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ABSTRACT	(250	words)	

Background		

Lyme	disease	(LD)	is	an	epidemic,	tick-borne	illness	with	approximately	329,000	incidences	
diagnosed	each	year	in	United	States.	Long-term	use	of	antibiotics	is	associated	with	serious	
complications,	including	post-treatment	Lyme	disease	syndrome	(PTLDS).	The	landscape	of	
comorbidities	and	health	trajectories	associated	with	LD	and	associated	treatments	is	not	fully	
understood.	Consequently,	there	is	an	urgent	need	to	improve	clinical	management	of	LD	
based	on	a	more	precise	understanding	of	disease	and	patient	stratification.		

Methods		

We	used	a	precision	medicine	machine-learning	approach	based	on	high-dimensional	electronic	
medical	records	(EMRs)	to	characterize	the	heterogeneous	comorbidities	in	a	LD	population	
and	develop	systematic	predictive	models	for	identifying	medications	that	influence	the	risk	of	
subsequent	comorbidities.		

Findings		

We	identified	3,	16,	and	17	comorbidities	at	broad	disease	categories	associated	with	LD	within	
2,	5,	and	10	years	of	diagnosis,	respectively.	At	higher	resolution	of	ICD-9	levels,	we	pinpointed	
specific	co-morbid	diseases	on	a	timescale	that	matched	the	symptoms	associated	with	PTLDS.	
We	identified	7,	30,	and	35	medications	that	influenced	the	risks	of	the	reported	comorbidities	
within	2,	5,	and	10	years,	respectively.	These	medications	included	six	previously	associated	
with	the	identified	comorbidities	and	29	new	findings.	For	instance,	the	first-line	antibiotic	
doxycycline	exhibited	a	consistently	protective	effect	for	typical	symptoms	of	LD,	including	
‘backache	Not	Otherwise	Specified	(NOS)’	and	‘chronic	rhinitis’,	but	consistently	increased	the	
risk	of	‘cataract	NOS’,	‘tear	film	insufficiency	NOS’,	and	‘nocturia’.		

Interpretation		

Our	approach	and	findings	suggest	new	hypotheses	for	precision	medicine	treatments	regimens	
and	drug	repurposing	opportunities	tailored	to	the	phenotypic	profiles	of	LD	patients.	
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INTRODUCTION	
	 Lyme	disease	(LD)	is	a	vector-borne,	infectious	disease	caused	by	the	bacterium	Borrelia	
burgdorferi	that	is	transmitted	to	humans	through	tick	bites.	According	to	the	US	Centers	for	
Disease	Control	and	Prevention	(CDC),	around	329,000	LD	cases	occur	annually	and	it	becomes	
a	major	US	public	health	problem	that	causes	substantial	use	of	health	care	resources.	LD	is	
most	prevalent	in	the	Northeast	and	upper	Midwest,	and	95%	of	all	confirmed	cases	in	2015	
were	reported	in	14	states	1.	The	symptomology	of	LD	is	heterogeneous,	although	some	general	
patterns	have	emerged.	The	first	manifestation	of	LD	is	often	an	expanding	annular	lesion,	
called	erythema	migrans,	near	the	bite	location,	but	this	sign	is	present	in	only	70–80%	of	
patients	2.	The	length	of	time	for	the	rash	to	occur,	along	with	the	characteristics	of	the	rash	
(e.g.,	composition	and	size)	can	also	vary	3.	Other	clinical	features	that	often	arise,	singly	or	in	
combination,	include	fever,	pain,	arthritis,	myopericarditis,	neurological	symptoms	(e.g.,	facial	
nerve	palsy),	and	satellite	rashes.	One	explanation	for	this	variability	is	that	the	genotype	of	the	
tick	itself	might	affect	aspects	of	pathogenesis,	such	as	the	probability	of	hematogenous	
dissemination	4,5.	The	neurological	manifestations	in	LD,	reported	in	3–12%	of	patients,	are	of	
greatest	concern	6.	These	phenomena,	collectively	called	neuroborreliosis,	are	often	associated	
with	intense	pain	that	can	manifest	either	soon	after	infection	or	much	later,	from	months	to	
years	afterward.		
	 Accurate	and	precise	diagnoses	of	LD	present	several	challenges.	Typically,	laboratory	
testing	of	LD	follows	identification	of	cutaneous	manifestations	from	visual	inspection	but	these	
manifestations	are	not	always	present.	Current	guidelines	recommend	serologic	testing,	a	two-
phase	process	consisting	of	an	enzyme	immunoassay	within	30	days	of	symptom	onset,	
followed	by	Western	blot	after	30	days	from	symptom	occurs	7,8	if	the	early	test	is	active.	Even	
together,	this	diagnostic	strategy	has	poor	sensitivity,	particularly	during	the	acute	phase,	with	
false-negative	rates	of	up	to	50%	9.	Other	laboratory	methods	are	specific	for	particular	
manifestations,	e.g.,	testing	of	CSF	for	central	nervous	system	involvement.	Recent	work	has	
shown	that	incorporation	of	data	from	various	wearable	devices	can	detect	early	signs	of	LD	
and	associated	inflammatory	responses.	For	example,	variations	in	peripheral	capillary	oxygen	
saturation	(SpO2),	a	marker	associated	with	physiological	macro-phenotypes	such	as	fatigue,	
can	be	measured	by	portable	biosensors	to	facilitate	more	accurate	and	rapid	LD	diagnosis	from	
variations	in	these	measurements	and	could	be	economically	feasible	for	widespread	use	in	the	
future.	Currently,	however,	clinicians	still	have	to	rely	on	traditional	measures	to	diagnose	
patients10.	Furthermore,	comorbid	conditions	can	interfere	with	both	diagnosis	and	treatment.		
For	instance,	other	infections	can	be	concurrently	transmitted	with	LD	11,	making	differential	
diagnosis	even	more	difficult	and	sometimes	requiring	specialized,	alternative	treatment	
strategies.	Many	studies	have	attempted	to	develop	methods	for	differentiating	LD	from	other	
similar	syndromes,	e.g.,	septic	arthritis	vs.	LD	of	the	knee	in	children	12.	
	 Following	successful	diagnosis,	LD	is	most	commonly	treated	with	antibiotics	such	as	
doxycycline,	amoxicillin,	cefuroxime	axetil,	and	ceftriaxone.	Although	these	medications	have	
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high	cure	rates	(~90%)	13,	they	are	associated	with	serious	complications	and	adverse	events,	
especially	under	prolonged	use	14,15	3,16.	Notably	in	this	regard,	one	study	showed	that	certain	
first-line	treatments,	specifically	intravenous	ceftriaxone	followed	by	doxycycline	for	chronic	LD	
patients	were	not	effective	compared	to	placebo	forcing	discontinuation	of	the	trial	17.	Another	
study	reported	that	repeated	IV	ceftriaxone	treatment	for	Lyme	encephalopathy	resulted	in	
only	minor	cognitive	improvements,	with	high	rates	of	relapse	of	cognitive	symptoms	18.	These	
findings	suggest	that	unknown	factors	are	responsible	for	the	high	variability	of	treatment	
outcomes	for	patients	with	LD.		Additionally,	up	to	20%	of	treated	patients	develop	post-
treatment	Lyme	disease	syndrome	(PTLDS),	in	which	lingering	symptoms	such	as	fatigue,	pain,	
or	joint	and	muscle	aches	last	for	months	or	even	years.	The	causes	and	frequencies	of	these	
symptoms	remain	unclear,	and	the	issue	is	further	confounded	by	the	presence	of	concurrent	
diseases.	
	 Several	recent	studies	reveal	the	uncharacterized	complexity	of	disease	course	and	
treatment	response	in	LD.	One	study	found	certain	first-line	treatments,	specifically	intravenous	
ceftriaxone	followed	by	doxyclycline,	for	chronic	LD	patients	were	not	effective	compared	to	
placebo	and	were	forced	to	discontinue	their	study17.	Another	study	assessed	the	effects	of	
repeated	IV	ceftriaxone	treatment	for	Lyme	encephalopathy	and	found	only	minor	cognitive	
improvements	with	high	rates	of	relapse	in	cognition	issues	18.	Therefore,	it	seems	that	there	
are	other	factors	at	play	that	may	explain	the	high	variability	of	treatment	outcomes	for	
patients	with	LD.	It	is	difficult	to	disentangle	to	what	extent	given	treatment	responses	and	
disease	sequelae	are	due	to	differences	in	individual	immune	responses,	patient	characteristics,	
disease	burden,	and	treatment	timing,	or	to	the	medications	themselves.	Indeed,	it	is	very	likely	
that	response	and	outcome	depend	on	a	complex	interplay	between	these	factors,	making	
clinicians'	jobs	extremely	difficult.	To	address	the	diverse	symptomology,	imperfect	diagnostic	
strategies,	and	variable	treatment	outcomes	of	LD,	comprehensive	study	designs	are	required.	
For	example,	an	investigation	of	risk	factors	for	LD	infection,	such	as	behavioral	and	
environmental	risk	factors,	revealed	that	LD–positive	serology	is	significantly	associated	with	
clinical	and	demographic	features	such	as	previous	self-reported	LD	diagnosis	and	age,	
behavioral	factors	such	as	wearing	protective	clothing,	and	geographic/environmental	factors	
such	as	shrub	edge	density	in	property	location	19.	Another	study	evaluated	the	risks	to	
individuals	based	on	geographical	features	such	as	the	suitability	of	the	local	habitat	for	ticks	20.	
	 Although	the	aforementioned	studies	have	provided	a	great	deal	of	useful	information,	
the	variability	in	global	risk	profiles	for	LD	pathogenesis	remains	incompletely	understood,	and	
there	is	an	unmet	need	for	personalized	treatment	recommendations	that	take	into	account	
individual	characteristics	such	as	demographics	and	disease	burden.	Electronic	Medical	Records	
(EMRs)	from	hospitals	contain	a	wealth	of	longitudinal,	patient-level	data	encompassing	prior	
history	of	prescriptions	and	disease	diagnoses,	along	with	clinical	outcomes,	that	can	be	
exploited	to	investigate	these	issues	in	a	data-driven	fashion.	To	date	there	has	been	no	
systematic	analysis	of	LD	using	EMR	data,	particularly	from	a	hospital	within	a	high-risk	state.	In	
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this	study,	we	leverage	an	EMR	data	set	representing	over	five	million	unique	patients	of	
diverse	racial	and	ethnic	backgrounds	collected	from	a	large	academic	medical	center	in	New	
York	City.	Although	not	itself	located	adjacent	to	a	wooded	area,	MSH	caters	to	patients	from	
all	over	the	state.	New	York	is	one	of	the	aforementioned	14	states	reporting	the	vast	majority	
of	LD	cases,	and	in	2017	had	an	incidence	rate	of	16.4	per	100,000	individuals	(CDC),	one	of	the	
highest	in	the	country.	
	 We	hypothesized	that	EMR	data	from	MSH	could	provide	a	rich	framework	for	studying	
the	heterogeneity	of	Lyme	manifestation,	as	well	as	the	quality	and	efficacy	of	treatment.	Using	
various	state-of-the-art	statistical	and	machine	learning	methods,	we	sought	to	identify	
patterns	of	clinical	outcomes	in	order	to	help	physicians	develop	treatment	strategies	tailored	
to	patients'	disease	profiles.	Specifically,	we	investigated	how	demographic	and	clinical	factors	
affect	LD	manifestations	and	clinical	outcomes	in	the	context	of	various	treatments.	Our	main	
goals	were	to	identify	comorbidities	associated	with	LD	and	develop	a	systematic	predictive	
model	for	identifying	medications	that	influence	the	risk	of	these	conditions.	As	an	alternative	
to	one-size-fits-all	strategies	for	treating	LD,	our	methodology	facilitates	directing	treatment	
recommendations	and	identifying	possible	repurposing	opportunities	tailored	to	the	
phenotypic	profiles	of	Lyme	patients.	Our	study	is	the	first	data-driven	effort	to	prioritize	
medications	for	LD	based	on	an	individual’s	phenotype	profile.	We	identified	Lyme-associated	
comorbidities	at	the	level	of	broad	disease	categories,	pinpointed	specific	co-morbid	diseases	
associated	with	LD	over	time,	and	used	machine	learning	to	predict	medications	that	influence	
the	risks	of	these	comorbidities.		
	 We	expect	that	the	novel	framework	and	findings	from	this	study	can	support	current	
and	future	efforts	to	develop	personalized	treatment	strategies	for	patients	with	LD,	including	
efforts	to	provide	physicians	with	a	broader	evidentiary	foundation	on	which	to	base	their	
treatment	recommendations	(e.g.,	selection	of	antibiotics)	based	on	individual	patients'	disease	
risk	profiles.	Additionally,	more	precise	knowledge	of	predicted	adverse	events	would	facilitate	
improvements	in	monitoring	and	management	strategies.		
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METHODS		
Patient	population	and	standardization	of	clinical	terminology		
Patient	cohort		
We	utilized	Electronic	Medical	Records	(EMRs)	from	the	Mount	Sinai	Data	Warehouse	(MSDW),	
the	largest	comprehensive	EMR	system	in	New	York	City,	which	includes	data	from	a	racially	
and	ethnically	diverse	patient	base.	Since	2000,	more	than	4.5	million	unique	patient	records	
have	been	documented	in	this	system.	Disease	diagnoses	are	encoded	as	International	
Classification	of	Diseases,	9th	Revision	(ICD-9)	billing	codes,	which	have	been	used	extensively	
in	EMR-related	analyses	21.	In	this	study,	we	retrieved	records	from	all	patients	diagnosed	with	
Lyme	disease	(LD)	with	the	ICD-9	code	088.81	(n=2,134).	We	restricted	the	data	to	records	
occurring	between	2000	and	2015,	allowing	for	up	to	15-year	follow-up.	In	accordance	with	
Health	Insurance	Portability	and	Accountability	(HIPAA)	and	Protected	Health	Information	(PHI)	
guidelines,	the	ages	of	these	patients	were	censored	at	18	and	90.	Finally,	we	only	kept	data	
from	patients	with	defined	age,	self-reported	sex,	and	self-reported	race/ethnicity	(referred	to	
as	“race”	in	this	manuscript).	For	the	total	of	1,767	Lyme	patients,	there	were	930	females	
(52.6%)	and	837	males	(47.4%),	with	an	average	age	of	47.8	±	19.7.	The	racial	breakdown	of	the	
cohort	is	as	follows:	1,201	Caucasian	(70.0%),	49	African-American	(2.8%),	34	Hispanic/Latino	
(1.9%),	and	483	Others	(27.3%).	For	these	patients,	we	also	retrieved	all	other	available	clinical	
variables	from	EMR,	including	prescriptions	and	other	disease	diagnoses.	In	addition,	we	
retrieved	IgM/IgG	lab	measurements	pertinent	to	LD.	IgM	or	IgG	Western	blot	labs	were	
available	for	28	patients	after	or	at	the	time	of	diagnosis	(45	days	window	of	diagnosis).	Of	
those,	89%	patients	(25/28)	were	reported	as	either	IgM	or	IgG	Western	blot–positive,	
confirming	true	positivity	for	Lyme.	The	remaining	11%	of	patients	(3/28)	were	reported	as	IgM-
negative,	but	all	were	positive	for	p23,	an	antigen	specific	to	Lyme.	In	total,	we	compiled	3,936	
diseases	diagnosis	and	5,723	prescriptions.	We	provide	a	schematic	of	our	study	design,	
approach,	and	patient	selection	criteria	in	Figure	1.	
	
