

begin by considering the lac promoter, which contains three lac 129

repressor (LacI) binding sites, two of which we consider here, 130

and a cyclic AMP receptor (CRP) binding site. It exhibits the 131

classic catabolic switch-like behavior that results in diauxie 132

when E. coli is grown in the presence of glucose and lactose 133

sugars (27). Here we performed Sort-Seq with cells grown in 134

M9 minimal media with 0.5% glucose. The expression shifts 135

at each nucleotide position are shown in Fig. 2A, with anno- 136

tated binding sites noted above the plot. The expression shifts 137

reflect the expected regulatory role of each binding site, show- 138

ing positive shifts for LacI and negative shifts for CRP and 139

RNAP. The difference in magnitude at the two LacI binding 140
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Fig. 2. Characterization of the regulatory landscape of the lac,
rel, and mar promoters. (A) Sort-Seq of the lac promoter. Cells were
grown in M9 minimal media with 0.5% glucose at 37◦C. Expression shifts
are shown, with annotated binding sites for CRP (activator), RNAP
(-10 and -35 subsites), and LacI (repressor) noted. Energy matrices
and sequence logos are shown for each binding site. (B) Sort-Seq of
the rel promoter. Cells were also grown in M9 minimal media with
0.5% glucose at 37◦C. The expression shifts identify the binding sites of
RNAP and RelBE (repressor), and energy matrices and sequence logos
are shown for these. (C) Sort-Seq of the mar promoter. Here cells were
grown in lysogeny broth (LB) at 30◦C. The expression shifts identify
the known binding sites of Fis and MarA (activators), RNAP, and MarR
(repressor). Energy matrices and sequence logos are shown for MarA
and RNAP. Annotated binding sites are based on those in RegulonDB.

