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Abstract 1 
Atrial fibrillation is a prevalent arrhythmia associated with a five-fold increased risk 2 

of ischemic stroke, and specifically the cardioembolic stroke subtype. Genome-wide 3 

association studies of these traits have yielded overlapping risk loci, but genome-4 

wide investigation of genetic susceptibility shared between stroke and atrial 5 

fibrillation is lacking. Comparing the genetic architectures of the two diseases could 6 

inform whether cardioembolic strokes are driven by inherited atrial fibrillation 7 

susceptibility, and may help elucidate ischemic stroke mechanisms. Here, we 8 

analyze genome-wide genotyping data and estimate SNP-based heritability in atrial 9 

fibrillation and cardioembolic stroke to be nearly identical (20.0% and 19.5%, 10 

respectively). Further, we find that the traits are genetically correlated (r=0.77 for 11 

SNPs with p<4.4x10-4 in a previous atrial fibrillation meta-analysis). Clinical studies 12 

are warranted to assess whether genetic susceptibility to atrial fibrillation can be 13 

leveraged to improve the diagnosis and care of ischemic stroke patients.  14 
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Introduction 1 
 2 

Atrial fibrillation affects nearly 34 million individuals worldwide1 and is associated 3 

with a five-fold increased risk of ischemic stroke2, a leading cause of death and 4 

long-term disability globally3,4. Strokes caused by atrial fibrillation are classified as 5 

cardioembolic in nature, as atrial fibrillation promotes the formation of blood clots 6 

in the heart which can embolize distally to the brain. Cardioembolic stroke is often, 7 

but not always, caused by atrial fibrillation. However, whether cardioembolic stroke 8 

results from genetic or non-genetic susceptibility to atrial fibrillation remains an 9 

open question.   10 

 11 

Recent genome-wide association studies (GWAS) of atrial fibrillation5 and ischemic 12 

stroke indicate that both traits are common complex disorders with polygenic 13 

architectures6,7. The top loci for cardioembolic stroke, on chromosome 4q25 14 

upstream of PITX2 and on 16q22 near ZFHX3, are both leading risk loci for atrial 15 

fibrillation8–10. Although the leading genetic loci for atrial fibrillation and 16 

cardioembolic stroke overlap, the genetic susceptibility to each is likely to involve 17 

the aggregate contributions of hundreds or thousands of genetic loci, consistent 18 

with other polygenic traits11. Understanding the degree to which the genetic 19 

architectures of these diseases overlap may elucidate the extent to which genetic 20 

risk factors for atrial fibrillation contribute to cardioembolic stroke risk.  21 

 22 

We therefore leveraged genome-wide common variation to address two specific 23 

questions. First, we assessed the degree of overlap between the genetic 24 

architectures of atrial fibrillation in the general population and atrial fibrillation in 25 

patients with stroke. Second, we compared the genetic architectures of atrial 26 

fibrillation and cardioembolic stroke to ascertain the extent to which heritable risk 27 

of cardioembolic stroke is explained by genetic risk factors for atrial fibrillation. 28 

Using a sample comprised of 13,390 ischemic stroke cases and 28,026 referents 29 

with imputed genotyping data from the NINDS-Stroke Genetics Network (SiGN)12, 30 

we have established that additive genetic variation accounts for ~20% of the 31 

variance in risk for both atrial fibrillation and cardioembolic stroke. Further, we find 32 
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 5 

that the genetic architectures of the two traits are highly correlated (r = 0.77 1 

across ~1.9 million SNPs shown previously to associate to atrial fibrillation), and a 2 

genetic risk score constructed from SNPs predisposing to atrial fibrillation explained 3 

approximately one-fifth of the genetic variance in cardioembolic stroke risk.  4 
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Results 1 
 2 

We began by testing our ability to rediscover known atrial fibrillation genetic 3 

associations in the SiGN dataset, assembled to study the genetics of ischemic 4 

stroke. Of the 13,390 European- and African-descent stroke cases in SiGN, we 5 

identified 3,190 cases with atrial fibrillation or paroxysmal atrial fibrillation, as well 6 

as other diagnoses suggestive of underlying atrial fibrillation, including atrial 7 

flutter13, left atrial thrombus, and sick sinus syndrome14 (Table 1 and 8 

Supplementary Table 1). SiGN also includes 28,026 European- and African-9 

descent controls, the majority of which are publicly-available referent sets with 10 

minimal medical history information.  11 

 12 

We first performed a genome-wide association study (GWAS) of the 3,190 atrial 13 

fibrillation cases and 28,026 referents. The results were highly concordant with the 14 

latest GWAS in atrial fibrillation performed by the Atrial Fibrillation Genetics 15 

