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Abstract

Long-reads, point-of-care, and PCR-free are the promises brought by nanopore sequencing. Among various steps
in nanopore data analysis, the global mapping between the raw electrical current signal sequence and the expected
signal sequence from the pore model serves as the key building block to base calling, reads mapping, variant identifi-
cation, and methylation detection. However, the ultra-long reads of nanopore sequencing and an order of magnitude
difference in the sampling speeds of the two sequences make the classical dynamic time warping (DTW) and its vari-
ants infeasible to solve the problem. Here, we propose a novel multi-level DTW algorithm, cwDTW, based on contin-
uous wavelet transforms with different scales of the two signal sequences. Our algorithm starts from low-resolution
wavelet transforms of the two sequences, such that the transformed sequences are short and have similar sampling
rates. Then the peaks and nadirs of the transformed sequences are extracted to form feature sequences with similar
lengths, which can be easily mapped by the original DTW. Our algorithm then recursively projects the warping path
from a lower-resolution level to a higher-resolution one by building a context-dependent boundary and enabling a con-
strained search for the warping path in the latter. Comprehensive experiments on two real nanopore datasets on human
and on Pandoraea pnomenusa, as well as two benchmark datasets from previous studies, demonstrate the efficiency
and effectiveness of the proposed algorithm. In particular, cwDTW can almost always generate warping paths that are
very close to the original DTW, which are remarkably more accurate than the state-of-the-art methods including Fast-
DTW and PrunedDTW. Meanwhile, on the real nanopore datasets, cwDTW is about 440 times faster than FastDTW
and 3000 times faster than the original DTW. Our program is available at https://github.com/realbigws/cwDTW.

1 Introduction
DNA sequencing has been dominated by sequencing-by-synthesis technologies for decades [1]. Nowadays, single-
molecule sequencing based on nanopore technologies has emerged with the promises of long-reads, point-of-care, and
PCR-free [2]. Long-reads provides great potentials for de novo transcriptome analysis, which is able to span more
repetitive regions and multiple exon junctions [3]; point-of-care makes it possible for the sequencing to be conducted
immediately at anywhere in real-time [4]; and PCR-free allows the direct identification of epigenetics [5].

The key innovation of nanopore sequencing is the direct measurement of the changes in the electrical current
signal (denoted as the raw signal) when a single-strand DNA passes through the nanopore [6] (Fig. 1). Without
the needs for polymerase chain reaction (PCR) amplification, nanopore sequencing generates extremely long reads,
typically ranging from 12k to 120k bp. At each time point, there are k consecutive nucleotides in a pore (denoted as
a k-mer, where k is often 5 or 6). The electrical current signal is measured for each time point of the pore. A pore
model describes the expected electrical current values for different k-mers. In nanopore sequencing, the frequency of
the electrical current measurements and the speed of the DNA sequence passing through the pore are not coordinated,
which causes the main technical difficulty for nanopore data analysis. In practice, the frequency of the electrical current
measurements is 7-9 times higher than the passing speed of the DNA sequence, resulting in an order of magnitude
difference in the sampling rates of the raw signal sequence and the expected signal sequence from the pore model.
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Figure 1: Upper part: pore chemistry contains the voltage-biased mem-
brane embedded with nanopores, in which voltage can be applied to
drive the DNA sequence through the pore and electrical current signals
(i.e., raw signals) can be measured. Lower part: unbalanced global
mapping between the raw signal sequence and the expected signal se-
quence derived from the DNA sequence and the pore model.