sites likely reflect the different binding energies between these 141

two binding site sequences, with LacI O3 having an in vivo 142

dissociation constant that is almost three orders of magnitude 143

weaker than the LacI O1 binding site (27, 30). 144

Next we consider the rel promoter that transcribes the 145

toxin-antitoxin pair RelE and RelB. It is one of about 36 toxin- 146

antitoxin systems found on the chromosome, with important 147

roles in cellular physiology including cellular persistence (31). 148

When the toxin, RelE, is in excess of its cognate binding 149

partner, the antitoxin RelB, the toxin causes cellular paralysis 150

through cleavage of mRNA (32). Interestingly, the antitoxin 151

protein also contains a DNA binding domain and is a repressor 152

of its own promoter (33). We similarly performed Sort-Seq, 153

with cells grown in M9 minimal media. The expression shifts 154

are shown in Fig. 2B and were consistent with binding by 155

RNAP and RelBE. In particular, a positive shift was observed 156

at the binding site for RelBE, and the RNAP binding site 157

mainly showed a negative shift in expression. 158

The third promoter, mar, is associated with multiple an- 159

tibiotic resistance since its operon codes for the transcription 160

factor MarA, which activates a variety of genes including the 161

major multi-drug resistance efflux pump, ArcAB-tolC, and 162

increases antibiotic tolerance (29). The mar promoter is itself 163

activated by MarA, SoxS, and Rob (via the so-called mar- 164

box binding site), and further enhanced by Fis, which binds 165

upstream of this marbox (34). Under standard laboratory 166

growth it is under repression by MarR (29). We found that 167

the promoter’s fluorescence was quite dim in M9 minimal me- 168

dia and instead grew libraries in lysogeny broth (LB) at 30◦C 169

(35). Again, the different features in the expression shift plot 170

(Fig. 2C) appeared to be consistent with the noted binding 171

sites. One exception was that the downstream MarR binding 172

site was not especially apparent. Both positive and negative 173

expression shifts were observed along its binding site, which 174

may be due to overlap with other features present including 175

the native ribosomal binding site. There have also been re- 176

ported binding sites for CRP, Cra, CpxR/CpxA, and AcrR (1). 177

However the studies associated with these annotations either 178

required overexpression of the associated transcription factor, 179

were computationally predicted, or demonstrated through in 180

vitro assays and not necessarily expected under the growth 181

condition considered here. 182

While each promoter qualitatively showed the expected reg- 183

ulatory behavior in each expression shift plot, it was important 184

to show that we could also recover the quantitative features of 185

binding by each transcription factor. Here we inferred energy 186

matrices and associated sequence logos for the binding sites of 187

RNAP, LacI, CRP, RelBE, MarA, and Fis. These are shown in 188

Fig. 2A-C and Fig. S4, and indeed, agreed well with sequence 189

logos generated from known genomic binding sites for these 190

transcription factors (Pearson correlation coefficient r=0.5-0.9; 191

see Supplemental Information Section C). For the repressors 192

RelBE and MarR, there was no data available that character- 193

ized their sequence specificity with which to compare against. 194

Here, instead, we validated our data by performing Sort-Seq in 195

strains where the relBE or marR genes were deleted. In each 196

case this resulted in a loss of the expression shift associated 197

with binding by these repressors (Fig. 3), suggesting that the 198

observed features are due to binding by these transcription 199

factors. 200
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Fig. 3. Expression shifts relfect binding by regulatory proteins.
(A) Expression shifts for the rel promoter, but in a ∆rel genetic back-
ground. Cells were grown in conditions identical to Fig. 2B but do
not show a positive expression shift across the entire RelBE binding
site. (B) Expression shifts for the mar promoter, but in a ∆marR
genetic background. The positive expression shift observed where MarR
is expected to bind is no longer observed. Binding site annotations are
identified in blue for RNAP sites, green for repressor sites, yellow for
activator sites, and gray for ribosomal binding site and start codons.
These annotations refer to the binding sites noted on RegulonDB that
were observed in the Sort-Seq data.