(AFGen) Consortium (Supplementary Figure 1). Specifically, the GWAS in SiGN 16 

identified SNPs at the PITX2 and ZFHX3 loci8,10 (index SNPs rs6843082 and 17 

rs2106261, respectively) that were associated with atrial fibrillation beyond a 18 

genome-wide significance threshold (p < 5 x 10-8) and with similar effect sizes 19 

compared to those reported in the AFGen GWAS5 (Supplementary Table 2). We 20 

additionally looked up 26 variants most recently reported by AFGen as being 21 

associated to atrial fibrillation5; of the 25 available in the SiGN data, 24 showed a 22 

consistent direction of effect (binomial p = 7.7 x 10-7), and 14 showed nominal 23 

association signal (p < 0.05; Supplementary Table 2). The only SNP without a 24 

consistent direction of effect in both analyses had originally been identified through 25 

an eQTL analysis5. 26 

 27 

Next, we evaluated heritability within cardioembolic stroke and atrial fibrillation, 28 

with the specific goal of evaluating the proportion of genetic variation in 29 

cardioembolic stroke that can be explained by genetic susceptibility to atrial 30 

fibrillation. 31 

 32 
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Table 1 | Atrial fibrillation and stroke cases in SiGN. Of the 13,390 stroke cases available in the SiGN dataset, 1 

a total of 3,190 cases had atrial fibrillation or other suggestive diagnoses. While the majority of these cases were 2 

subtyped as having a cardioembolic (CE) stroke, a fraction were distributed among the other stroke subtypes. 3 

Samples can appear more than once per row, but totals represent the number of unique atrial fibrillation samples in 4 

each stroke subtype. There are no subjects with atrial fibrillation or equivalent subtyped as “cryptogenic/CE minor” 5 

because such a diagnosis would remove them from this category. 6 

 7 

 Phenotype Total Ischemic stroke subtype 

   Cardioembolic Large artery 
atherosclerosis 

Small artery 
occlusion 

Undetermined: 
incomplete/ 
unclassified 

Undetermined: 
cryptogenic/ 

CE minor 

 

Atrial fibrillation 1,751 1,495 63 32 151 0 

Paroxysmal atrial 
fibrillation 1,315 1,088 52 23 138 0 

Left atrial 
thrombus 48 37 3 3 4 0 

Sick sinus 
syndrome 79 65 5 3 4 0 

Atrial Flutter 106 90 4 2 10 0 

 Total 3,190 2,684 123 61 298 0 
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 8 

As a basis for comparison, we also calculated heritability in the two additional 1 

primary stroke subtypes15 (large artery atherosclerosis and small artery occlusion), 2 

as well as in ‘undetermined’ stroke, a highly heterogeneous subset of cases16,17 that 3 

cannot be classified by standard subtyping systems15,18. This latter category could 4 

potentially contain misclassified cardioembolic strokes caused by occult atrial 5 

fibrillation19. We analyzed common variants (minor allele frequency > 1%) in SiGN 6 

to evaluate heritability of atrial fibrillation, followed by the major stroke subtypes 7 

(cardioembolic, large artery atherosclerosis, and small artery occlusion), and finally 8 

in strokes of undetermined cause (Materials and Methods). We performed 9 

restricted maximum likelihood analysis implemented in BOLT-LMM20 (i.e., BOLT-10 

REML) to calculate genetic heritability using a high-quality set of linkage 11 

disequilibrium (LD)-pruned imputed variants (imputation info score > 0.8, minor 12 

allele frequency >1%, LD r2 threshold = 0.2) converted to best-guess genotypes 13 

(Materials and Methods). We additionally corrected the REML analyses for sex 14 

and the top ten principal components and converted the observed-scale heritability 15 

estimates produced by BOLT-REML to the liability scale (Supplementary 16 

Information). Using the 3,190 atrial fibrillation cases and 28,026 referents 17 

available in SiGN, we estimated heritability of atrial fibrillation at 20.0% (Figure 18 

1), consistent with previous estimates in larger sample sizes21,22. 19 

 20 

We next evaluated SNP-based heritability in the stroke subtypes. We focus these 21 

and all subsequent analyses on phenotypes resulting from the CCS causative 22 

(CCSc) subtyping algorithm, one of the three stroke subtyping systems available in 23 

SiGN23; heritability results from all three subtyping systems are provided in 24 

Supplementary Table 3. Our analyses estimate cardioembolic stroke heritability 25 

at 19.5% (Figure 1), a heritability highly consistent with that of atrial fibrillation. 26 

We found large artery stroke and small artery occlusion to have similarly modest 27 

heritability (15.5% and 23.0%, respectively; Figure 1 and Supplementary Table 28 

3), consistent with the hypothesis that stroke risk is modulated partially by 29 

biological factors, but with a large contribution from non-genetic variables as well. 30 

 31 

  32 
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 9 

Figure 1 | Estimated heritability of ischemic stroke subtypes and atrial 1 

fibrillation. Using all available stroke cases in SiGN, we estimated SNP-based 2 

heritability of the ischemic stroke subtypes (as sub-typed by the CCS Causative 3 

subtyping system) and atrial fibrillation (using the subset of 3,190 cases with atrial 4 

fibrillation) using BOLT-LMM and a genetic relationship matrix of high-quality SNPs 5 

converted to best-guess genotypes (imputation quality > 0.8, minor allele 6 

frequency > 0.01, and pruned at a linkage disequilibrium threshold of 0.2). We 7 

assumed a trait prevalence of 1% for all phenotypes. We found heritability 8 

estimates in cardioembolic stroke (green) and atrial fibrillation (yellow) to be 9 

approximately similar. 10 

 11 
  12 
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Despite their presumed etiologic and phenotypic heterogeneity, the undetermined 1 

categories of stroke showed heritability measures comparable to those of the major 2 

stroke subtypes (Figure 1, Supplementary Figure 2 and Supplementary Table 3 

3). Specifically, heritability in all undetermined strokes (Ncases = 4,574) was 18.2%. 4 