Among various steps in nanopore data analy-
sis, the global mapping between the raw electrical
current signal sequence and the expected signal se-
quence from the pore model serves as the key build-
ing block to base calling [7], reads mapping [8],
variant identification [9], and methylation detection
[5] (the lower part of Fig. 1). Dynamic time warp-
ing (DTW) is the most widely-used technique that
finds an optimal mapping between two temporal se-
quences that vary in speed. In DTW, the sequences
are warped non-linearly by stretching or shrinking
along the time axis [10]. The original DTW has
an O(L1L2) time- and memory-complexity, where
L1 and L2 are the lengths of the two sequences to
be mapped. This complexity severely limits DTW’s
applications in various problems that have long se-
quences, such as nanopore sequencing. To accel-
erate the analysis of long sequences, a variety of
improved DTW have been proposed, which can be
roughly categorized into three classes: constrained
DTW, coarsening DTW, and multi-level DTW. Con-
strained DTW (e.g., SparseDTW [11] and PrunedDTW [12]), whose accuracy lies on the strategy of bounding, casts
an arbitrary or a predefined boundary to reduce the search space. Coarsening DTW (e.g., PDTW [13], IDDTW [14]
and COW [15]) speeds up DTW by operating on a reduced representation of the signals, which is often produced by
down-sampling or equal averaging, and then projecting the low-resolution warping path to the full resolution. Yet,
the calculated final warping path becomes increasingly inaccurate as the level of coarsening increases. Multi-level
DTW (e.g., FastDTW [10] and MultiscaleDTW [16, 17]) combines the ideas of constrained and coarsening DTW.
It recursively projects a solution from a low-resolution representation generated by coarsening DTW and refines the
projected warping path in high-solution via constrained DTW. Nevertheless, all aforementioned variants of DTW have
high risks of failure when the input sequences are noisy and have unbalanced sampling rates, and none of the existing
DTW variants can achieve a good balance between accuracy and efficiency on mapping extremely long sequences
with unbalanced scales.

In this paper, we propose a novel dynamic time warping algorithm, cwDTW, based on continuous wavelet trans-
form (CWT), to cope with the unbalanced global mapping between two ultra-long signal sequences. The key idea of
cwDTW is to obtain a series of highly representative coarsening signals at different resolution levels via CWT. Thus,
at each resolution level, the transformed coarsening signal sequences from the two input sequences with unbalanced
lengths would have comparable lengths and similar shapes. The warping path obtained from a coarser resolution
is used to obtain a stable and narrow context-dependent boundary to constrain the warping path at a refiner resolu-
tion. Through this iterative process, our algorithm achieves the global mapping of the input signal sequences in a
coarse-to-fine manner.

To our knowledge, it is the first time that continuous wavelet is introduced to the nanopore sequencing analysis
and combined with dynamic time warping. Our algorithm benefits from the continuous scale analysis from CWT
and is able to utilize the highly representative information embedded in the input signals. Our algorithm has an
approximate O(N) time- and space-complexity, where N is the length of the longer sequence, and substantially
advances previous methods in terms of the mapping accuracy. Comprehensive experimental results demonstrate the
efficiency and effectiveness of cwDTW. Furthermore, cwDTW is not only able to align the raw and expected signal
sequences in nanopore, but also applicable to other temporal sequence mapping problems based on biological, video,
audio and graphical data.

2 Related works
In the section, we provide a brief introduction to continuous wavelet transform and dynamic time warping, which are
closely related to the proposed algorithm.
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2.1 Continuous Wavelet Transform
In mathematics, a continuous wavelet transform (CWT) is used to divide a continuous-time function into wavelets. In
particular, the CWT of a one-dimensional signal X(t) at a scale a ∈ R+ and translational value b ∈ R, denoted as
Xa,b, is expressed by the following integral:

Xa,b =
1√
a

∫ ∞
−∞

X(t)ψa,b(t)dt, (1)

where ψa,b(t) = ψ( t−ba ) is the mother wavelet which is a continuous function in both the time domain and the
frequency domain. In our algorithm, the Mexican hat wavelet, ψ(t) = (1 − t2) exp−t2/2, is the default option, but
other wavelet functions are also applicable [18].