Identification of transcription factors with DNA affin-201

ity chromatography and quantitative mass spectrom-202

etry.203

It was next important to show that DNA affinity chromatog-204

raphy could be used to identify transcription factors in E. coli.205

In particular, a challenge arises in identifying transcription206

factors in most organisms due to their very low abundance.207

In E. coli the cumulative distribution in protein copy number208

shows that more than half have a copy number less than 100209

per cell, with 90% having copy number less than 1,000 per210

cell. This is several orders of magnitude below that of many211

other cellular proteins (36).212

We began by applying the approach to known binding sites213

for LacI and RelBE. For LacI, which is present in E. coli214

in about 10 copies per cell, we used the strongest binding215

site sequence, Oid (in vivo Kd ≈ 0.05 nM), and the weakest216

natural operator sequence, O3 (in vivo Kd ≈ 110 nM) (27,217

30, 37). In Fig. 4A we plot the protein enrichments from each218

transcription factor identified by mass spectrometry. LacI was219

found with both DNA targets, with fold enrichment greater220

than 10 in each case, and significantly higher than most of221

the proteins detected (indicated by the shaded region, which222

represents the 95% probability density region of all proteins223

detected, including non-DNA binding proteins). Purification224

of LacI with about 10 copies per cell using the weak O3 binding225

site sequence are near the limit of what would be necessary226

for most E. coli promoters.227

To ensure this success was not specific to LacI, we also228

applied chromatography to the RelBE binding site. RelBE229

provides an interesting case since the strength of binding by230

RelB to DNA is dependent on whether RelE is bound in com-231

plex to RelB (with at least a 100 fold weaker dissociation232

constant reported in the absence of RelE (38, 39)). As shown233

in Fig. 4B, we found over 100 fold enrichment of both proteins234

by mass spectrometry. To provide some additional intuition235

into these results we also considered the predictions from a236

statistical mechanical model of DNA binding affinity (See 237

Supplemental Information Section D). As a consequence of 238

performing a second reference purification, we find that fold en- 239

richment should mostly reflect the difference in binding energy 240

between the DNA sequences used in the two purifications, and 241

be much less dependent on whether the protein was in low or 242

high abundance within the cell. This appeared to be the case 243

when considering other E. coli strains with LacI copy numbers 244

between about 10 and 1,000 copies per cell (Fig. S5C). Further 245

characterization of the measurement sensitivity and dynamic 246

range of this approach is noted in Supplemental Information 247

Section E. 248

Sort-Seq discovers regulatory architectures in unan- 249

notated regulatory regions. 250

Given that more than half of the promoters in E. coli have no 251

annotated transcription factor binding sites in RegulonDB, we 252

narrowed our focus by using several high-throughput studies 253

to identify candidate genes to apply our approach (40, 41). 254

The work by Schmidt et al. (41) in particular measured the 255

protein copy number of about half the E. coli genes across 256

22 distinct growth conditions. Using this data, we identified 257

genes that had substantial differential gene expression pat- 258

terns across growth conditions, thus hinting at the presence 259

of regulation and even how that regulation is elicited by en- 260

vironmental conditions (see further details in Supplemental 261

Information Section A and Fig. S2A-C). On the basis of this 262

survey, we chose to investigate the promoters of purT, xylE, 263

and dgoRKADT. To apply Sort-Seq in a more exploratory man- 264

ner, we considered three 60 bp mutagenized windows spanning 265

the intergenic region of each gene. While it is certainly pos- 266

relBE promoter

target region

RelBE target

lacZYA promoter

O3 Oid
LacI target (Kd(Oid) < Kd(O3))

DNA-TF binding 
energy

(A) (B)
RelB, RelE

LacI

Fig. 4. DNA affinity purification and identification of LacI and
RelBE by mass spectrometry using known target binding sites.
(A) Protein enrichment using the weak O3 binding site and strong
synthetic Oid binding sites of LacI. LacI was the most significantly
enriched protein in each purification. The target DNA region was based
on the boxed area of the lac promoter schematic, but with the native O1
sequence replaced with either O3 or Oid. Data points represent average
protein enrichment for each detected transcription factor, measured
from a single purification experiment. (B) For purification using the
RelBE binding site target, both RelB and its cognate binding partner
RelE were significantly enriched. Data points show the average protein
enrichment from two purification experiments. The target binding site is
similarly shown by the boxed region of the rel promoter schematic. Data
points in each purification show the protein enrichment for detected
transcription factors. The gray shaded regions shows where 95% of all
detected protein ratios were found.
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sible that regulatory features will lie outside of this window,267