The mutually exclusive subsets of all undetermined stroke, categorized as 5 

incomplete/unclassified strokes (Ncases = 2,280) and cryptogenic/cardioembolic 6 

minor strokes (Ncases = 2,294), were also moderately heritable (28.2% and 23.7%, 7 

respectively; Figure 1). We repeated all of the heritability calculations in GCTA24 to 8 

evaluate the stability of the estimates across methods (Supplementary 9 

Information and Supplementary Table 3); estimates from GCTA were primarily 10 

similar to those from BOLT (Supplementary Figure 3). These heritability 11 

estimates suggest that, despite the fact that recent GWAS of undetermined stroke 12 

have not revealed any robustly-associated loci12,25, the phenotype(s) captured by 13 

this subtype are heritable, and likely represent either improperly-classified cases 14 

from the primary subtypes or novel stroke phenotypes awaiting further delineation. 15 

 16 

Given the known phenotypic overlap of cardioembolic stroke and atrial fibrillation 17 

(89.5% of cardioembolic stroke cases in SiGN also have atrial fibrillation, 18 

Supplementary Table 1) as well as the similar heritable components of the two 19 

traits, we next aimed to evaluate how genetic susceptibility to atrial fibrillation 20 

might contribute to cardioembolic stroke. To measure correlation between the 21 

genetic architectures of atrial fibrillation and stroke, we first performed a series of 22 

GWAS in the SiGN data for each of the stroke subtypes as well as all stroke, using 23 

BOLT-LMM20 (Materials and Methods). We then calculated the z-score 24 

(beta/standard error) of each SNP in each stroke subtype, all stroke, and from our 25 

analysis of atrial fibrillation described above. Next, we used summary-level results 26 

available from the most recent GWAS of atrial fibrillation5 from AFGen and 27 

calculated the z-score for each SNP in that independent dataset. Measuring 28 

Pearson’s correlation (r) between AFGen z-scores and z-scores from our own GWAS 29 

of atrial fibrillation, we found only a modest correlation between atrial fibrillation as 30 

measured in the two GWAS (r = 0.07 across ~7.8M SNPs, Figure 2a). However, 31 

when we iteratively subsetted the AFGen GWAS results by the (absolute values of) 32 
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 11 

z-scores of the SNPs, we found that correlation with our own atrial fibrillation GWAS 1 

in SiGN improved as the z-score threshold became more stringent. For example, for 2 

those ~4.5M SNPs with |z| > 1 in AFGen, correlation with the SiGN atrial fibrillation 3 

GWAS was 0.12; for those ~1.9M SNPs with |z| > 3.5 in AFGen, correlation with 4 

the SiGN atrial fibrillation GWAS rose to 0.77 (Figure 2a and Supplementary 5 

Table 4). Removing ±2Mb around the PITX2 and ZFHX3 loci only modestly 6 

impacted the correlation between AFGen and atrial fibrillation in SiGN (r = 0.63 for 7 

SNPs with |z| > 3.5; Supplementary Figure 4 and Supplementary Table 4). As 8 

a null comparator, we performed correlations between the AFGen results with z-9 

scores derived from the latest GWAS of educational attainment26 and found that 10 

correlation remained at approximately zero regardless of the z-score threshold used 11 

(Figure 2a and Supplementary Table 4).  12 

 13 

To investigate the overlap of atrial fibrillation with stroke and its subtypes, we 14 

repeated these same correlation calculations, comparing AFGen results to GWAS 15 

results from each of the primary stroke subtypes (cardioembolic stroke, large artery 16 

atherosclerosis, and small artery occlusion) and the undetermined subtypes 17 

(Figure 2). The correlation between cardioembolic stroke and AFGen was highly 18 

similar to that of the results with atrial fibrillation in SiGN (r = 0.76 for AFGen SNPs 19 

with |z| > 3.5, likely due to high concordance between the atrial fibrillation and 20 

cardioembolic stroke phenotypes in SiGN; Figure 2 and Supplementary Figure 21 

5) whereas correlation between AFGen and either large artery atherosclerosis or 22 

small artery occlusion was essentially zero (Figure 2). Notably, the correlation 23 

between atrial fibrillation and the undetermined stroke subtypes increased steadily 24 

as we partitioned the AFGen data by z-score (all undetermined vs. AFGen r = 0.04 25 

for AFGen SNPs with |z| > 1 and r = 0.16 for AFGen SNPs with |z| > 3.5; Figure 2 26 

and Supplementary Table 4), indicating that genome-wide, there is residual 27 

genetic correlation between atrial fibrillation and the undetermined stroke 28 

categories, some of which could represent causal atrial fibrillation stroke  29 

mechanisms in that subgroup.30 
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 12 

Figure 2 | Genetic correlation between atrial fibrillation in the Atrial Fibrillation Genetics (AFGen) 1 

Consortium meta-analysis and GWAS of atrial fibrillation and ischemic stroke subtypes analysed in 2 

SiGN. Pearson’s r correlation between SNP z-scores in the AFGen GWAS of atrial fibrillation and in GWAS of selected 3 

traits performed in the SiGN data. (a) GWAS of atrial fibrillation in AFGen and in SiGN correlate with increasing 4 

strength as SNP z-scores in AFGen increase. Correlation with educational attainment (performed separately, shown 5 

here as a null comparator) remains approximately zero across all z-score thresholds. (b) SNP effects in AFGen also 6 

correlate strongly with cardioembolic stroke in SiGN, but not with the other primary stroke subtypes. (c) 7 

Undetermined subtypes of stroke also show modest correlation to the genetic architecture of atrial fibrillation in 8 