2.2 Dynamic Time Warping
The dynamic time warping (DTW) for mapping two input signal sequences is stated as follows: Given two input signal
sequences X = x1, x2, . . . , xL1

and Y = y1, y2, . . . , yL2
of length L1 and L2 respectively, construct a warping path

W = w1, w2, . . . , wL to minimize the distance measurement Dist(W ) =
∑L

l=1 c(wli, wlj), where L is the length of
the warping path and c(wli, wlj) is the Euclidean distance of the lth aligned element between the two signal points
xi and yj . To determine the optimal path W , an (L1 × L2) matrix D is recursively computed, in which the matrix
entry D(n,m) is the total cost of an optimal path between X and Y . Here D(i, j) = min{D(i− 1, j − 1), D(i, j −
1), D(i− 1, j)}+ c(i, j) and c is the distance between elements xi in X and yj in Y . D(n,m) can be exactly solved
by dynamic programming, resulting in the globally optimal mapping.

Though DTW has been well-established, the original DTW has O(L1L2) time complexity and needs a matrix
D with L1 × L2 dimension, which is too inefficient and memory-costly for long sequences, such as the ones from
nanopore sequencing. To apply DTW in challenging applications, various versions of improved DTW have been
proposed, such as FastDTW [10], PrunedDTW [12], SparseDTW [11], and MultiscaleDTW [16, 17].

3 Methods
Fig. 2 shows the main workflow of the proposed continuous wavelet dynamic time warping (cwDTW). Three key
components are involved: CWT representation, context-dependent constrained DTW, and multi-level refinement. (i)
CWT representation is the initial step that runs a continuous wavelet transform on each input signal sequence to obtain
an informative representation, followed by peak and nadir picking to produce the low-resolution signals with reduced
lengths. (ii) Context-dependent constrained DTW takes a warping path calculated at a lower resolution and determines
the search boundary of the path at a higher resolution. (iii) Multi-level refinement combines the low-resolution and
high-resolution information from CWT with different scales, and gradually refines the warping path when the level
becomes finer and finer, until the final path at the original resolution of the input sequences.

3.1 Feature Representation of CWT Spectra
When handling long signal sequences, down sampling combined with multi-scale analysis is widely used to decrease
the complexity [10, 16, 17]. Compared with down sampling, wavelet representation is naturally more proper for multi-
scale analysis [19], where both discrete wavelet transform and continuous wavelet transform are options. Although
there have been studies that combine discrete wavelet transform with dynamic time warping [20, 21, 22], such methods
have clear limitations.

Discrete wavelet transform is an orthogonal wavelet analysis, in which the number of convolutions at each scale
is proportional to the width of the wavelet basis at that scale. To apply discrete wavelet, an alignment to the power of
2 is necessary [21], which usually requires the padding of the signal. This produces a wavelet spectrum that contains
discrete “blocks” of wavelet power and is useful for signal processing as it gives the most compact representation
of the signal. However, for temporal data analysis, an aperiodic shift in the time series produces a different wavelet
spectrum. On the contrary, nonorthogonal transform such as continuous wavelet transform (CWT) is highly redundant
at large scales, where the wavelet spectra at adjacent scales are highly correlated. CWT is thus more useful for time
series analysis, where smooth and continuous wavelet transforms are expected.
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Figure 2: Workflow of the proposed dynamic
time warping algorithm based on continuous
wavelet transform (cwDTW).

(A) CWT of the expected signals with different scale values.

(B) Raw signal sequence and its CWT (N-CWT 4α
√
2 where α = 8) v.s.

expected signal sequence and its CWT (G-CWT 4
√
2).

Figure 3: Continuous wavelet transform (CWT) on nanopore signal
sequences.

3.1.1 Multi-level representation of CWT

Coming back to Eq.(1), intuitively, the transformed wavelet spectrum Xa,b reflects the pattern matching between the
input signal X and the wavelet function ψ. By changing the scale parameter a, larger values correspond to lower
frequency signals whereas smaller values correspond to higher frequency signals.