a search of known regulatory binding sites suggest that this268

should be sufficient to capture just over 70% of regulatory269

features in E. coli and provide a useful starting point (Fig. S6).270

The purT promoter contains a simple repression architecture271

and is repressed by PurR.272

The first of our candidate promoters is associated with expres-273

sion of purT, one of two genes found in E. coli that catalyze274

the third step in de novo purine biosynthesis (42, 43). Due to a275

relatively short intergenic region, about 120 bp in length that276

is shared with a neighboring gene yebG, we also performed277

Sort-Seq on the yebG promoter (oriented in the opposite direc-278

tion (44); see schematic in Fig. 5A). To begin our exploration279

of the purT and yebG promoters, we performed Sort-Seq with280

cells grown in M9 minimal media with 0.5% glucose. The281

associated expression shift plots are shown in Fig. 5A. While282

we performed Sort-Seq on a larger region than shown for283

each promoter, we only plot the regions where regulation was284

apparent.285

For the yebG promoter, the features were largely consistent286

with prior work, containing a binding sites for LexA and RNAP.287

However, we found that the RNAP binding site is shifted 9288

bp downstream from what was identified previously through a289

computational search (44), demonstrating the ability of our290

approach to identify and correct errors in the published record.291

We were also able to confirm that the yebG promoter was292

induced in response to DNA damage by repeating Sort-Seq293

in the presence of mitomycin C (a potent DNA cross-linker294

known to elicit the SOS response and proteolysis of LexA (45);295

see Fig. S7A, B, and D).296

Given the role of purT in the synthesis of purines, and the297

tight control over purine concentrations within the cell (42),298

we performed Sort-Seq of the purT promoter in the presence299

or absence of the purine, adenine, in the growth media. In300

growth without adenine (Fig. 5A, right plot), we observed two301

negative regions in the expression shift plot. Through inference302

of an energy matrix, these two features were identified as the303

-10 and -35 regions of an RNAP binding site. While these two304

features were still present upon addition of adenine, as shown305

in Fig. 5B, this growth condition also revealed a putative306

repressor site between the -35 and -10 RNAP binding sites,307

indicated by a positive shift in expression (green annotation).308

Following our strategy to find not only the regulatory se-309

quences, but also their associated transcription factors, we310

next applied DNA affinity chromatography using this putative311

binding site sequence. In our initial attempt however, we312

were unable to identify any substantially enriched transcrip-313

tion factor (Fig. S7C). With repression observed only when314

cells were grown in the presence of adenine, we reasoned that315

the transcription factor may require a related ligand in order316

to bind the DNA, possibly through an allosteric mechanism.317

Importantly, we were able to infer an energy matrix to the318

putative repressor site whose sequence-specificity matched that319

of the well-characterized repressor, PurR (r=0.82; see Fig. S4).320

We also noted ChIP-chip data of PurR that suggests it might321

bind within this intergenic region (43). We therefore repeated322

the purification in the presence of hypoxanthine, which is a323

purine derivative that also binds PurR (46). As shown in324

Fig. 5C, we now observed a substantial enrichment of PurR325

with this putative binding site sequence. As further validation,326

we performed Sort-Seq once more in the adenine-rich growth327
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Fig. 5. Sort-Seq distinguishes directional regulatory features and
uncovers the regulatory architecture of the purT promoter. (A)
A schematic is shown for the approximately 120 bp region between the
yebG and purT genes, which code in opposite directions. Expression
shifts are shown for 60 bp regions where regulation was observed for
each promoter, with positions noted relative to the start codon of each
native coding gene. Cells were grown in M9 minimal media with 0.5%
glucose. The -10 and -35 RNAP binding sites of the purT promoter
were determined through inference of an energy matrix and are iden-
tified in blue. (B) Expression shifts for the purT promoter, but in
M9 minimal media with 0.5% glucose supplemented with adenine (100
µg/ml). A putative repressor site is annotated in green. (C) DNA
affinity chromatography was performed using the identified repressor
site and protein enrichment values for transcription factors are plotted.
Cell lysate was produced from cells grown in M9 minimal media with 0.5
% glucose. Binding was performed in the presence of hypoxanthine (10
µg/ml). Error bars represent the standard error of the mean, calculated
using log protein enrichment values from three replicates, and the gray
shaded region represents 95% probability density region of all protein
detected. (D) Identical to (B) but performed with cells containing a
∆purR genetic background. (E) Summary of regulatory binding sites
and transcription factors that bind within the intergenic region between
the genes of yebG and purT. Energy weight matrices and sequence logos
are shown for the PurR repressor and RNAP binding sites. Data was
fit to a thermodynamic of simple repression, yielding energies in units
of kBT .

condition, but in a ∆purR strain. In the absence of PurR, the 328

putative repressor binding site disappeared (Fig. 5D), which 329

is consistent with PurR binding at this location. 330

In Fig. 5E we summarize the regulatory features between 331
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(A) (C)(B)

xylE promoter

xylECRP
XylR

(D)

XylR

putative XylR sitesputative CRP site

0

TATCACAATTAAGATCACAGAAAAGACATTACGTAAACGCATTGTAAAAAATGATAA-35 -10

energy (a.u.)
+-

position

Fig. 6. Sort-Seq identifies a set of activator binding sites that drive expression of RNAP at the xylE promoter. (A) Expression shifts
are shown for the xylE promoter, with Sort-Seq performed on cells grown in M9 minimal media with 0.5% xylose. The -10 and -35 regions of an
RNAP binding site (blue) and a putative activator region (orange) are annotated. (B) DNA affinity chromatography was performed using the
putative activator region and protein enrichment values for transcription factors are plotted. Cell lysate was generated from cells grown in M9
minimal media with 0.5% xylose and binding was performed in the presence of xylose supplemented at the same concentration as during growth.
Error bars represent the standard error of the mean, calculated using log protein enrichment values from three replicates. The gray shaded region
represents 95% probability density region of all proteins detected. (C) An energy matrix was inferred for the region upstream of the RNAP binding
site. The associated sequence logo is shown above the matrix. Two binding sites for XylR were identified (see also Fig. S4 and Fig. S7F) along
with a CRP binding site. (D) Summary of regulatory features identified at xylE promoter, with the identification of an RNAP binding site and
tandem binding sites for XylR and CRP.