AFGen. Panels d-f show genome-wide z-score distributions underlying correlations. 9 

 10 
 11 
 12 
 13 
  14 
  15 
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To explicitly test what proportion of cardioembolic stroke heritability could be 1 

explained by atrial fibrillation loci, we used SNPs from an atrial fibrillation genetic 2 

risk score (GRS) independently derived from the AFGen GWAS5 (Materials and 3 

Methods). Of the 1,168 SNPs used to generate this pre-established GRS, we 4 

identified 934 in the SiGN dataset with imputation quality > 0.8 and minor allele 5 

frequency >1%. To compute the GRS per individual, we weighted the imputed 6 

dosage of the risk allele (a number between 0 and 2) by the effect of the SNP (i.e., 7 

the ß-coefficient) as reported in AFGen5, repeated this weighting across all SNPs, 8 

and then summed these weighted effects.  9 

 10 

We tested the association of the atrial fibrillation GRS with cardioembolic stroke, 11 

using a logistic regression and adjusting for the top ten principal components and 12 

sex (Materials and Methods). We found the GRS to be strongly associated with 13 

cardioembolic stroke (beta (s.e.) = 0.17 (0.01), p = 1.01 x 10-65; Figure 3 and 14 

Supplementary Table 5), confirming the high genetic concordance of these 15 

phenotypes across SNPs which, individually, confer only a modest average 16 

association with atrial fibrillation. Expanding the set of SNPs used to construct the 17 

GRS to the original 934 SNPs ±25kb, ±50kb, and ±100kb (and subsequently 18 

linkage disequilibrium pruned at r2 = 0.2 to ensure independence between markers) 19 

revealed a persistently strong though somewhat attenuated association between 20 

the GRS and cardioembolic stroke (GRS ± SNPs within 100Kb, p = 4.47 x 10-44, 21 

Supplementary Table 6). Additionally, adjusting the association with the original 22 

GRS for a set of clinical covariates (Supplementary Table 7) associated with atrial 23 

fibrillation including age, type 2 diabetes, cardiovascular disease, smoking, and 24 

presence of hypertension27 only modestly reduced the persistent GRS signal in 25 

cardioembolic stroke (beta (s.e.) = 0.17 (0.01), p = 1.45 x 10-48; Supplementary 26 

Table 6). 27 

 28 

None of the other subtypes we tested were significantly associated (Bonferroni-29 

corrected p = 5 x 10-3, adjusting for five subtypes and the TOAST and CCS 30 

classification systems) to the GRS (all p > 0.013, Figure 3 and Supplementary 31 

Figure 6). 32 
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As we had been leveraging referent samples for which atrial fibrillation status was 1 

mostly unknown, cryptic atrial fibrillation cases in the referent group were 2 

potentially negatively confounding associations between the AF GRS and stroke 3 

subtype. Of all available referents, 4,038 had information on atrial fibrillation 4 

diagnosis and of these samples, 3,861 are reported as not having atrial fibrillation. 5 

We therefore refined the set of referents by selecting only the 3,861 referents in 6 

whom atrial fibrillation status was non-missing and who did not have a reported 7 

atrial fibrillation diagnosis. Using this restricted set of samples, we observed a 8 

persistently strong association between the GRS and cardioembolic stroke (beta 9 

(s.e.) = 0.19 (0.01), p = 1.66 x 10-42; Supplementary Table 5). The lack of 10 

association between the GRS and large artery atherosclerotic stroke or small artery 11 

occlusion strokes also persisted when using these refined controls (p = 0.60 and p 12 

= 0.17, respectively). Interestingly, we found the atrial fibrillation risk score to be 13 

modestly associated (p < 5 x 10-3) with the overall undetermined subtype (beta 14 

(s.e.) = 0.036 (0.013), p = 4.15 x 10-3) (Figure 3). Further examination of the two 15 

mutually exclusive subgroups of the undetermined group revealed that the GRS 16 

associated significantly with the incomplete/unclassified categorization (beta (s.e.) 17 

= 0.046 (0.016), p = 3.17 x 10-3) (Figure 3) but not with 18 

cryptogenic/cardioembolic minor classification (beta (s.e.) = 0.030 (0.156), p = 19 

5.10 x 10-2). Correcting for clinical covariates modestly changed the signal in the 20 

incomplete/unclassified phenotype (p = 9.7 x 10-3, Figure 3). 21 

 22 

  23 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2017. ; https://doi.org/10.1101/239269doi: bioRxiv preprint 

https://doi.org/10.1101/239269
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

Figure 3 | Association of atrial fibrillation genetic risk score in ischemic stroke subtypes. We constructed 1 

an independent genetic risk score (GRS) from atrial fibrillation-associated SNPs identified in the AFGen GWAS, and 2 

tested associations between this GRS and ischemic stroke subtypes using (a) all available referents (N = 28,026) 3 

and (b) referents without atrial fibrillation (N = 3,861). The GRS strongly associated with cardioembolic stroke in 4 

both sets of samples. In the atrial fibrillation-free set of controls (panel b) we observed association of the GRS (p < 5 

5 x 10-3, after adjusting for five subtypes and two sets of referents; indicated by the dashed dark blue line) with 6 

incomplete/unclassified stroke as well.  7 
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Lastly, we created a model in BOLT-LMM, fitting two genetic variance components: 1 

one component including SNPs for the genetic relationship matrix, and the second 2 

component including the original GRS SNPs from the atrial fibrillation GRS 3 

(including ±100kb around these SNPs, to include a sufficient number of markers to 4 

estimate variance explained). We found that the SNPs from the atrial fibrillation 5 