Fig. 3(A) shows the CWT spectra of an expected signal sequence1 X with different values of the scale parameter
a. For convenience of analysis, we fix the translational value b as the same index correspondence as X . That is, the
transformed signals (spectrum) have the same length and retain peer-to-peer index to X . Here we use CWT(X, a)
to denote the transformed spectrum of X with the scale parameter a. In Fig. 3(A), the input is an expected signal
sequence with the index from 100 to 400 (denoted as “Original signal”, Xg), and CWT with scales a as

√
2, 2
√
2

and 4
√
2 are applied, respectively. Although the details are blurred in the wavelet transformed signals, most peaks

and nadirs in CWT(Xg, ·) maintain stability and retain their corresponding locations as in the original signals (e.g.,
the two green ovals). Furthermore, the shape of the CWT spectrum changes smoothly from a smaller scale value to a
larger one, which ensures the success of feature mapping from low-resolution representations to high-resolution ones,
and consequently justifies the design of our multi-level algorithm.

3.1.2 Feature extraction from CWT spectra

The global mapping of two signal sequences with unbalanced lengths due to different sampling rates is a very challeng-
ing task, which cannot be handled accurately and rapidly by the existing DTW algorithms. Potentially, re-sampling
techniques can be used to alleviate the problem if the degeneration of the accuracy is acceptable. Here we argue that
the spectrum analysis based on CWT is a much more natural way to solve the problem.

Fig. 3(B) shows the CWT spectrum comparison of the expected signal sequence (Xg) and the corresponding raw
electrical current signal sequence (Xp). Since the lengths of the two signal sequences are one order of magnitude
different, where Xg ranges from 100 to 400 and the corresponding Xp ranges from 800 to 3200, we re-scale the index
of Xp by 1/8 for the sake of visualization. That is, we apply an additional scale α = 8 to the CWT of Xp. It can
be seen from Fig. 3(B) that the produced spectrum shape CWT(Xp, 4α

√
2) for the raw signal sequence looks quite

similar to that of CWT(Xg, 4
√
2) for the expected signal sequence.

1An expected signal sequence is obtained by applying sliding windows of k-mers (here k = 5) on the DNA sequence and using the expected
electrical current value for each k-mer according to the pore model.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2017. ; https://doi.org/10.1101/238857doi: bioRxiv preprint 

https://doi.org/10.1101/238857


5

Figure 4: Illustration of the feature extraction procedure from the CWT
spectra. The two input signal sequences have unbalanced temporal
scales due to different sampling rates. After CWT in consideration
of their unbalanced ratio and Z-score normalization, the input signals
are converted to CWT spectra with similar shapes. Then the feature
sequences are derived by peak picking to make their temporal scales
comparable.

We thus propose the following feature extrac-
tion procedure to cope with the unbalanced lengths
of the raw signal sequence and the expected signal
sequence:

1. For signal sequences Xg and Xp, calculate
the length ratio α = |Xp|/|Xg|, where |X|
returns the length of X;

2. For each scale a, obtain the spectra
CWT(Xg, a) and CWT(Xp, α · a);

3. Normalize CWT(Xg, a) and CWT(Xp, α ·a)
based on Z-score normalization;

4. Extract peaks and nadirs from each spectrum
as the feature sequence (we hereinafter call
both peaks and nadirs as peaks).

Here, the peaks of the CWT spectrum are extracted
as features and will be used for the consequent con-
strained dynamic time warping (the choice of fea-
tures will be discussed in Section 4.3.3). Fig. 4
illustrates one round of this procedure. Though the
original signal sequences Xg and Xp have signifi-
cantly different lengths, the numbers of the picked
peaks from CWT(Xg, a) and CWT(Xp, α · a) are
quite similar.

3.2 Context-dependent Constrained Dynamic Time Warping
The peaks extracted from the CWT spectra are considered as the spectrum features and used in our multi-level dynamic
time warping scheme. The main idea is to gradually refine and generate finer warping paths when going from a coarser
level to a finer one. We start from the coarsest level L where the raw signal sequence is transformed by CWT to
XL

p = CWT(Xp, α · 2L−1s0) and the expected signal sequence is transformed to XL
g = CWT(Xg, 2