Clinical	sources	and	term	standardization	
We	categorized	diseases	using	the	Clinical	Classifications	Software	(CCS)	for	ICD-9	diagnosis	
codes,	developed	by	AHRQ	22,	which	aggregates	and	characterizes	more	than	14,000	ICD-9	
codes	into	broader	coherent	disease	categories.	This	strategy	helps	to	avoid	sample	size	
limitation	as	a	result	of	using	ICD-9	codes	alone.	For	categorization,	we	used	the	‘Single-Level	
Diagnosis’	(CCS-single)	level,	which	has	a	total	of	283	different	categories.	We	standardized	
medication	data	by	mapping	to	the	RxNorm	ontology	23.	Specifically,	we	mapped	these	terms	to	
ingredient	codes,	yielding	793	normalized	medications.	To	ensure	the	robustness	of	our	
analyses,	we	required	a	sample	size	of	>	20	patients	for	calculations	of	the	significance	of	
disease	directionality	and	disease–medication	association.		
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Machine	learning	methods	and	analysis	
	
Disease	pair	temporal	directionality	
For	all	patients	with	LD,	we	first	assessed	disease-pair	connectivity	patterns	for	comorbid	
diseases.	Specifically,	we	determined	whether	the	members	of	each	pair	exhibited	a	significant	
pattern	in	their	temporal	order,	e.g.,	whether	one	preceded	the	other	more	often	than	
expected	by	chance.		We	performed	a	cumulative	binomial	probability	test	to	assess	the	
temporal	ordering	of	the	associations	between	Lyme	and	all	other	diseases,	assuming	a	50%	
probability	of	either	to	occur	before	the	other.	We	performed	the	following	analysis	on	both	
broad	and	narrow	disease	categories.	At	the	broader	level,	we	analyzed	representative	CCS-
single-level	categories	because	this	strategy	could	enhance	signals	that	might	be	lost	due	to	
small	sample	size	at	the	ICD-9	level.	Second,	we	performed	the	analysis	using	standard	ICD-9	
codes	in	order	to	detect	associations	at	a	higher	resolution	for	certain	codes	that	may	be	more	
prevalent.	Because	these	comorbid	conditions	can	be	either	chronic	or	acute,	we	performed	
several	iterations	of	this	analysis	over	different	time	windows,	specifically	2,	5,	and	10	years.	
For	each	time	window,	we	restricted	collection	of	information	for	the	comorbid	diseases	in	
both	temporal	directions,	relative	to	the	date	of	first	Lyme	diagnosis.	For	the	2-year	window,	
for	example,	we	only	collected	disease	data	for	each	patient	2	years	before	and	2	years	after	
the	date	of	Lyme	diagnosis.	For	the	CCS-single-	and	ICD-9–level	analyses,	we	performed	275	
and	3,639	tests	for	each	window,	respectively.	Last,	to	determine	whether	disease	pairs	with	
significant	temporal	directionality	were	also	significantly	comorbid,	we	performed	a	logistic	
regression	for	each	pair	controlling	for	age,	sex,	and	self-reported	race.	The	outcome	variable	in	
this	model	was	the	disease	that	was	shown	to	occur	after	the	other	in	the	temporal	analysis	
(significant	in	the	binomial	assessment).		
	