the coding genes of purT and yebG, including the new features332

identified by Sort-Seq. With the appearance of a simple repres-333

sion architecture (47) for the purT promoter, we extended our334

analysis by developing a thermodynamic model to describe335

repression by PurR. This enabled us to infer the binding ener-336

gies of RNAP and PurR in absolute kBT energies (48), and337

we show the resulting model in Fig. 5E (see additional details338

in Supplemental Information Section Information H.3.4).339

The xylE operon is induced in the presence of xylose, mediated340

through binding of XylR and CRP.341

The next unannotated promoter we considered was associated342

with expression of xylE, a xylose/proton symporter involved in343

uptake of xylose. From our analysis of the Schmidt et al. (41)344

data, we found that xylE was sensitive to xylose and proceeded345

by performing Sort-Seq in cells grown in this carbon source.346

Interestingly, the promoter exhibited essentially no expression347

in other media (Fig. S7E). We were able to locate the RNAP348

binding site between -80 bp and -40 bp relative to the xylE gene349

(Fig. 6A, annotated in blue). In addition, the entire region350

upstream of the RNAP appeared to be involved in activating351

gene expression (annotated in orange in Fig. 6A), suggesting352

the possibility of multiple transcription factor binding sites.353

We applied DNA affinity chromatography using a DNA354

target containing this entire upstream region. Due to the355

stringent requirement for xylose to be present for any mea-356

surable expression, xylose was supplemented in the lysate357

during binding with the target DNA. In Fig. 6B we plot the358

enrichment ratios from this purification and find XylR to be359

most significantly enriched. From an energy matrix inferred360

for the entire region upstream of the RNAP site, we were able361

to identify two correlated 15 bp regions (dark yellow shaded362

regions in Fig. 6C). Mutations of the XylR protein have been363

found to diminish transport of xylose (49), which in light of364

our result, may be due in part to a loss of activation and ex-365

pression of this xylose/proton symporter. These binding sites366

were also similar to those found on two other promoters known367

to be regulated by XylR (xylA and xylF promoters), whose368

promoters also exhibit tandem XylR binding sites and strong369

binding energy predictions with our energy matrix (Fig. S7F). 370

Within the upstream activator region in Fig. 6A there still 371

appeared to be a binding site unaccounted for with these tan- 372

dem XylR binding sites. From the energy matrix, we were 373

further able to identify a binding site for CRP, which is noted 374

upstream of the XylR binding sites in Fig. 6C. While we did 375

not observe a significant enrichment of CRP in our protein pu- 376

rification, the most energetically favorable sequence predicted 377

by our model, TGCGACCNAGATCACA, closely matches the 378

CRP consensus sequence of TGTGANNNNNNTCACA. In 379

contrast to the lac promoter, binding by CRP here appears 380

to depend more on the right half of the binding site sequence. 381

CRP is known to activate promoters by multiple mechanisms 382

(50), and CRP binding sites have been found adjacent to the 383

activators XylR and AraC (49, 51), in line with our result. 384

While further work will be needed to characterize the spe- 385

cific regulatory mechanism here, it appears that activation of 386

RNAP is mediated by both CRP and XylR and we summarize 387

this result in Fig. 6D (and considered further in Supplemental 388

Information Section H.3.4). 389

The dgoRKADT promoter is auto-repressed by DgoR, with 390

transcription mediated by class II activation by CRP. 391

As a final illustration of the approach developed here, we con- 392

sidered the unannotated promoter of dgoRKADT. The operon 393

codes for D-galactonate-catabolizing enzymes; D-galactonate 394

is a sugar acid that has been found as a product of galac- 395

tose metabolism (52). We began by measuring expression 396

from a non-mutagenized dgoRKADT promoter reporter to 397

glucose, galactose, and D-galactonate. Cells grown in galac- 398

tose exhibited higher expression than in glucose, as found by 399

Schmidt et al. (41), and even higher expression when cells 400

were grown in D-galactonate (Fig. S8A). This likely reflects 401

the physiological role provided by the genes of this promoter, 402

which appear necessary for metabolism of D-galactonate. We 403

therefore proceeded by performing Sort-Seq with cells grown 404

in either glucose or D-galactonate, since these appeared to 405

represent distinct regulatory states, with expression low in 406

glucose and high in D-galactonate. Expression shift plots from 407
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Fig. 7. The dgoRKADT promoter is induced in the presence of D-galactonate due to loss of repression by DgoR and activation by