L−1s0). We can
then run the original DTW by dynamic programming on the feature sequences (i.e., peaks) from these two transformed
sequences. To generate the warping path for the (L − 1)th level, we will apply the constrained DTW [23], where the
constraints are not predefined, but rather determined by the warping path from the previous level L. That is, the
warping paths for the (L − 1)th level and the Lth level are not assumed to be the same. In fact, we do not even
assume the two paths to have any overlap at all. However, we assume that the warping path for the (L− 1)th level is
‘constrained’ by the one for the Lth level. It should be noted that although the peaks for the (L − 1)th level is much
more than that for the Lth level, each peak in the (L − 1)th level has a corresponding index interval in the Lth level.
That is, there exists an index j, such that this peak in the (L − 1)th level resides between the indexes j and j + 1 at
the Lth level. Our constraint thus requires that each element in the warping path of the (L − 1)th level is assumed to
be within radius r distance from the corresponding element in the path of the Lth level. Given this context-dependent
constraint, the constrained DTW is applied to generate the warping path for the (L − 1)th level, which is then used
to form the context-dependent constraint for the (L − 2)th level. This procedure repeats until the raw signal level is
reached, where the final warping path is generated. Section S1 gives the technical details and the pseudo-code for the
proposed context-bounded DTW.

Fig. 5 shows one example of the context-dependent constrained DTW with CWT level L = 3 and radius r = 1.
It can be seen that the bounded constraint for each finer level is determined by the warping path from the coarser
level, which not only significantly reduces the search space, but also avoids the incorrect mapping at a coarser level
being retained at finer levels. This differentiates our algorithm from other approximate DTW algorithms which assume
predefined constraints to reduce the search space. Although our algorithm does not require the warping paths at two
consecutive levels to overlap, they often do overlap in practice. This is due to the high correlation among the CWT
spectra with different scales, which inherits the context of the original signal sequence.
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Figure 5: Illustration of multi-level dynamic time warping based on the context-dependent boundary. For illustration purpose, we
show here the level up to L = 3 and radius parameter r = 1. To show the path refinement procedure, dotted lines indicate the
warping path of the coarser level, where as solid lines indicate the warping path at the finer level.

3.3 Multi-level Continuous Wavelet-based Dynamic Time Warping
In summary, the proposed cwDTW algorithm is shown in Algorithm 1, where Xp is the raw signal sequence and Xg

is the expected signal sequence, L is the user-defined level, r is the searching radius, and s0 is the CWT base scale;
CWT(·) is the continuous wavelet transform defined in Section 3.1.1, PickPeaks(·) is the peak picking procedure
described in Section 3.1.2 which returns peak indexes and intensities as two vectors, DTW(·) is the original dynamic
time warping algorithm, cDTW(·) is the constrained dynamic time warping [23], and ReMapIndex(·) is the context-
dependent constraint generation in Section 3.2.

Algorithm 1: cwDTW
Input: Xp, Xg , L, r, s0

1 Procedure cwDTW(Xp, Xg, L, r, s0)
2 Initialization: l← L,α = |Xp|/|Xg| ;
3 while l ≥ 1 do
4 X l

p = CWT(Xp, α · 2l−1s0) ;
5 [IXl

p
, PXl

p
] = PickPeaks(X l

p) ;
6 X l

g = CWT(Xg, 2
l−1s0) ;

7 [IXl
g
, PXl

g
] = PickPeaks(X l

g) ;
8 if l = L then
9 Wl=L = DTW(PXL

g
, PXL

p
);

10 else
11 Bl = ReMapIndex(Wl+1, r) ;
12 Wl = cDTW(PXl

g
, PXl

p
, Bl);

13 end
14 l← l − 1;
15 end
16 Return Wl=0 = cDTW(Xg, Xp, Bl=1).