Definition	of	outcomes	and	covariates	in	the	machine-learning	model	
To	discover	risk	factors	or	new	therapeutic	options	for	LD	sequelae,	we	focused	on	the	new	
onset	of	disease	comorbidities	more	than	7	days	after	the	diagnosis	of	LD.	Of	the	1,767	LD	
patients	in	the	overall	cohort,	we	systematically	assessed	the	comorbidities	and	medication	
associations	for	1,196	patients	who	were	followed	up	for	more	than	7	days	and	had	at	least	one	
prescription	record	in	MSH’s	EMR	system.	Like	our	disease-pair	temporal	directionality	analysis,	
we	set	time	windows	of	2,	5,	and	10	years.	For	each	patient,	we	collected	the	diseases	
diagnosed	within	2,	5,	or	10	years	after	their	first	Lyme	diagnosis	date.	We	also	retrieved	
medications	prescribed	within	1	year	prior	to	and	2,	5,	or	10	years	after	the	first	Lyme	
diagnosis.	Outcome	comorbidities	were	defined	by	ICD-9	code	and	categorized	using	CCS-
single-level	Diagnosis	terms.	
	
Feature	selection	
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We	considered	many	disease	variables,	coded	by	CCS-single-level	categories,	and	medication	
variables,	which	were	mapped	to	RxNorm	ingredient	codes.	Accordingly,	we	adopted	a	feature	
selection	method,	penalized	logistic	regression	with	the	adaptive	LASSO	(Eq.	1),	to	identify	
variables	of	the	highest	relevance	that	associated	with	ensuing	comorbidities	following	LD	
diagnosis.	The	adaptive	LASSO	is	an	extension	of	the	traditional	LASSO	24	that	uses	coefficient-
specific	weights	25.	The	adaptive	LASSO	estimator	selects	the	zero	coefficients	of	the	true	
parameters	are	estimated	as	zero	with	probability	tending	to	one,	which	is	called	sparsity	
property.	And	the	non-zero	components	are	estimated	as	if	the	true	sparse	model	were	known	
a	prior,	which	is	asymptotically	normal	26.	Let	ℒ!(𝛽;𝑌,𝑋)	be	the	negative	log-likelihood	
parametrized	by	β	for	a	sample	of	size	n.	The	adaptive	LASSO	estimator	is	defined	as:		
	
𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛!  {ℒ! 𝛽;𝑌,𝑋 + 𝜆! 𝜔! 𝛽!!

!!! } 																																												(1)	
	
where	𝜔! = |𝛽!|!!	is	a	coefficient	specific	weights	vector,	and	𝜆!	is	a	regularization	parameter.	
We	set	the	positive	constant	γ	as	1	according	to	Zou	et	al.	25,	and	obtained	𝛽	by	the	maximum	
likelihood	estimate	of	Ridge	regression.	The	𝜆!value	for	minimum	AUC	was	chosen	by	10-fold	
cross	validation.	We	used	the	R	package	glmnet	27	for	these	penalized	regressions.	
	
	
Logistic	regression	model	
We	used	odds	ratio	(OR)	from	logistic	regression	(Eq.	2)	to	assess	the	risk	of	future	comorbidity	
progression	on	each	medication	taken	(i.e.	either	increased	risk	or	protective	effect).	We	
analyzed	the	pairs	of	outcome	disease	comorbidity	and	the	medications	that	were	selected	by	
the	adaptive	LASSO.	In	this	model,	we	adjusted	for	age,	sex,	self-reported	race,	and	the	follow-
up	time	frame.	
	

𝑙𝑜𝑔 !
!!!

= 𝛽! + 𝛽!𝑚𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝛽!𝑎𝑔𝑒 + 𝛽!𝑔𝑒𝑛𝑑𝑒𝑟 + 𝛽!𝑟𝑎𝑐𝑒 + 𝛽!𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑		(2)	

	
where	P	is	the	probability	of	a	disease,	medication	is	a	binary	variable,	age	is	a	continuous	
parameter, 	gender	is	a	binary	variable	(Female/Male);	race	is	a	categorical	variable	(Caucasian,	
African	American,	Hispanic/Latino,	or	Other),	and	observed	period	is	a	continuous	parameter.	𝛽	
coefficients	for	each	covariate	represent	the	effect	size	when	controlling	for	all	others.	
	
Propensity	score	matching	
To	control	for	potential	confounding	factors	due	to	imbalances	of	clinical	characteristics,	not	
limited	to	age	and	gender,	we	analyzed	the	temporal	effects	of	medications	after	the	
propensity	score	matching	to	select	an	appropriate	control	cohort	for	the	targeted	case	cohort	
28.	Thus,	we	created	comparable	cohorts,	consisting	of	groups	treated	or	untreated	with	a	
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targeted	medication,	based	on	a	set	of	covariates	at	the	baseline	time	point,	i.e.,	time	zero	for	
each	patient.	The	baseline	time	point	was	defined	as	the	first	prescription	day	of	the	targeted	
medication	or	7	days	after	LD	diagnosis,	whichever	was	later,	because	we	observed	disease	
comorbidities	for	more	than	7	days	after	LD	diagnosis.	
	
The	propensity	scores	of	targeted	prescriptions	were	predicted	by	a	logistic	regression	model,	
including	other	significant	medications	and	disease	confounders	selected	by	the	adaptive	
LASSO	with	a	10-year	time	window,	with	patient	demographics	as	covariates.	Each	patient	
prescribed	a	given	medication	was	matched	to	a	corresponding	comparison	patient	(1:1	ratio)	
by	nearest-neighbor	matching.	For	instance,	we	analyzed	association	between	doxycycline	and	
‘backache	Not	Otherwise	Specified	(NOS)'	(ICD-9	code:	724.5),	‘chronic	rhinitis'	(472.0),	‘tear	
film	insufficiency	(insuffic)	NOS	(375.15)’,	and	‘cataract	NOS	(366.9)’,	and	between	amoxicillin	
and	‘acute	upper	respiratory	infection	(URI)	NOS	(465.9)’.	A	total	of	328,	330,	358,	370,	and	115	
subjects	were	selected	for	each	medication-comorbidity	pair	in	the	propensity	score-matched	
treated/untreated	group.	The	R	package	MatchIt	29	was	used	for	propensity	score	matching.	
	
Survival	analysis	
We	generated	survival	curves	by	the	Kaplan–Meier	method	and	examined	differences	in	
survival	among	subgroups	by	the	log-rank	test,	with	propensity	score	matching	of	cases	and	
controls.	We	calculated	hazard	ratios	using	Cox	proportional	hazards	models:	
	
ℎ 𝑡 = ℎ! 𝑡 exp (𝛽!𝑚𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛)																	(3)	
	
where	ℎ 𝑡 	is	the	expected	hazard	at	time	t,	ℎ! 𝑡 	is	the	baseline	hazard,	and	medication	is	a	
binary	variable.	We	verified	the	proportional	hazards	assumption	by	confirming	that	Schoenfeld	
residuals	are	independent	of	time	(Schoenfeld	test	p	>	0.1).	We	used	the	R	packages	survival	
and	survminer	for	the	survival	analysis.	
	