CRP. (A) Expression shifts due to mutating the dgoRKADT promoter are shown for cells grown in M9 minimal media with either 0.5% glucose
(top) or 0.23% D-galactonate (bottom). Regions identified as RNAP binding sites (-10 and -35) are shown in blue and putative activator and
repressor binding sites are shown in orange and green, respectively. (B) DNA affinity purification was performed targeting the region between -145
to -110 of the dgoRKADT promoter. The transcription factor DgoR was found most enriched among the transcription factors plotted. Error
bars represent the standard error of the mean, calculated using log protein enrichment values from three replicates, and the gray shaded region
represents 95% probability density region of all proteins detected. (C) Sequence logos were inferred for the most upstream 60 bp region associated
with the upstream RNAP binding site annotated in (A). Multiple RNAP binding sites were identified using Sort-Seq data performed in a ∆dgoR
strain, grown in M9 minimal media with 0.5% glucose. (further detailed in Fig. S8). Below this, a sequence logo was also inferred using data
from Sort-Seq performed on wild-type cells, grown in D-galactonate, identifying a CRP binding site (class II activation (50)). (D) Expression
shifts are shown for the dgoRKADT promoter when performed in a ∆dgoR genetic background, grown in 0.5% glucose. This resembles growth in
D-galactonate, suggesting D-galactonate may act as an inducer for DgoR. (E) Summary of regulatory features identified at dgoRKADT promoter,
with the identification of multiple RNAP binding sites, and binding sites for DgoR and CRP. The interaction energy between CRP and RNAP,
εi, was inferred to be −7.3+1.9

−1.4kBT , where the superscripts and subscripts represent the upper and lower bounds of the 95th percentile of the
parameter value distribution.

each growth conditions are shown in Fig. 7A.408

We begin by considering the results from growth in glucose409

(Fig. 7A, top plot). Here we identified an RNAP binding site410

between -30 bp and -70 bp, relative to the native start codon411

for dgoR (Fig. 7B). Another distinct feature was a positive412

expression shift in the region between -140 bp and -110 bp,413

suggesting the presence of a repressor binding site. Apply-414

ing DNA affinity chromatography using this target region we415

observed an enrichment of DgoR (Fig. 7B), suggesting that416

the promoter is indeed under repression, and regulated by417

the first coding gene of its transcript. As further validation418

of binding by DgoR, the positive shift in expression was no419

longer observed when Sort-Seq was repeated in a ∆dgoR strain420

(Fig. 7D and Fig. S8C). We also were able to identify addi-421

tional RNAP binding sites that were not apparent due to422

binding by DgoR. While only one RNAP -10 motif is clearly423

visible in the sequence logo shown Fig. 7C (top sequence logo;424

TATAAT consensus sequence), we used simulations to demon-425

strate that the entire sequence logo shown can be explained426

by the convolution of three overlapping RNAP binding sites427

(See Supplemental Information Section D and Fig. S8F).428

Next we consider the D-galactonate growth condition429

(Fig. 7A, bottom plot). Like in the expression shift plot for430

the ∆dgoR strain grown in glucose, we no longer observe the 431

positive expression shift between -140 bp and -110 bp. This 432

suggests that DgoR may be induced by D-galactonate or a re- 433

lated metabolite. However, in comparison with the expression 434

shifts in the ∆dgoR strain grown in glucose, there were some 435

notable differences in the region between -160 bp and -140 436

bp. Here we find evidence for another CRP binding site. The 437

sequence logo identifies the sequence TGTGA (Fig. 7C, bot- 438

tom logo), which matches the left side of the CRP consensus 439

sequence. In contrast to the lac and xylE promoters however, 440

the right half of the binding site directly overlaps with where 441

we would expect to find a -35 RNAP binding site. This type 442

of interaction by CRP has been previously observed and is 443

defined as class II CRP dependent activation (50), though this 444

sequence-specificity has not been previously described. 445

In order to isolate and better identify this putative CRP 446

binding site we repeated Sort-Seq in E. coli strain JK10, grown 447

in 500 µM cAMP. Strain JK10 lacks adenlyate cyclase (cyaA) 448

and phosphodiesterase (cpdA), which are needed for cAMP 449

synthesis and degradation, respectively, and is thus unable to 450

control intracellular cAMP levels necessary for activation by 451

CRP (derivative of TK310 (37)). Growth in the presence of 452

500 µM cAMP provided strong induction from the dgoRKADT 453
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promoter and resulted in a sequence logo at the putative CRP454