GRS explained 4.1% of the total 20.0% heritability in atrial fibrillation. In 6 

evaluating how much of cardioembolic stroke heritability that atrial fibrillation risk-7 

increasing SNPs explain, we found a similar result: the component representing the 8 

atrial fibrillation risk score explained 4.5% (s.e. = 1.00%) of the total 19.5% 9 

genetic heritability in cardioembolic stroke. Thus, atrial fibrillation genetic risk 10 

accounts for 23.1%, or approximately one-fifth, of the total heritability of 11 

cardioembolic stroke.  12 

 13 

Discussion 14 
 15 

Although atrial fibrillation is an established causal risk factor for cardioembolic 16 

stroke, formal investigation of the overlapping biology of the two traits has been 17 

limited. Here, we leverage genome-wide common variation data from two large 18 

collaborative datasets to define locus-specific and genome-wide genetic signatures 19 

shared between the two phenotypes. Our analyses reveal that the genetic signature 20 

of atrial fibrillation in patients with stroke strongly parallels that of atrial fibrillation 21 

in the general population. Despite the fact that cardioembolic stroke often affects 22 

older adults with multiple clinical comorbidities28 that could increase risk for atrial 23 

fibrillation due to non-genetic factors, we observed that nearly 20% of the variance 24 

in cardioembolic stroke risk can be explained by genetic risk factors for atrial 25 

fibrillation. Finally, our results from genome-wide correlation analysis and 26 

construction of a genetic risk score further indicate that cardioembolic stroke and 27 

atrial fibrillation share a highly similar genetic architecture, extending our 28 

understanding of the morbid consequences of heritable forms of the arrhythmia. 29 

 30 

The implementation of genetic risk scores in complex traits has proved an efficient 31 

means of understanding the proportion of phenotypic variance explained by 32 
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common genetic markers, or how genetic predisposition to a disease can overlap 1 

with risk for other common disease(s). Given the onslaught of genotyping data 2 

made available in common disease over the last decade, and the resulting rapid 3 

increase in implicated common disease loci, genetic risk scores are beginning to be 4 

used as a means of stratifying patients by risk (e.g., in breast cancer29,30) or 5 

predicting outcome (e.g., in neuropsychiatric disease29,31). More recently, polygenic 6 

risk scores derived from millions of markers have been used to identify individuals 7 

in the general population with a four-fold risk for coronary disease32 and to identify 8 

individuals for whom lifestyle changes or statin intervention would be particularly 9 

beneficial33,34. Future work in atrial fibrillation and cardioembolic stroke may reveal 10 

how genetic scores based on variants associated to atrial fibrillation could be used 11 

either to predict individuals at highest risk of cardioembolic stroke (and who 12 

therefore could be more closely monitored), or help distinguish between clinical 13 

causes of strokes. 14 

 15 

Though our analysis was aimed at understanding the genetic overlap between 16 

cardioembolic stroke and atrial fibrillation, we additionally observed genome-wide 17 

correlation between atrial fibrillation and undetermined stroke and an association 18 

between the atrial fibrillation genetic risk score and stroke of unknown cause. 19 

Perhaps contrary to expectation, we specifically found the atrial fibrillation GRS to 20 

be more strongly associated with the subset of etiology-undetermined strokes with 21 

an incomplete clinical evaluation, as opposed to those with cryptogenic stroke of a 22 

presumed, but not demonstrated, embolic source. Our results therefore do not 23 

directly support the hypothesis that embolic strokes of undetermined cause35 are 24 

largely composed of occult atrial fibrillation cases. These observations are 25 

consistent with the recent termination (due to futility) of a randomized trial of oral 26 

anticoagulation, a treatment typically reserved for patients with strokes caused by 27 

atrial fibrillation, in patients with embolic stroke of undetermined source.36 28 

Nevertheless, stroke diagnostic workups in our observational study rely in part on 29 

physician decisions, which could lead to biases in the level of evidence supporting 30 

stroke etiology in the undetermined classifications studied here. Our results could 31 

therefore represent an artifact of this decision-making process. In aggregate, we 32 
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submit that our findings indicate that atrial fibrillation genetic risk may augment 1 

clinical algorithms to determine stroke etiology. 2 

 3 

While our work presented here has helped to define the overlapping common 4 

genetic risk factors for both atrial fibrillation and cardioembolic stroke, a number of 5 

limitations remain. First, stroke is a highly heterogeneous phenotype. Its onset is 6 

typically late, but can vary anywhere from neonates to the elderly. Therefore, 7 

genetic and environmental factors are not expected to carry a similar proportion of 8 

risk throughout an individual’s lifespan. Furthermore, due to its late onset, stroke 9 

often co-occurs with a number of other common, complex traits16 including 10 

hypertension, type 2 diabetes, and cardiovascular disease, the genetic contributions 11 

of which have not been explored herein. Further compounding the genetic study of 12 

ischemic stroke is the lifetime prevalence of the disease (>15%37), which increases 13 

the likelihood that referents studied here will have a stroke in the future; and 14 

sample size, which has lagged behind other GWAS efforts now interrogating tens or 15 

hundreds of thousands of samples38–41. The challenge of subtyping impacts sample 16 

size; nearly one-third of all cases fail to fall into one of the primary subtypes and 17 

are instead categorized as undetermined23. Further, while subtyping is key for 18 

genetic discovery, it also reduces sample sizes in stroke GWAS (as the full set of 19 

cases is often reduced substantially once subtyping is complete); reduced sample 20 

sizes impact power for discovery and make other analytic approaches 一 such as standard 21 

approaches for measuring trait correlation20,24,42 一 unfeasible. Finally, the most recent 22 