Role	of	the	funding	source	
The	funder	of	the	study	had	no	role	in	study	design,	data	collection,	data	analysis,	data	
interpretation,	or	writing	of	the	manuscript.	The	corresponding	authors	had	full	access	to	all	the	
data	in	this	study	and	had	final	responsibility	for	the	decision	to	submit	for	publication.	
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RESULTS		
Identified	comorbidities	associated	with	Lyme	disease,	grouped	as	broader	disease	categories		
We	assessed	the	temporal	ordering	of	the	associations	between	Lyme	disease	(LD)	and	other	
diseases;	specifically,	we	sought	to	determine	whether	a	given	comorbidity	tended	to	occur	
before	or	after	diagnosis	of	LD.	We	restricted	our	analysis	to	diseases	with	reported	dates	and	
only	included	the	first	reported	encounter	of	a	diagnosis,	resulting	in	41,713	disease-disease	
pairs,	and	analyzed	their	temporal	ordering	at	the	patient	level.	Specifically,	for	each	comorbid	
disease	pair	(i.e.	LD	and	another	disease	category),	we	tabulated	the	number	of	patients	with	
both	diseases	and	assessed	which	disease	in	the	pair	occurred	first,	or	if	they	occurred	at	the	
same	time,	based	on	the	visit	dates.	Overall,	out	of	the	275	Lyme-comorbidity	combinations	for	
all	time	windows,	21	were	nominally	significant,	with	5	diseases	occurring	prior	to	LD	and	16	
occurring	after	(p	<	0.1;	Table	1a).	For	the	2-year	window,	we	identified	three	disease	
categories	significantly	associated	with	LD,	with	two	prior	and	one	after;	for	the	5-year	window,	
16	categories,	with	four	prior	and	12	after;	and	for	the	10-year	window,	17	categories	with	five	
prior	and	12	after	(Table	1a).	We	reconfirmed	some	previously	reported	Lyme	comorbidities,	
including	‘nutritional	deficiencies’	[p=0.069,	probability	(prob)	=0.54	at	5	years;	p=0.035,	
prob=0.55	at	10	years]	30,31,	‘vision	defect’	(p=0.099,	prob=0.57	at	5	years;	p=0.076,	prob=0.57	
at	10	years)	32 33,	and	‘disorder	of	lipid	metabolism’	(p=0.036,	prob=0.54	at	5	years;	p=0.076,	
prob=0.57	at	10	years) 34.	Additionally,	we	identified	several	disease	comorbidities	not	
previously	reported,	including	‘cataract’	(p=0.0037,	prob=0.65	at	5	years;	p=0.033,	prob=0.64	at	
10	years),	‘acute	bronchitis’	(p=0.094,	prob=0.62	at	2	years;	p=0.022,	prob=0.64	at	5	years;	
p=0.034,	prob=0.63	at	10	years),	and	‘nonmalignant	breast	conditions’	(p=0.057,	prob=0.58	at	5	
years;	p=0.066,	prob=0.58	at	10	years).	A	complete	list	of	disease	categories	is	shown	in	Table	
1a.	
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Time	

(year)	 Direction	 Disease	(CCS)	

Lyme	

First	

Disease	

First	

Same	

Time	 P	value	 Prob.	

2	 -	 Coronary	atherosclerosis	and	other	heart	disease	 18	 58	 17	 1.10E-02	 0.62	

2	 -	 Administrative/social	admission	 41	 66	 9	 8.17E-02	 0.57	

2	 +	 Acute	bronchitis	 23	 11	 3	 9.39E-02	 0.62	

5	 -	 HIV	infection	 2	 21	 9	 5.51E-02	 0.66	

5	 -	 Coronary	atherosclerosis	and	other	heart	disease	 38	 80	 17	 1.92E-02	 0.59	

5	 -	 Administrative/social	admission	 55	 88	 9	 3.09E-02	 0.58	

5	 -	 Disorders	of	lipid	metabolism	 117	 269	 111	 3.63E-02	 0.54	

5	 +	 Open	wounds	of	extremities	 24	 6	 0	 7.15E-04	 0.8	

5	 +	 Open	wounds	of	head;	neck;	and	trunk	 19	 9	 0	 4.36E-02	 0.68	

5	 +	 Fracture	of	lower	limb	 16	 8	 0	 7.58E-02	 0.67	

5	 +	 Cataract	 57	 21	 10	 3.67E-03	 0.65	

5	 +	 Fracture	of	upper	limb	 18	 9	 1	 9.25E-02	 0.64	

5	 +	 Acute	bronchitis	 36	 17	 3	 2.20E-02	 0.64	

5	 +	 Anal	and	rectal	conditions	 26	 11	 5	 8.21E-02	 0.62	

5	 +	 Nonmalignant	breast	conditions	 60	 36	 7	 5.72E-02	 0.58	

5	 +	 Other	eye	disorders	 75	 41	 14	 4.76E-02	 0.58	

5	 +	 Neoplasms	of	unspecified	nature	or	uncertain	behavior	 60	 39	 6	 8.58E-02	 0.57	

5	 +	 Blindness	and	vision	defects	 58	 33	 11	 9.89E-02	 0.57	

5	 +	 Nutritional	deficiencies	 219	 141	 47	 6.85E-02	 0.54	

10	 -	 HIV	infection	 2	 25	 9	 1.44E-02	 0.69	

10	 -	 Coronary	atherosclerosis	and	other	heart	disease	 44	 91	 17	 9.18E-03	 0.6	