binding site that even more clearly resembled binding by CRP455

(Fig. S8E). This is likely because expression is now dominated456

by the CRP activated RNAP binding site. Importantly, this457

data allowed us to further infer the interaction energy between458

CRP and RNAP, which we estimate to be -7.3 kBT (further459

detailed in Supplemental Information Section H.3.4). We460

summarize the identified regulatory features in Fig. 7E.461

Discussion462

We have established a systematic procedure for dissecting the463

functional mechanisms of previously uncharacterized regula-464

tory sequences in bacteria. A massively parallel reporter assay,465

Sort-Seq (12), is used to first elucidate the locations of func-466

tional transcription factor binding sites. DNA oligonucleotides467

containing these binding sites are then used to enrich the468

cognate transcription factors and identify them by mass spec-469

trometry analysis. Information-based modeling and inference470

of energy matrices that describe the DNA binding specificity471

of regulatory factors provide further quantitative insight into472

transcription factor identity and the growth condition depen-473

dent regulatory architectures.474

To validate this approach we examined four previously475

annotated promoters of lac, rel, mar, and yebG, with our results476

consistent with established knowledge (12, 27, 29, 30, 35, 39).477

For the yebG promoter, however, our approach corrected an478

error in a previous annotation. Importantly, we find that479

DNA affinity chromatography experiments on these promoters480

were highly sensitive. In particular, LacI was unambiguously481

identified with the weak O3 binding site, even though LacI is482

present in only about 10 copies per cell (30). Emboldened by483

this success, we then studied promoters having little or no prior484

regulatory annotation: purT, xylE, and dgoR. Here our analysis485

led to a collection of new regulatory hypotheses. For the purT486

promoter, we identified a simple repression architecture (47),487

with repression by PurR. The xylE promoter was found to488

undergo activation only when cells are grown in xylose, likely489

due to allosteric interaction between the activator XylR and490

xylose, and activation by CRP (49, 51). Finally, in the case491

of dgoR, the base-pair resolution allowed us to tease apart492

overlapping regulatory binding sites, identify multiple RNAP493

binding sites along the length of the promoter, and infer further494

quantitative detail about the interaction between the newly495

identified binding sites for CRP and RNAP. We view these496

results as a critical first step in the quantitative dissection of497

transcriptional regulation, which will ultimately be needed for498

a predictive understanding of how such regulation works.499

An important aspect of the presented approach is that it500

is readily parallelized and scalable. There are a number of501

ways to increase the resolution and throughput. Microarray-502

synthesized promoter libraries should allow multiple loci to503

be studied simultaneously. Landing pad technologies for chro-504

mosomal integration (53) should enable massively parallel505

reporter assays to be performed in chromosomes instead of on506

plasmids. Techniques that combine these assays with transcrip-507

tion start site readout (54) may further allow the molecular508

regulators of overlapping RNAP binding sites to be decon-509

volved, or the contributions from separate RNAP binding510

sites, like those observed on the dgoR promoter, to be better511

distinguished. Although our work was directed toward reg-512

ulatory regions of E. coli, there are no intrinsic limitations513

that restrict the analysis to this organism. Rather, it should 514

be applicable to any bacterium that supports efficient trans- 515

formation by plasmids. And although we have focused on 516

bacteria, our general strategy should be feasible in a number 517

of eukaryotic systems – including human cell culture – using 518

massively parallel reporter assays (13–15) and DNA-mediated 519

protein pull-down methods (20, 21) that have already been 520

established. 521

Materials and Methods 522

See Supplemental Information Section I for extended experi- 523

mental details. 524

Bacterial strains. 525

All E. coli strains used in this work were derived from K-12 526

MG1655, with deletion strains generated by the lambda red 527

recombinase method (55). In the case of deletions for lysA 528

(∆lysA::kan), purR (∆purR::kan), and xylE (∆xylE::kan), 529

strains were obtained from the Coli Genetic Stock Center 530

(CGSC, Yale University, CT, USA) and transferred into a 531

fresh MG1655 strain using P1 transduction. The others were 532

generated in house and include the following deletion strains: 533

∆lacIZY A, ∆relBE::kan, ∆marR::kan, ∆dgoR::kan (see Sup- 534