GWAS of atrial fibrillation revealed a role for rare variation, untested here due to 23 

limitations in reliably imputing rare variants in the SiGN samples12; similarly, we did 24 

not test other types of genetic variation, such as insertions and deletions or larger 25 

structural variants. 26 

 27 

We have shown that the genetic liability to atrial fibrillation is the same in 28 

individuals presenting with stroke as in primary studies of incident and prevalent 29 

atrial fibrillation. Additionally, we have provided updated heritability estimates of 30 

ischemic stroke and its subtypes, and demonstrated that genetic loci that fall far 31 

below the genome-wide significance threshold in studies of atrial fibrillation carry a 32 
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substantial association with cardioembolic stroke risk. Although atrial fibrillation 1 

genetic risk did not associate with other primary stroke subtypes, we found an 2 

association with strokes of the ‘undetermined’ subtype, supporting the notion that 3 

undetected atrial fibrillation underlies a proportion of the stroke risk in these 4 

individuals. Given the increased prevalence of stroke in non-European populations, 5 

and especially in African Americans for whom risk of stroke is double that of 6 

individuals of European descent43, future studies will be needed to extend our 7 

results into populations of non-European ancestry. Further work will also need to 8 

incorporate emerging discoveries of rare genetic variants in atrial fibrillation, and 9 

explore the potential for genotype-based tools to assist in the diagnostic workup of 10 

individuals with ischemic stroke. 11 

  12 
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Materials and Methods 1 
 2 

Data access 3 

 4 

For access to code, supporting data, and downloadable supplemental tables, please 5 

see this GitHub repository: https://github.com/UMCUGenetics/Afib-Stroke-Overlap. 6 

Please see the Supplementary Information for additional information regarding 7 

access to genotypes, dbGaP data identifiers, and DOIs where summary-level data 8 

from our genome-wide association studies of atrial fibrillation are available for 9 

download. 10 

 11 

The Stroke Genetics Network (SiGN) and genome-wide association study of 12 

ischemic stroke subtypes 13 

 14 

The Stroke Genetics Network (SiGN) was established with the aim of performing the 15 

largest genome-wide association study (GWAS) of ischemic stroke to date. The 16 

complete design of the study, including sample collection, phenotyping, and data 17 

processing, have been described previously12. Briefly, ischemic stroke cases were 18 

collected from cohorts located in the United States, Europe and Australia. Stroke 19 

cases included in SiGN were classified into stroke subtypes using the Causative 20 

Classification System (CCS), which subtypes cases through an automated, web-21 

based system that accounts for clinical data, test results, and imaging 22 

information18,44. Within CCS, there are two sub-categories: CCS causative, which 23 

does not allow for competing subtypes in a single sample; and CCS phenotypic, 24 

which does.  25 

 26 

SiGN is comprised of several case cohorts with pre-existing genotyping data. 27 

Newly-collected cases, as well as a small number of matched referents, were 28 

genotyped on the Illumina 5M array12. The majority of referents included were 29 

drawn from publicly-available genotyping data. Samples represent three continental 30 

populations (European-ancestry; African-ancestry; and non-European ancestry and 31 

non-African ancestry samples, primarily of admixed ancestry from Latin American 32 
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populations, labelled ‘Hispanic’). For quality control (QC) and downstream 1 

association testing, cases and referents were matched by genotyping array and 2 

PCA-determined ancestry. In total, the study contains 13 case-referent analysis 3 

groups: 10 of European ancestry, two of African ancestry, and one Hispanic12. 4 

 5 

After QC, the SiGN dataset comprised 16,851 ischemic stroke cases and 32,473 6 

stroke-free controls. European-ancestry samples were imputed with IMPUTE245 7 

using a reference panel built from whole-genome sequence data collected by the 8 

1000 Genomes Project (Phase 1)46 and the Genome of the Netherlands47 project; 9 

African-ancestry and Hispanic samples were imputed with the 1000 Genomes 10 

Project data only.46 Due to data-sharing restrictions regarding the referents used 11 

for the Hispanic set of samples, only the European- and African-ancestry samples 12 

were analyzed here, totaling 13,390 cases and 28,026 referents distributed across 13 

12 case-control analysis groups. A complete breakdown of case and referent 14 

information, including counts by stroke subtype, are included in Supplementary 15 

Table 1. 16 

 17 

Phenotyping in SiGN 18 

 19 

There are three primary subtype definitions of ischemic stroke: cardioembolic 20 

stroke, large artery atherosclerotic stroke, and small artery occlusion. The SiGN 21 

consortium used the CCS system to attempt to assign each case to one of these 22 

three categories. Additionally, ~74% of cases were also classified using the Trial of 23 

Org 10  172 in Acute Stroke Treatment (TOAST)15,48 system, which classifies stroke 24 

cases based on clinical decision-making and clinically-ascertained information. The 25 