10	 -	 Administrative/social	admission	 61	 97	 9	 2.20E-02	 0.58	

10	 -	 Disorders	of	lipid	metabolism	 121	 301	 111	 1.59E-03	 0.56	

10	 -	 Essential	hypertension	 96	 271	 124	 1.20E-02	 0.55	

10	 +	 Open	wounds	of	extremities	 28	 7	 0	 2.54E-04	 0.8	

10	 +	 Maintenance	chemotherapy;	radiotherapy	 14	 5	 1	 5.77E-02	 0.7	

10	 +	 Cataract	 64	 26	 10	 3.32E-03	 0.64	

10	 +	 Occlusion	or	stenosis	of	precerebral	arteries	 22	 10	 3	 8.77E-02	 0.63	

10	 +	 Acute	bronchitis	 37	 19	 3	 3.37E-02	 0.63	

10	 +	 Poisoning	by	other	medications	and	drugs	 24	 7	 8	 9.98E-02	 0.62	

10	 +	 Anal	and	rectal	conditions	 29	 14	 5	 9.67E-02	 0.6	

10	 +	 Other	eye	disorders	 87	 43	 14	 7.69E-03	 0.6	

10	 +	 Nonmalignant	breast	conditions	 65	 41	 7	 6.60E-02	 0.58	

10	 +	 Blindness	and	vision	defects	 63	 36	 11	 7.62E-02	 0.57	

10	 +	

Inflammation;	infection	of	eye	(except	that	caused	by	tuberculosis	

or	sexually	transmitteddisease)	 78	 39	 20	 6.19E-02	 0.57	

10	 +	 Nutritional	deficiencies	 228	 143	 47	 3.51E-02	 0.55	
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Highlighted	specific	known	or	novel	diseases	associated	with	LD,	analyzed	at	higher	
resolution		
Although	the	CCS-single-level	categories	were	helpful	in	identifying	disease	groups	of	relevance	
from	a	broader	perspective,	we	also	performed	the	same	analysis	at	a	higher	granularity	(Table	
1b	and	S.	Table	1).	To	this	end,	using	the	ICD-9	codes,	we	sought	to	determine	which	specific	
diseases	drove	the	signal	and	whether	the	signal	still	persisted.	A	total	of	3,639	Lyme–
comorbidity	combinations	were	analyzed	using	the	ICD-9	codes.	At	the	2-year	window,	five	
pairs	were	nominally	significant	(p<0.1	due	to	the	relatively	small	sample	size,	N≥20	patients	for	
Lyme	first	onset),	with	four	prior	to	LD	and	one	after	(S.	Table	1).	For	the	5-year	window,	we	
found	53	significant	associations,	with	49	prior	to	LD	and	4	afterwards.	For	the	10-year	window,	
we	found	75	significant	associations,	with	67	prior	to	LD	diagnosis	and	8	after.	The	significance	
of	all	disease	categories	significantly	associated	with	LD	that	we	identified	in	the	previous	
analysis	persisted,	including	the	four	diseases	that	significantly	occurred	prior	to	LD:	‘pure	
hypercholesterolemia'	(p=0.080,	prob=0.54	at	10	years),	‘hyperlipidemia	NEC/NOS’	(p=0.090,	
prob=0.54	at	10	years),	‘hypertension	NOS'	(p=0.082,	prob=0.53	at	10	years),	and	‘coronary	
atherosclerosis	(athero)	NOS'	(p=0.022,	prob=0.61	at	5	years;	p=0.075,	prob=0.62	at	10	years).	
Nine	sequelae	diseases,	namely	‘vitamin	D	deficiency	NOS'	(p=0.014,	prob=0.56	at	5	years;	
p=0.0047,	prob=0.57	at	10	years),	‘cataract	NOS'	(p=0.041,	prob=0.62	at	5	years;	p=0.030,	
prob=0.62	at	10	years),	‘senile	nuclear	cataract'	(p=0.0013,	prob=0.85	at	10	years),	‘tear	film	
insufficiency	(insuffic)	NOS'	(p=0.033,	prob=0.67	at	10	years),	‘acute	bronchitis'	(p=0.015,	
prob=0.65	at	5	years;	p=0.017,	prob=0.65	at	10	years),	‘blepharitis	NOS'	(p=1.1E-7,	prob=0.92	at	
10	years),	‘unspecified	abnormal	mammogram'	(p=0.0083,	prob=0.70	at	5	years;	p=0.0027,	
prob=0.72	at	10	years),	‘HIV	positive	NOS'	(p=0.012,	prob=0.72	at	5	years;	p=0.0035,	prob=0.75	
at	10	years)’	and	‘routine	child	health	exam'	(p=3.2E-4,	prob=0.71	at	5	years;	p=8.8E-5,	
prob=0.72	at	10	years)	drove	the	signal	from	the	broad	disease	categories	(Table	1b).	
Additionally,	we	reported	LD	comorbidities	if	other	significant	ICD-9	codes	associated	with	LD	
with	a	list	of	comorbidities	are	not	widely	known,	including	‘insomnia	Not	Elsewhere	
Classifiable	(NEC)'	(p=0.042,	prob=0.59	at	5	years;	p=0.045,	prob=0.58	at	10	years),	‘obstructive	
sleep	apnea'	(p=0.085,	prob=0.60	at	5	years;	p=0.044,	prob=0.62	at	10	years),	‘cervicalgia'	
(p=0.073,	prob=0.59	at	5	years;	p=0.041,	prob=0.60	at	10	years),	and	‘dysuria'	(p=0.096,	
prob=0.59	at	5	years;	p=0.034,	prob=0.62	at	10	years).		
	 We	confirmed	that	the	large	majority	of	the	comorbidity	pairs	were	significantly	
associated	with	LD	with	concordant	directionality	by	adjusting	age,	gender,	and	race	by	logistic	
regression	(p<0.1).	We	provide	a	complete	list	of	ICD-9	level	disease	associations	that	passed	
our	significance	threshold	in	both	analyses	Supplemental	Table	1.	
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Medications	predicted	to	modulate	risk	of	subsequent	comorbidities	in	LD	patients,	analyzed	
as	broader	disease	categories	
To	investigate	how	various	prescribed	medications	influenced	the	risk	of	subsequent	disease	
pathogenesis,	we	focused	on	comorbidities	with	onset	after	the	first	diagnosis	of	LD.	Using	the	
adaptive	LASSO	methodology	and	a	logistic	regression	model,	we	investigated	all	medications	
prescribed	to	LD	patients	prior	to	the	comorbidities.	We	found	3,	12,	and	18	medications	
associated	with	disease	comorbidities,	classified	by	CCS-single-level	categories,	within	2,	5,	and	
10	years	after	Lyme	diagnosis,	respectively	(S.	Table	2,	Figure	2a,	Figure	2b).	Four	medication–
Lyme	comorbidity	associations	were	supported	by	published	studies	35-41,	and	we	confirmed	
that	these	medications	modulated	the	risks	of	Lyme	comorbidities,	including	fluticasone–
‘cataract’	(adjusted	OR=1.94,	p=0.072	at	5	years;	adjusted	OR=2.01,	p=0.033	at	10	years)	
hydrochlorothiazide–‘neoplasms	of	unspecified	nature	or	uncertain	behavior’	(adjusted	
OR=2.23,	p=0.031	at	5	years;	adjusted	OR=2.48,	p=0.0092	at	10	years),	metformin–‘nutritional	
deficiencies’	(adjusted	OR=2.05,	p=0.097	at	10	years),	and	esomeprazole–‘nutritional	
deficiencies’	(adjusted	OR=1.75,	p=0.093	at	10	years).	
Five	antibiotics,	doxycycline,	azithromycin,	levofloxacin,	clavulanate,	and	mupirocin,	and	one	
antiviral	drug,	valacyclovir,	were	predicted	to	modulate	the	risk	of	subsequent	comorbidities.	
Doxycycline,	a	first-line	antibiotic	that	was	the	most	prescribed	antibiotic	in	our	EMR	for	
patients	with	LD	(39%,	N=553),	was	associated	with	an	elevated	risk	of	eye	disorders,	including	
‘cataract’	(adjusted	OR=2.05,	p=0.092	at	2	years;	adjusted	OR=1.70,	p=0.067	at	10	years),	
‘blindness	and	vision	disorders’	(adjusted	OR=2.05,	p=0.016	at	the	5	years;	adjusted	OR=1.95,	
p=0.019	at	10	years),	and	‘other	eye	disorders’	(adjusted	OR=1.81,	p=0.024)	(Figure	2a).	
In	regard	to	‘nutritional	deficiencies',	eleven	medications	were	predicted	to	be	risk	factors	and	
three	to	be	protective.	Among	the	11	risk	factor	medications	were	two	antibiotics,	levofloxacin	
(adjusted	OR=2.26,	p=0.0093	at	5	years;	adjust	OR=2.77,	p=7.0E-4	at	10	years)	and	clavulanate	
(adjusted	OR=1.64,	p=0.094	at	10	years),	and	one	antiviral	prophylactic,	valacyclovir	(adjusted	
OR=	2.56,	p=0.014	at	5	years;	adjusted	OR=2.58,	p=0.011	at	10	years).	Additionally,	two	pain	
relievers,	diclofenac	and	hydrocodone,	and	one	anti-allergy	medication,	azelastine,	were	also	
risk	factors	for	‘nutritional	deficiencies'	(respectively:	OR=3.08,	p=0.0015	at	5	years/adjusted	
OR=3.02,	p=0.0014	at	10	years;	adjusted	OR=1.90,	p=0.034	at	10	years;	and	adjusted	OR=3.44,	
p=0.0037/adjusted	OR=2.95,	p=0.0094).	Interestingly,	we	could	identify	new	therapeutic	
options	for	the	LD	adjunctive	treatment.	Three	medications,	propofol,	docusate,	and	heparin,	
consistently	exhibited	a	protective	effect	against	‘nutritional	deficiencies’	at	5	and	10	years	
after	LD	(respectively:	adjusted	OR=0.32,	p=6.6E-4	at	5	years/adjusted	OR=0.43,	p=0.0044	at	10	
years;	adjusted	OR=0.37,	p=0.0039	at	5	years/adjusted	OR=0.46,	p=0.014	at	10	years;	and	
adjusted	OR=0.44,	p=0.024	at	5	years/adjusted	OR=0.41,	p=0.014	at	10	years)	(Figure	2).	In	
addition,	acetaminophen	exhibited	a	protective	effect	at	the	early	stage	(2	years	post-Lyme)	
with	adjusted	OR=0.44,	p=0.0069	(S.	Table	2).	
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Medications	predicted	to	modulate	risk	of	subsequent	comorbidities	in	LD	patients,	analyzed	
at	the	ICD-9	level	
In	the	higher-resolution	analysis	using	ICD-9	codes,	we	identified	7,	22,	and	31	medications	that	
were	significantly	associated	with	the	disease	comorbidities	at	2,	5,	and	10	years	post-Lyme	(S.	
Table	3,	Figure	3a	and	3b).	Among	these	were	previously	reported	risk	associations	42-45:	for	
instance,	steroid	prednisone	was	a	risk	for	‘pain	in	limb’	with	adjusted	OR=2.16,	p=0.030	at	5	
years/adjusted	OR=2.49,	p=0.0063	at	10	years,	and	ciprofloxacin	was	a	risk	for	‘joint	pain-
shoulder	(shlder)’	with	adjusted	OR=4.42,	p=8.9E-5	at	5	years/	adjusted	OR=4.39,	p=3.1E-5	at	
10	years.	In	addition,	five	of	the	side	effects	for	four	medications	were	reported	in	the	SIDER	
database	46,47.	Two	steroids,	fluticasone	and	mometasone,	and	one	pain	reliever,	hydrocodone,	
were	associated	with	increased	risk	for	‘acute	upper	respiratory	infection	(URI)	NOS’	in	
comparison	with	the	placebo	group	(S	table	3)	and	were	rediscovered	in	our	study	
(respectively:	adjusted	OR=2.92,	p=5.2E-5	at	5	years/adjusted	OR=3.44,	p=4.7E-7	at	10	years;	
adjusted	OR=2.86,	p=0.0028	at	10	years;	adjusted	OR=4.01,	p=4.1E-5	at	5	years/adjusted	
OR=4.45,	p=1.8E-6	at	10	years).	We	also	reconfirmed	the	risk	associations	between	fluticasone	
and	‘chronic	rhinitis’	(adjusted	OR=4.70,	p=1.4E-4	at	2	years/adjusted	OR=4.78,	p=6.5E-7	at	5	
years/adjusted	OR=4.86,	p=4.4E-8	at	10	years)	and	diclofenac	and	‘pain	in	limb’	(adjusted	
OR=3.43,	p=0.0011	at	10	years).		
	 Doxycycline	exhibited	a	consistently	protective	effect	against	typical	symptoms	of	LD,	
including	‘backache	NOS’	(adjusted	OR=0.44,	p=0.018	at	5	years/adjusted	OR=0.50,	p=0.035	at	
10	years)	and	‘chronic	rhinitis’	(adjusted	OR=0.48,	p=0.036	at	5	years/adjusted	OR=0.48,	
p=0.024	at	10	years)	(Figure	3a,	3b).	Furthermore,	seven	antibiotics,	doxycycline,	amoxicillin,	
azithromycin,	ciprofloxacin,	levofloxacin,	mupirocin,	and	sulfamethoxazole,	and	one	antiviral	
drug,	valacyclovir,	modulated	the	risk	of	subsequent	comorbidities.	Doxycycline	consistently	
increased	the	risk	of	‘cataract	NOS’	(adjusted	OR=2.57,	p=0.053	at	2	years/adjusted	OR=1.89,	
p=0.058	at	10	years),	‘tear	film	insuffic	NOS’	(adjusted	OR=2.64,	p=0.042	at	5	years/adjusted	
OR=2.37,	p=0.050	at	10	years),	and	‘nocturia’	(adjusted	OR=	3.46,	p=0.010	at	2	years)	(Figure	
3b).	Amoxicillin,	another	antibiotic	recommended	for	LD,	increased	the	risk	of	‘acute	URI	NOS’	
(adjusted	OR=3.01,	p=6.5E-4	at	2	years/adjusted	OR=2.41,	p=8.4E-4	at	5	years/adjusted	
OR=2.60,	p=1.3E-4	at	10	years).	Furthermore,	azithromycin	was	associated	with	an	increased	
risk	of	urinary-related	diseases	such	as	‘nocturia’	(adjusted	OR=4.62,	p=3.5E-5	at	5	
years/adjusted	OR=4.90,	p=1.3E-5	at	10	years)	and	‘urinary	(urin)	tract	infection	NOS’	(adjusted	
OR=2.18,	p=0.0095	at	5	years),	as	well	as	respiratory	diseases	such	as	‘acute	URI	NOS’	(adjusted	
OR=8.63,	p=3.9E-12	at	2	years/adjusted	OR=7.55,	p=1.0E-16	at	5	years/adjusted	OR=7.2,	
p=1.4E-17	at	10	years),	‘acute	bronchitis’	(adjusted	OR=5.15,	p=5.9E-5	at	5	years/adjusted	
OR=4.75,	p=1.1E-4	at	10	years),	and	‘chronic	rhinitis’	(adjusted	OR=2.99,	p=7.2E-4	at	5	years;	
adjusted	OR=3.07,	p=1.5E-4	at	10	years).	Ciprofloxacin,	a	fluoroquinolone	antibiotic,	increased	
risk	of	‘nocturia’	(adjusted	OR=7.19,	p=5.9E-6	at	5	years/adjusted	OR=6.92,	p=7.0E-6	at	10	
years)	and	‘joint	pain-shlder’	(adjusted	OR=4.42,	p=8.9E-5	at	5	years/adjusted	OR=6.92	and	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 23, 2017. ; https://doi.org/10.1101/239020doi: bioRxiv preprint 