To analyze the runtime and memory complexity of cwDTW, we notice that the operations CWT(·), PickPeaks(·)
and ReMapIndex(·) all have O(N) time- and memory-complexity, where N = max {L1, L2}. Since the cost matrix
of cDTW is only filled in the bounded neighborhood of the warping path from the previous level, which grows
linearly with a multiplier r, cDTW has O(rN) time- and memory-complexity. The number of picked peaks from
the CWT spectrum with the 2l−1s0 scale is upper bounded by N

2l−1 . Thus in total,
∑L−1

k=0
N
2k
≈ 2N peaks are

remapped and considered by constrained DTW. Therefore, the total runtime of Algorithm 1 is 2 · (TIME(cDTW) +
TIME(ReMapIndex)) + L · TIME(CWT), which gives the time- and memory-complexity of O(2rN + LN), where
r, L� N .
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4 Experimental Results
We comprehensively evaluated cwDTW on two real nanopore datasets on human and on Pandoraea pnomenusa, as
well as two benchmark datasets from previous studies [10] which have short sequences with similar lengths. Due to
the page limit, we show the results on the two nanopore datasets in this section and refer the readers to Section S2 for
the comparison between our algorithm, and FastDTW and PrunedDTW on the two benchmark datasets.

4.1 Datasets
Two nanopore sequencing datasets are used in our experiments. The first one is a subset of the public available Human
data. This dataset comes from Human chromosome 21 from the Nanopore WGS Consortium [24]. The samples in
this dataset were sequenced from the NA12878 human genome reference on the Oxford Nanopore MinION using 1D
ligation kits (450 bp/s) with R9.4 flow cells. The nanopore raw signal data in FAST5 format were downloaded from
nanopore-wgs-consortium2. The reference genome for Human chromosome 21 was downloaded from NCBI3. The
total number of the generated reads in this dataset is 4530. The average length of the DNA sequences is 7309, whereas
the average length of the nanopore raw signal sequences is 68628. The temporal scale ratio between the nanopore raw
signal and the corresponding DNA sequence is around 9. We hereinafter denote this dataset as HM4530.

The second dataset is the genome of one bacterial species named Pandoraea pnomenusa strain 6399, which was
prepared and sequenced by Prof. Lachlan Coin’s lab at University of Queensland. Its reference genome was down-
loaded from NCBI4. The samples were sequenced on the MinION device with 1D protocol on R9.4 flow cells (FLO-
MIN106 protocol). The total number of generated reads is 4782. The average length of the DNA sequences is 18590,
whereas the average length of the nanopore raw signals is 158772. Thus, the temporal scale ratio between the nanopore
raw signal and the corresponding DNA sequence is around 9. We hereinafter denote this dataset as PP4782.

4.2 Compared Methods and Evaluation Criteria
Since both datasets have extremely long sequences, and the raw signal sequences and the expected ones have one order
of magnitude difference in length, we mainly compared cwDTW with DTW and FastDTW [10]. DTW is the original
method that finds the optimal mapping between the two signal sequences by dynamic programming, whereas FastDTW
is the state-of-the-art multi-level DTW method which approximates DTW in linear time- and space-complexity. Other
representative DTW algorithms, such as PrunedDTW [12], were designed to measure the similarity between two
sequences. They implicitly assume that the lengths of the two sequences to be mapped are comparable and thus
cannot handle the unbalanced sequences in the two nanopore datasets. Therefore, we only included PrunedDTW in
the comparison over the two benchmark datasets (Section S2), which have similar lengths for mapped sequences. Both
FastDTW and cwDTW have the radius parameter r and the level parameter L, and cwDTW has an additional scale
parameter s0 to select the base wavelet scale. We evaluated the performance of cwDTW with different combinations
of s0, r and L in Section 4.3. All the methods were run on a Fedora25 system with 128Gb memory and two E5-2667v4
(3.2 GHz) cores, each with 8 CPUs.

The accuracy of the warping path W generated by an approximate DTW method can be measured by the relative
distance difference of W with respect to the optimal path Ŵ generated by the original DTW [10] (Section 2.2):

Error(W ) =
Dist(W )−Dist(Ŵ )

Dist(Ŵ )
. (2)

If an algorithm returns a perfect warping path, the error is zero. Note that the error may exceed 100% if the distance
of the warping path is more than twice of that of the optimal path. We also calculated the normalized distance of a
warping path, nDist(W ), by dividing Dist(W ) by the length of the longer sequence, i.e., the raw signal sequence.