CCS and TOAST subtyping systems yield moderately-to-strongly correlated 26 

phenotyping results (Supplementary Figure 5)49. Use of these traits in a GWAS 27 

setting also yields concordant association results, as previously shown12. These 28 

subtypes are similarly defined in CCS and TOAST, though determined differently 29 

across the two subtyping systems. 30 

 31 
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In addition to the three primary subtypes, both the CCS and TOAST classification 1 

systems generate two additional subtypes: “undetermined” and “other.” The 2 

“other” classification was small in sample size (Ncases = 595, 719 and 374 in CCS 3 

Causative, CCS Phenotypic and TOAST, respectively), and was therefore not 4 

included in the original SiGN GWAS and was not tested here12. The “undetermined” 5 

classification, though named the same in CCS and TOAST, is defined differently 6 

across the two subtyping systems15,18. In TOAST, patients with conflicting subtype 7 

classifications are placed in the undetermined category12,15. In contrast, the CCS 8 

undetermined classification includes patients with cryptogenic embolism, other 9 

cryptogenic cases, patients with an incomplete evaluation, or samples with 10 

competing subtypes18.  11 

 12 

Identifying atrial fibrillation cases and controls in SiGN 13 

 14 

To perform association testing and downstream analyses, we sought to identify a 15 

set of atrial fibrillation cases and suitably-matched referents available in the SiGN 16 

dataset. We defined atrial fibrillation on the basis of five variables available in the 17 

CCS phenotyping system: (i) atrial fibrillation, (ii) paroxysmal atrial fibrillation, (iii) 18 

atrial flutter, (iv) sick sinus syndrome, and (v) atrial thrombus. This definition 19 

yielded 3,190 atrial fibrillation cases for analysis. For quality control purposes, we 20 

also ran an initial genome-wide association study in atrial fibrillation only (N = 21 

1,751 cases) to ensure overlap with the broader atrial fibrillation definition. 22 

 23 

Given that the vast majority of stroke-free referents in SiGN were collected from 24 

publicly-available sources, available atrial fibrillation information for these samples 25 

is extremely limited. From the 28,026 controls available for analysis, we established 26 

a set of 3,861 individuals for whom atrial fibrillation information was available and 27 

who did not have atrial fibrillation. For the remaining subjects, we assumed that 28 

individuals did not have atrial fibrillation.    29 

 30 
 31 
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Genome-wide association testing of ischemic stroke subtypes and atrial fibrillation 1 

in SiGN 2 

 3 

To perform genome-wide association testing, we merged all genotype dosages 4 

available from the European-ancestry and African-ancestry analysis groups in SiGN. 5 

SNPs with imputation quality (info score) < 0.3 and minor allele frequency (MAF) < 6 

1% were removed from the data. Additionally, for those SNPs that were genotyped 7 

in a subset of the SiGN study strata but imputed in others, we compared the 8 

frequency of the SNP across the various strata. We removed any SNP with a 9 

frequency difference > 15% within ancestral group or >50% across ancestral 10 

groups comparing imputed and genotyped data, likely induced by sequencing errors 11 

in the imputation reference panel(s). 12 

 13 

We then implemented a linear mixed model to perform association testing using 14 

BOLT-LMM20. Linear mixed models can account for structure in the data, such as 15 

that due to (familial or cryptic) relatedness and population structure, while 16 

improving power for discovery50–52. Due to extensive structure in the SiGN data12, 17 

induced by both study design and population ancestry, we adjusted the BOLT-LMM 18 

model for the top ten principal components (PCs) and sex, in addition to the genetic 19 

relationship matrix used as a random effect in the linear mixed model.20 PCs were 20 

calculated in EIGENSTRAT53 using the set of SNPs used in the genetic relationship 21 

(see next paragraph) but using a missingness threshold of 0.1%. 22 

 23 

To construct the genetic relationship matrix (GRM) implemented in BOLT-LMM, we 24 

used SNPs that were (i) common (MAF > 5%), (ii) with missingness < 5%, (iii) 25 

linkage disequilibrium (LD) pruned at an r2 threshold of 0.2, (iv) on the autosomal 26 

chromosomes only, (v) and not in stratified areas of the genome (i.e., not in the 27 

major histocompatibility complex (MHC), the inversions on chromosomes 8 and 17, 28 

or in the lactase (LCT) locus on chromosome 2; Supplementary Information). 29 

After association testing, we additionally removed SNPs with imputation quality 30 

(info score) < 0.8, due to excess inflation of the test statistic in those SNPs 31 

(Supplementary Figure 1). 32 
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Heritability calculations in ischemic stroke subtypes 1 

 2 

To assess the aggregate genetic contributions of common variants to disease 3 

susceptibility, we calculated additive SNP-based heritability (��
2 ) estimates for 4 

ischemic stroke, within ischemic stroke subtypes, and for atrial fibrillation using 5 

restricted maximum likelihood as implemented in Genome-wide Complex Trait 6 

Analysis (GCTA)24. To construct the genetic relationship matrix (GRM) to use in 7 

heritability analyses, we first identified the set of SNPs with imputation quality > 8 

0.8 and MAF > 1%. More than 5.5M SNPs passed these QC criteria, so we randomly 9 

selected 20% of the data (~1.1M SNPs) for computational efficiency in calculating 10 

the GRM. We then further identified SNPs outside the MHC and LCT regions, outside 11 

the inversions on chromosomes 8 and 17, and LD pruned (r2 = 0.2). These filtering 12 

steps resulted in ~250,000 SNPs available to compute the GRM. We used Plink 13 

1.954,55 to convert imputed dosages to best-guess genotypes and then compute the 14 