https://doi.org/10.1101/239020
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

p=7.0E-6	at	10	years).	Mupirocin,	an	antibiotic	used	to	treat	skin	infection,	increased	risk	of	skin	
disorders,	including	‘solar	dermatitis	NEC’	(adjusted	OR=12.93,	p=6.9E-10	at	5	years/adjusted	
OR=13.96,	p=3.0E-11	at	10	years)	and	‘scar	&	fibrosis	of	skin’	(adjusted	OR=11.52,	p=6.9E-9	at	5	
years/adjusted	OR=12.46,	p=1.0E-9	at	10	years)	(Figure	3a,	3b).	
‘Vitamin	D	deficiency	NOS’,	common	in	patients	with	persistent	LD48,	is	a	specific	form	of	
nutritional	deficiency,	a	comorbidity	identified	earlier	at	the	broader	(CCS-single)	level	(Figure	
2a,	2b).	Several	medications	increased	the	risk	of	this	condition,	three	at	5	years	post-Lyme	and	
five	at	10	years.	These	included	two	anti-infective	drugs,	levofloxacin	(adjusted	OR=2.68,	
p=0.0012	at	10	years)	and	valacyclovir	(adjusted	OR=1.95,	p=0.087	at	5	years/adjusted	
OR=2.01,	p=0.065	at	10	years),	azelastine	(adjusted	OR=3.37,	p=0.0035	at	5	years/adjusted	
OR=2.92,	p=0.0085	at	10	years),	diclofenac	(adjusted	OR=2.75,	p=0.0032	at	5	years/adjusted	
OR=2.75,	p=0.0026	at	10	years),	and	simvastatin	(adjusted	OR=1.77,	p=0.083	at	10	years).	On	
the	other	hand,	four	medications	protected	against	‘vitamin	D	deficiency	NOS’:	docusate	
(adjusted	OR=0.33,	p=0.0015	at	10	years),	propofol	(adjusted	OR=0.37,	p=0.0015	at	10	years),	
fentanyl	(adjusted	OR=0.46,	p=0.012	at	5	years),	and	acetaminophen	(adjusted	OR=0.39,	
p=0.0025	at	2	years)	(Figure	3a,	3b).	
Respiratory	disease	(Figure	3b)	is	a	complication	frequently	reported	after	LD	49.	We	identified	
11	medications	that	increased	risk	for	these	conditions	and	two	that	exhibited	protective	
effects.	In	addition	to	the	three	medications	reported	in	SIDER	database	and	amoxicillin	and	
azithromycin	above,	the	medications	that	conferred	increased	risk	for	‘acute	URI	NOS’	were	an	
antibiotic,	levofloxacin	(adjusted	OR=3.18,	p=9.1E-4	at	10	years),	a	steroid,	methylprednisolone	
(adjusted	OR=2.14,	p=0.027	at	5	years/adjusted	OR=2.31,	p=0.0077	at	10	years),	
cyclobenzaprine	(adjusted	OR=3.21,	p=0.0025	at	5	years/adjusted	OR=2.91,	p=0.0037	at	10	
years),	homatropine	(adjusted	OR=7.16,	p=7.3E-7	at	10	years),	atorvastatin	(adjusted	OR=2.67,	
p=0.0017	at	10	years),	and	aspirin	(adjusted	OR=1.80,	p=0.073	at	10	years).	By	contrast,	
acetaminophen	(adjusted	OR=0.55,	p=0.025	at	5	years/adjusted	OR=0.62,	p=0.050	at	10	years),	
and	oxycodone	(adjusted	OR=0.49/p=0.021	at	10	years)	were	associated	with	protective	effects	
against	this	disease.	
	
Medications	that	modulate	LD	pathophysiology	on	different	timescales		
We	identified	16	medications	associated	with	disease	comorbidities	within	5	years	post-LD,	81%	
(13/16)	of	which	overlapped	with	those	identified	as	associated	10	years	post-Lyme	by	the	CCS-
single-level	categorization.	Specifically,	five	out	of	six	anti-infective	drugs,	doxycycline,	
azithromycin,	levofloxacin,	mupirocin,	and	valacyclovir,	appeared	in	both	timeframes.	
Moreover,	22	medications	were	associated	with	the	ICD-9–level	disease	comorbidities	within	5	
years	after	Lyme,	95%	(21/22)	of	which	were	also	identified	in	the	10-year	post-Lyme	analysis.	
Among	those	21	medications,	five	are	antibiotics	(doxycycline,	amoxicillin,	azithromycin,	
ciprofloxacin,	mupirocin)	and	one	is	an	antiviral	drug	(valacyclovir).	The	four	medications	
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associated	with	comorbidities	exclusively	in	the	5	years	post-Lyme,	clavulanate,	gabapentin,	
midazolam,	and	fentanyl,	may	impact	relatively	early	Lyme	comorbidities	(S.	Figure	1).		
A	total	of	17	medications	overlapped	between	the	CCS-single	and	ICD-9	levels	in	either	the	5-
year	or	10-year	time	windows.	Five	of	them	were	anti-infective	drugs,	namely	doxycycline,	
azithromycin,	levofloxacin,	mupirocin,	and	valacyclovir.	In	the	5-year	time	window,	16	
medications	were	associated	with	comorbidities	classified	by	CCS-single-level	category,	of	
which	50%	(8/16)	were	also	identified	at	the	ICD-9	level.	At	10	years	post-Lyme	diagnosis,	we	
identified	21	significant	associations	between	medications	and	comorbidities,	of	which	81%	
(17/21)	were	consistent	with	those	identified	at	the	ICD-9	level.		
	
Survival	analysis	of	first-line	medications	in	propensity-matched	populations	
By	the	cross-sectional	analysis	described	above,	we	demonstrated	that	certain	medications	
increased	risk	or	protected	against	disease	comorbidities	in	patients	with	LD.	At	higher	
resolution	(i.e.,	using	ICD-9	codes)	with	10-year	follow	up,	we	found	that	doxycycline,	the	most	
commonly	used	antibiotic	for	treatment	of	LD	13,	protected	against	‘backache	NOS’	and	‘chronic	
rhinitis’,	but	increased	risk	of	‘tear	film	insuffic	NOS’	and	‘cataract	NOS’.	Another	commonly	
used	antibiotic,	amoxicillin,	was	associated	with	elevated	risk	of	‘acute	URI	NOS’.		
	 Prior	to	propensity	score	matching,	we	identified	significant	differences	in	the	
distributions	of	demographic	and	clinical	characteristics	between	the	doxycycline/amoxicillin-
treated	and	untreated	groups	before.	The	doxycycline-treated	group	was	significantly	older	
than	the	untreated	group	(P	<	0.007),	whereas	the	amoxicillin-treated	group	was	significantly	
younger	than	the	untreated	group	(P=8.7E-4).	In	addition,	doxycycline	was	prescribed	more	
frequently	to	male	than	female	patients	(P	<	0.03).	The	doxycycline/amoxicillin-treated	groups	
had	higher	prevalences	of	certain	pre-existing	comorbidities	and	a	higher	prescription	rate	of	
particular	medications	than	the	untreated	groups	(S.	Table	4).	Moreover,	both	the	
doxycycline/amoxicillin	treated	groups	had	higher	propensity	scores	than	the	corresponding	
untreated	groups	(P	<	0.001).	To	clarify	the	longitudinal	effects	of	doxycycline	and	amoxicillin,	
we	analyzed	these	associations	by	propensity-score-matched	survival	analyses.	After	propensity	
score	matching,	the	control	cohorts	were	well	balanced	with	the	treated	groups	in	terms	of	
observed	covariates	(S.	Table	4).	
This	analysis	revealed	that	the	risk	of	‘backache	NOS’	(Figure	4a)	and	‘chronic	rhinitis’	(Figure	
4b)	was	significantly	lower	in	the	doxycycline-treated	cohort	than	in	the	untreated	cohort	
(HR=0.42,	p=0.020;	HR=0.49,	p=0.040,	respectively;	Table	3).	Furthermore,	Kaplan-Meier	curves	
demonstrated	that	the	cumulative	probabilities	of	remaining	free	from	‘cataracts	NOS’	and	
‘tear	film	insuffic	NOS’	were	lower	among	doxycycline-treated	patients	(p	=	0.0672	and	0.0608,	
respectively;	Figures	4c	and	4d).	Cox	regression	analysis	supported	a	statistically	significant	
association	between	doxycycline	usage	and	increased	risk	of	both	‘cataract	NOS’	and	‘tear	film	
insuffic	NOS’	(HR=1.90,	p=0.072;	HR=2.65,	p=0.071).	On	the	other	hand,	patients	prescribed	
amoxicillin	had	significantly	higher	hazard	ratios	for	‘acute	URI	NOS’	(HR=2.26,	p=0.0091;	Figure	
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4e).	Therefore,	the	effects	of	doxycycline	and	amoxicillin	revealed	by	the	cross-sectional	
analysis	were	confirmed	by	survival	analyses	using	the	propensity	score-matched	cohort	(Table	
3).	
	