plemental Information Section I.1 for details on strain con- 535

struction). 536

Sort-Seq. 537

Mutagenized single-stranded oligonucleotide pools were pur- 538

chased from Integrated DNA Technologies (Coralville, IA), 539

with a target mutation rate of 9%. Note that in the case of 540

the lacZ promoter, the library is identical to that used in the 541

experiments of Razo-Mejia et al. (56), and had a mutation 542

rate of approximately 3%. Library oligonucleotides were PCR 543

amplified and inserted into the PCR amplified plasmid back- 544

bone (i.e. vector) of pJK14 (SC101 origin) (12) by Gibson 545

assembly and electroporated into cells following drop dialysis 546

in water. 547

Cells were grown to saturation in LB and then diluted 548

1:10,000 into the appropriate growth media for the promoter 549

under consideration. Upon reaching an OD600 of about 0.3, 550

the cells were washed two times with chilled PBS by spinning 551

down the cells at 4000 rpm for 10 minutes at 4◦C and diluted 552

to an OD of 0.1-0.15. A Beckman Coulter MoFlo XDP cell 553

sorter was used to sort cells by fluorescence, with 500,000 cells 554

collected into each of the four bins. Sorted cells were then 555

re-grown overnight in 10 ml of LB media, under kanamycin 556

selection. The plasmid in each bin were miniprepped following 557

overnight growth (Qiagen, Germany) and PCR was used to 558

amplify the mutated region from each plasmid for Illumina 559

sequencing (see Supplemental Information Section I.3 and I.4 560

for additional Sort-Seq and sequencing details, respectively). 561

Details on constructing expression shift plots and the model 562

inference that was performed are provided in Supplemental 563

Information Section H. 564

DNA affinity chromatography. 565

SILAC labeling (26) was implemented by growing cells in 566

either the stable isotopic form of lysine (13C6H14
15N2O2), 567

referred to as the heavy label, or natural lysine, referred to as 568

the light label. Cell lysates were prepared using ∆lysA cells. 569

For each heavy and light labelled cells, 500 ml M9 minimal 570
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media was inoculated 1:5,000 with an overnight LB culture of571

∆lysA cells, and grown to an OD600 of ≈ 0.6 (supplemented572

with the appropriate lysine; 40 µg/ml). Cultures were pelleted,573

lyse using a Cell Disruptor (CF Range, Constant Systems Ltd.,574

UK) and concentrated to ∼150 mg/ml using Amicon Ultra-15575

centrifugation units (3kDa MWCO, Millipore).576

DNA affinity chromatography was performed by incubat-577

ing cell lysate with magnetic beads (Dynabeads MyOne T1,578

ThermoFisher, Waltham, MA) containing tethered DNA. The579

DNA was tethered through a linkage between streptavidin on580

the beads and biotin on the DNA. Single-stranded DNA was581

purchased from Integrated DNA Technologies with the biotin582

modification on the 5’ end of the oligonucleotide sense strand.583

Cell lysates were incubated on a rotating wheel with the DNA584

tethered beads overnight at 4◦C. Beads were washed three585

times using lysis buffer and once more with NEB Buffer 3.1586

(New England Biolabs, MA, USA). Both purifications (with587

the target DNA and reference control) were combined by resus-588

pending in 50 µL NEB Buffer 3.1, and the DNA was cleaved by589

adding 10 µl of the restriction enzyme PstI (100,000 units/ml,590

New England Biolabs targeting a CTGCAG sequence on the591

DNA) and incubating for 1.5 hours at 25◦C. The beads were592

then removed and the samples prepared for mass spectrometry593

by in-gel digestion with endoproteinase Lys-C.594

LC-MS/MS analysis and protein quantitation.595

Liquid chromatography tandem-mass spectrometry (LC-596

MS/MS) experiments were carried out as previously described597

(57) and further detailed in supplemental experimental de-598

tails. Thermo RAW files were processed using MaxQuant (v.599

1.5.3.30) (58). Spectra were searched against the UniProt E.600

coli K-12 database (4318 sequences) as well as a contaminant601

database (256 sequences). Additional details are provided in602

Supplemental Information Section I.5. To calculate the overall603

protein ratio, the non-normalized protein replicate ratios were604

log transformed and then shifted so that the median protein605

log ratio within each replicate was zero (i.e., the median pro-606

tein ratio was 1:1). The overall experimental log ratio was607

then calculated from the average of the replicate ratios.608

Code and data availability.609

All code used for processing data and plotting, as well as the610

final processed data are available upon request. Thermo RAW611

files for mass spectrometry are available on the jPOSTrepo612

repository (59) under accession code PXD007892. Sort-Seq613

sequencing files are available on the Sequence Read Archive614

under accession code SRP121362.615
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