GRM (Supplementary Information). 15 

 16 

We computed heritability estimates in BOLT-LMM20 using BOLT-REML. We adjusted 17 

all heritability analyses for ten PCs and sex. To check the robustness of the 18 

heritability calculations to the SNPs included in the GRM, we calculated heritability 19 

using the GRM described above, as well as three additional GRMs: (i) using the 20 

~1.1M SNPs with imputation quality > 0.8 and MAF > 1% (and without LD 21 

pruning); (ii) using the SNPs that were genotyped across all study strata (~155,000 22 

SNPs); and (iii) the set of genotyped SNPs with the MHC, LCT locus, inversions on 23 

chromosomes 8 and 17 removed, and LD pruned at r2 = 0.2. Additionally, we 24 

computed heritability in GCTA24 using the same GRMs and assuming a trait 25 

prevalence of 1%. We compared the results to the BOLT-based ��
2  estimates 26 

(Supplementary Table 3 and Supplementary Figures 2-3). As genome-wide 27 

heritability estimates need a large number of SNPs to be accurate, we report in the 28 

paper all estimates using a GRM containing imputed, pruned SNPs. Estimates 29 

resulting from all GRMs are presented in the Supplementary Information. 30 

 31 

 32 
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Genetic correlation between atrial fibrillation and ischemic stroke subtypes 1 

 2 

Due to small case sample sizes, we were unable to evaluate trait correlation 3 

through commonly-used methods. Instead, we used summary-level data from the 4 

latest Atrial Fibrillation Genetics (AFGen) Consortium meta-analysis of atrial 5 

fibrillation5 to calculate a z-score for each SNP in that GWAS. Additionally, we 6 

calculated a z-score for each SNP in a GWAS of each stroke subtype in SiGN as well 7 

as in the GWAS of atrial fibrillation we performed in the SiGN data. Finally, as a null 8 

comparator, we downloaded SNP z-scores from a GWAS of educational attainment26 9 

available through LDHub (http://ldsc.broadinstitute.org/, accessed 11-1-2017). We 10 

aligned z-score signs based on the risk allele reported in each study. SNPs with an 11 

allele frequency difference >5% between AFGen and SiGN (all stroke analysis) were 12 

removed from the AFGen data (25,784 SNPs); similarly, SNPs with an allele 13 

frequency difference >5% between the educational attainment GWAS and SiGN (all 14 

stroke) were also removed (27,866 SNPs). We calculated Pearson’s r between z-15 

scores from two traits to evaluate correlation. 16 

 17 

We also evaluated correlation between the phenotypic data and provide this in the 18 

Supplementary Information. 19 

 20 

Constructing an atrial fibrillation genetic risk score 21 

 22 

To construct an atrial fibrillation genetic risk score (GRS), we used SNPs from a 23 

previously-derived atrial fibrillation GRS56. Briefly, the GRS was derived using 24 

results from a recent GWAS of atrial fibrillation, comprised of 17,931 cases and 25 

115,142 referents5 and testing various sets of SNPs based on their p-value in the 26 

GWAS (varying from p < 5 x 10-8 to p < 0.001) and using varied linkage 27 

disequilibrium thresholds (0.1 - 0.9).56 These sets of SNPs were used to generate 28 

various GRSs, which were then independently tested for association to atrial 29 

fibrillation in an independent sample from the UK Biobank; the best-performing 30 

GRS (defined as the GRS with the lowest Akaike’s Information Criterion) comprised 31 

1,168 SNPs with p < 1 x 10-4 in the atrial fibrillation GWAS and LD pruned at an r2 32 
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threshold of 0.5.56 Of these 1,168 SNPs, we identified 934 SNPs in the SiGN dataset 1 

with imputation info > 0.8 and MAF > 1%. We used these 934 SNPs to construct 2 

the atrial fibrillation GRS in the SiGN dataset by weighting the imputed number of 3 

risk-increasing alleles carried by an individual at a given SNP (0-2 risk-increasing 4 

alleles) and then weighting the dosage by the effect of the allele, as determined by 5 

the most recent GWAS5. We computed the final GRS for each individual by 6 

summing across all of the weighted genotypes. 7 

 8 

Testing an atrial fibrillation genetic risk score in ischemic stroke subtypes 9 

 10 

To test the association between the atrial fibrillation GRS and ischemic stroke 11 

subtypes, we performed a logistic regression implemented in R. Phenotypes were 12 

coded as 0 (unaffected) or 1 (affected), and we included sex and the top 10 PCs as 13 

additional covariates. We also optionally adjusted the association tests for the 14 

following clinical covariates: age, diabetes mellitus status, cardiovascular disease 15 

status, smoking status (current smoker, former smoker, or never smoked), and 16 

hypertension status. To ensure that our analyses of the GRS were robust, we 17 

additionally tested the GRS in the subset of European-ancestry samples only 18 

(Supplementary Information). 19 

 20 

To determine the variance explained by the atrial fibrillation GRS in cardioembolic 21 

stroke, we constructed a model in BOLT-LMM that consisted of two variance 22 

components: (1) a variance component made up of SNPs for the genetic 23 

relationship matrix, and (2) a variance component made up of SNPs from the GRS. 24 

After computing the estimated variance explained for each component in BOLT-25 

LMM, we converted the estimate to the liability score (Supplementary 26 

Information).  27 
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