	

Medication	 Disease	(ICD9)	 ICD9	
P	value	
(LogRank)	

Hazard	Ratio	
(90%	CI)	 P	value	(Cox)	

Doxycycline	
Tear	film	insuffic	
NOS	 375.15	 6.08E-02	 2.65	(1.09-6.45)	 7.13E-02	

Doxycycline	 Cataract	NOS	 366.9	 6.72E-02	 1.9	(1.06-3.42)	 7.18E-02	
Doxycycline	 Chronic	rhinitis	 472.0	 3.60E-02	 0.49	(0.28-0.87)	 3.99E-02	
Doxycycline	 Backache	NOS	 724.5	 1.67E-02	 0.42	(0.23-0.78)	 2.03E-02	
Amoxicillin	 Acute	URI	NOS	 465.9	 7.41E-03	 2.26	(1.35-3.78)	 9.13E-03	

Table	2	Survival	analyses	of	first-line	therapeutics	for	Lyme	disease	using	a	propensity-
score-matched	cohort.	
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DISCUSSION		
Proper	diagnosis,	treatment,	and	management	of	Lyme	Disease	(LD)	are	difficult	for	a	variety	of	
reasons.	In	particular,	the	complex	interplay	between	various	treatments	and	current	clinical	
status,	including	disease	burden,	can	lead	to	a	wide	range	of	sequelae.	This	study	represents	
the	first	data-driven	effort	to	identify	clinical	factors	that	affect	treatment	of	LD	patients	using	
large-scale	EMR	data.	EMR	systems	contain	information	pertaining	to	patients'	health	over	
time,	including	treatments	administered	and	clinical	outcomes.	Thus,	one	advantage	of	using	
these	data	in	comparison	with	prospective	clinical	trial	studies	is	the	availability	of	longitudinal	
data	spanning	more	than	10	years,	increasing	the	likelihood	of	capturing	long-term	effects.	We	
utilized	statistical	and	machine	learning	analyses	to	identify	associations	between	medications,	
including	first-line	treatments,	and	comorbidity	pathogeneses.	In	contrast	to	one-size-fits-all	
strategies,	our	approach	may	facilitate	the	personalization	of	treatment	regimens	based	on	the	
clinical	profiles	of	affected	individuals.	This	strategic	transition	is	essential	in	light	of	the	
tremendous	variability	in	efficacy	of	antibiotics	and	the	adverse	events	associated	with	these	
treatments.	
	 We	first	identified	all	significant	comorbidities	of	patients	with	LD	before	and	after	their	
Lyme	infections.	Next,	we	applied	machine	learning	models	to	assess	the	effect	of	medication	
treatment	on	the	risk	of	developing	subsequent	conditions.	Our	analyses	identified	known	
associations	between	medications	and	specific	disease	comorbidity	outcomes,	and	also	
discovered	connections	between	drugs	and	LD	that	could	facilitate	precision	medicine	aimed	at	
tailoring	treatments	to	affected	individuals'	Lyme	symptom	profile.	
	 Our	analysis	identified	co-morbid	conditions	that	were	typically	present	before	LD	
infection.	Although	this	disease	clearly	requires	contact	with	the	bacteria,	certain	physiological	
properties	make	individuals	more	or	less	susceptible	to	infection.	For	example,	we	found	that	
individuals	categorized	as	having	‘disorders	of	lipid	metabolism’	were	more	likely	have	LD	
infection	in	the	future.	Borrelia	burgdorferi	requires	cholesterol	for	growth;	researchers	have	
found	that	apolipoprotein	E	(apoE)-deficient	and	low-density	lipoprotein	receptor	(LDLR)-
deficient	mice,	which	have	high	levels	amounts	of	serum	cholesterol,	are	more	susceptible	than	
wild-type	mice	to	pathogenesis	induced	by	this	bacterium	34.	Additionally,	patients	with	
hypercholesterolemia	could	increase	susceptibility	to	trigger	tick	bite	for	this	vector	borne	
disease	due	to	body	heat,	CO2,	and	moisture	which	are	key	attractants	similarly	to	mosquitoes	
50 51,	but	this	is	beyond	the	scope	of	this	analysis	and	needs	to	be	further	investigated.	
Additionally,	we	identified	an	association	between	HIV	infection	and	LD.	Specifically,	our	data	
showed	that	patients	with	HIV	almost	exclusively	developed	LD	subsequent	to	the	HIV	
diagnosis,	suggesting	that	immune	system	alteration	increases	the	risk	of	LD.	A	handful	of	case	
reports	have	indicated	that	HIV-positive	immunocompromised	patients	develop	more	severe	
Lyme	complications	following	infection	52-54.	Although	the	specific	immunological	mechanisms	
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driving	this	connection	remain	unclear,	it	seems	reasonable	to	speculate	that	
immunosuppression	plays	an	important	role	55.	
We	also	identified	conditions	that	are	more	likely	to	be	present	after	a	LD	diagnosis	than	
beforehand,	consistent	with	the	possibility	that	these	diseases	are	side	effects	or	complications	
arising	from	Lyme	infection.	Many	of	these	associations	are	well	documented,	enhancing	our	
confidence	in	our	results.	Specifically,	we	found	that	the	categories	‘nutritional	deficiencies’,	
‘cataract’,	‘acute	bronchitis’,	‘other	eye	disorders’,	and	‘Inflammation;	infection	of	eye	(except	
that	caused	by	tuberculosis	or	sexually	transmitted	disease)’	are	more	likely	to	occur	after	Lyme	
infection	than	beforehand	or	by	chance.	
	 The	results	of	this	analysis	feed	into	our	drug-comorbidity	associations	network	and	can	
be	used	to	inform	treatment	regimens.	The	associations	identified	for	first-line	antibiotic	
treatments	of	LD	have	the	most	straightforward	potential	application.	These	agents	act	by	
killing	B.	burgdorferi,	and	thus	prevent	the	development	of	many	complications	associated	with	
prolonged	exposure	to	the	bacteria.	However,	while	antibiotics	are	the	most	effective	first-line	
treatments	for	LD,	their	efficacies	are	nonetheless	limited;	moreover,	some	symptoms	may	
persist	notwithstanding	the	use	of	antibiotics,	and	long-term	exposure	to	these	agents	risks	
additional	complications.	Indeed,	it	is	possible	that	even	acute	use	(usually	a	month)	of	these	
treatments	is	associated	with	long-term	complications	of	LD	that	yet	to	be	determined.	Even	
when	treated,	up	to	20%	of	patients	develop	Post-Treatment	Lyme	Disease	Syndrome	(PTLDS),	
in	which	symptoms	including	fatigue	or	muscle	pain	last	for	months	or	years.	Although	the	
etiology	of	PTLDS	is	not	yet	known,	better	tailoring	of	treatment	strategies	to	an	individual’s	
phenotypic	profile	could	prevent	or	modulate	the	risk	of	developing	these	symptoms.		We	
identified	a	number	of	comorbidities	matching	the	symptoms	aligned	with	PTLDS,	including	
chronic	pain,	chronic	rhinitis	(Figures	3a	and	3b).	Notably	in	this	regard,	we	also	found	that	
usage	of	steroid	medications	increases	the	risk	of	many	symptoms	common	to	PTLDS.	
Consistent	with	this,	corticosteroid	use	is	associated	with	poor	outcomes	for	LD	patients	43.	In	
particular,	we	found	that	prednisone	was	associated	with	elevated	risk	for	‘backache	NOS’,	
‘pain	in	limb’	and	‘other	abnormal	glucose’,	defined	at	the	ICD-9	level.	Use	of	fluticasone	was	
associated	with	elevated	risk	for	‘chronic	rhinitis’,	‘postnasal	drip’,	‘cervicalgia’,	and	‘acute	URI	
NOS’;	mometasone	was	also	associated	with	elevated	risk	for	‘acute	URI	NOS’;	and	
methylprednisolone	was	linked	to	increased	risk	of	‘chronic	rhinitis’,	‘backache	NOS’,	and	‘acute	
URI	NOS’	as	well.	Steroids,	which	suppress	patients’	immune	systems,	might	be	particularly	
harmful	to	LD	patients,	allowing	the	bacteria	to	grow,	rather	than	attacking	the	infections.	
These	findings	suggest	that	steroid	use	should	be	limited	in	LD	patients,	and	that	patients	
exposed	to	these	drugs	should	be	monitored	carefully	for	complications.			
	 Other	findings	from	our	drug-comorbidity	network	might	facilitate	personalization	of	
treatment	regimens,	with	more	favorable	clinical	outcomes	for	patients.	For	example,	several	
anti-infectious	drugs,	pain	relievers	such	as	diclofenac	and	hydrocodone,	and	the	anti-allergy	
medication	azelastine	were	also	associated	with	higher	rates	of	‘nutritional	deficiencies’,	
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suggesting	that	physicians	should	consider	recommending	vitamin	supplements	for	patients	
receiving	these	treatments.		
	 Doxycycline	is	already	associated	with	a	range	of	side	effects,	including	pain,	increased	
pressure	inside	the	skull	56,	and	gastrointestinal	injury	57.	The	nuances	of	these	associations	are	
not	well	understood.	On	the	other	hand,	we	also	found	that	doxycycline	use	was	associated	
with	lower	risk	of	‘backache	NOS’	and	lower	rates	of	‘chronic	rhinitis’;	the	latter	is	to	be	
expected,	as	it	is	a	common	symptom	of	chronic	LD	11.	This	medication	increased	the	risk	of	
many	eye-related	issues,	such	as	‘cataract	NOS’,	with	the	2-	and	10-year	time	windows,	
suggesting	that	it	might	exert	both	short-term	and	long-term	side	effects.	We	also	found	
associations	between	this	medication	and	elevated	risk	for	‘tear	film	insuffic	NOS’	and	
‘blindness	and	vision	disorders’.		
	 The	development	of	respiratory-related	complications	is	a	major	concern	for	patients	
infected	with	LD.	In	one	case	study,	secondary	adult	respiratory	distress	syndrome	caused	the	
death	of	a	patient	affected	with	LD	during	the	course	of	her	2-month	treatment	58.	The	patient	
did	not	respond	to	conventional	treatments,	including	antibiotics,	salicylates,	and	steroids.	In	
our	study,	we	identified	medications	that	are	associated	with	elevated	risk	of	respiratory-
related	diseases.	Specifically,	we	found	that	the	antibiotics	amoxicillin,	levofloxacin,	and	
azithromycin	all	conferred	increased	risk	of	‘acute	URI	NOS’.	In	addition	to	the	known	risks	of	
two	steroids,	prednisolone,	and	mometasone,	reported	in	the	SIDER	database	(S	table	3),	we	
found	that	another	steroid,	methylprednisolone,	was	also	associated	with	increased	risk	for	this	
disease.	While	we	are	unable	to	infer	causation	from	our	analyses,	the	associations	we	
identified	will	hopefully	inform	physicians	of	the	risks	and	encourage	them	to	take	the	
appropriate	prophylactic	measures.	Particular	attention	should	be	paid	to	Lyme	patients	with	
respiratory	complications	because	their	immune	systems	are	already	weakened	from	Lyme	
infection,	and	certain	medications	(such	as	amoxicillin)	are	ineffective	at	treating	these	
infections	59.	
This	study	had	several	limitations.	One	issue	is	the	relative	low	sample	size,	which	is	a	
consequence	of	the	rarity	of	this	disease	although	our	hospital	has	the	largest	EMR	system	in	
NYC.	Based	on	the	available	ELISA	and	Western	blot	lab	tests	specific	for	IgM	and	IgG,	we	found	
a	great	concordance	for	positive	serology	in	patients	with	Lyme	ICD	codes,	which	enhanced	our	
confidence	of	identifying	true	positive	LD	patients.	Based	on	limited	availability	of	these	data,	
however,	we	had	to	use	the	ICD-9	code	alone	to	select	the	patient	cohort	in	this	study.	As	tick	
bites	are	most	likely	to	occur	in	surrounding	rural	locations	in	which	forests	are	present,	many	
patients	may	be	initially	diagnosed	in	a	different	facility,	and	then	come	to	MSH	for	follow-up	
treatment.	Another	limitation	is	related	to	the	close	proximity	of	MSH	to	other	medical	centers	
in	the	area.	Specifically,	patients	may	seek	treatment	at	other	nearby	hospitals,	resulting	in	the	
loss	of	valuable	information	from	our	EMR	system.	Finally,	because	we	do	not	have	access	to	
patients'	historic	EMR	data	from	outside	of	MSH,	our	temporal	analyses	may	not	accurately	
capture	the	true	timeline	of	acquisition	of	disease	comorbidities.	We	are	currently	performing	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 23, 2017. ; https://doi.org/10.1101/239020doi: bioRxiv preprint 

https://doi.org/10.1101/239020
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

an	external	replication	analysis	at	another	academic	medical	center,	and	the	results	of	this	
effort	may	bolster	our	conclusions.	Additionally,	we	are	applying	the	findings	from	our	current	
study	in	order	to	model	explicit,	optimal	treatment	recommendations	at	the	patient	level.	From	
this	work,	we	hope	to	enhance	not	only	the	success	rates	of	treatment	of	LD,	but	also	to	
facilitate	preemptive	strategies	for	managing	high-risk	ensuing	conditions.		
Our	study	is	the	first	to	investigate	a	comprehensive	and	racially	diverse	EMR	with	the	aim	of	
discovering	the	detailed	clinical	profiles	of	patients	before	and	after	diagnosis	of	LD.	We	
identified	a	list	of	medications,	including	antibiotics	recommended	for	treatment,	which	
represent	possible	risk	factors	for	chronic	LD	or	PTLDS.	In	addition,	we	hope	to	investigate	the	
contributions	of	genomics	and	genetic	variants	to	differences	pathophysiology.	Our	predictive	
medication–comorbidity	models	provide	an	evidence-based	approach	for	treatment	regimens	
that	takes	into	account	risk	for	Lyme	comorbidities,	with	the	ultimate	goal	of	guiding	precision	
medicine	based	on	the	individual	clinical	phenotypes	of	patients	with	LD.		
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Figure	legends	
	
Figure	1	Workflow	of	the	study,	outlining	steps	from	data	organization	to	statistical	
methodologies.	
Figure	2	Medication–Lyme	disease	comorbidity	network,	analyzed	by	CCS-single-level	
categories,	in	time	windows	of	5	years	(a)	and	10	years	(b).	Significant	associations	between	
medications	(cyan)	and	comorbidities	(magenta)	are	connected	by	red	or	blue	lines	(p	<	0.1).	
Red	lines	indicate	risk	associations	(OR	>	1),	and	blue	lines	indicate	protective	associations	(OR	
<	1).	Medications	and	indications	(green)	were	connected	based	on	information	in	the	public	
knowledgebase	MEDI	60.	
Figure	3	Medication–Lyme	disease	comorbidity	network	at	the	ICD-9	levels	in	time	windows	of	
5	years	(a)	and	10	years	(b).	Significant	associations	between	medications	(cyan)	and	
comorbidities	(magenta)	are	connected	by	red	or	blue	lines	(p	<	0.1).	Red	lines	indicate	risk	
associations	(OR	>	1),	and	blue	lines	indicate	protective	associations	(OR	<	1).	
Figure	4	Kaplan–Meier	plot	of	propensity-score-matched	survival	analysis	(a)	doxycycline–
‘backache	NOS’	(ICD-9	code:	724.5),	(b)	doxycycline–‘chronic	rhinitis’	(472.0),	(c)	doxycycline–
‘cataract	NOS’	(366.9),	(d)	doxycycline–‘tear	film	insuffic	NOS’	(375.15),	and	(e)	amoxicillin–
‘acute	URI	NOS’	(465.9).	
	
Supplementary	figure	1	Venn	diagram	of	the	medications	that	significantly	associated	with	at	
least	one	disease	comorbidity	in	the	5-	and	10-year	time	windows.	(a)	CCS-single-level	
categories.	(b)	ICD-9	level.	
Supplementary	table	S1	All	diseases	associated	with	Lyme,	by	ICD-9	category	(p	value	<	0.1).	
Supplementary	table	S3	Medications	predicted	to	modulate	risk	of	disease	comorbidities,	by	
CCS-single-level	category	(p	value	<	0.1).	
Supplementary	table	S4	Medications	predicted	to	modulate	risk	of	disease	comorbidities,	by	
ICD-9	category	(p	value	<	0.1).	
Supplementary	table	S5	The	balance	of	covariates	before	and	after	propensity	score	matching.	
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