2http://s3.amazonaws.com/nanopore-human-wgs/rel3-fast5-chr21.part03.tar
3https://www.ncbi.nlm.nih.gov/nuccore/NC_000021
4https://www.ncbi.nlm.nih.gov/nuccore/JTCR01000000
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4.3 Performance
4.3.1 Performance comparison on nanopore signal mapping with unbalanced lengths

We first compared cwDTW with FastDTW and the original DTW on the HM4530 set. Here both cwDTW and
FastDTW have the level set to L = 4 and radius set to r = 50, and the base wavelet scale for cwDTW is set to
s0 =

√
2. As shown in Fig. 6(A), the distribution of normalized distance of cwDTW is very similar to that of the

original DTW. Fig. 6(B) shows the scatter plot between the normalized distance of the original DTW (x-axis) and that
of cwDTW and FastDTW (y-axis). It is clear that the mapping accuracy of cwDTW is very close to the original DTW,
whereas FastDTW is far less accurate. In particular, out of the 4530 reads in the HM4530 set, cwDTW produces
exactly the same optimal warping path as the original DTW on 3913 reads (86.4%), while on 4393 reads (97.0%)
the normalized distance of the path generated by cwDTW is within the 0.005 margin to that of the optimal path. In
terms of runtime, it took cwDTW 1406 seconds using a single-CPU (0.31 second on average), whereas FastDTW took
10.7 hours using 16-CPUs in parallel (136 seconds on average) and the original DTW took more than 3 days using
16-CPUs in parallel (916 seconds on average). This implies that cwDTW is about 440 times faster than FastDTW and
3000 times faster than the original DTW.

(A) Distribution of normalized distance (B) Scatter plot of normalized distance

Figure 6: Performance of cwDTW on the HM4530 dataset. (A) Distribution of the normalized distance of cwDTW (in yellow) and
the original DTW (in blue). (B) Scatter plot between the normalized distance of the original DTW (x-axis) and that of cwDTW (in
blue) and FastDTW (in red) (y-axis).

We further compared cwDTW with FastDTW under different radius and scale parameter settings on both HM4530
and PP4782 datasets. As shown in Table 1, for different scale parameter values, the mapping error of cwDTW is
always lower than 1% if the radius is set to be at least 50. For the PP4782 set, cwDTW can always produce the optimal
warping path when the scale is small (e.g., 1 or

√
2) and the radius is large (e.g., 90 and 100). On the contrary, the

mapping error of FastDTW remains higher than 200% on both HM4530 and PP4782. Enlarging the radius parameter
helps reduce the error for FastDTW, but the effect is marginal.

Table 1: Average error of FastDTW and cwDTW with different radius and scale parameter values on the HM4530 and PP4782
datasets. Here we fixed L = 4 for both algorithms.

Radius 10 20 30 40 50 60 70 80 90 100

H
M

45
30 FastDTW 323% 311% 295% 277% 261% 253% 244% 228% 218% 208%

cwDTW (2) 16.8% 4.8% 2.1% 1.1% 0.6% 0.4% 0.3% 0.2% 0.2% 0.2%
cwDTW (

√
2) 11.5% 2.6% 1.1% 0.6% 0.4% 0.3% 0.2% 0.2% 0.2% 0.1%

cwDTW (1) 10.6% 2.3% 0.9% 0.5% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1%

PP
47

82 FastDTW 473% 458% 431% 416% 401% 395% 386% 373% 365% 359%
cwDTW (2) 30.6% 9.4% 3.7% 1.7% 0.9% 0.6% 0.4% 0.3% 0.2% 0.1%

cwDTW (
√
2) 22.2% 4.8% 1.3% 0.5% 0.2% 0.1% 0.1% 0.1% 0.0% 0.0%

cwDTW (1) 19.1% 3.8% 1.0% 0.4% 0.2% 0.1% 0.1% 0.0% 0.0% 0.0%

We then conducted a detailed parameter sensitivity analysis of cwDTW to assess the effects of the three parameters,
radius, scale and level, on the average error and runtime. In general, cwDTW is quite robust in terms of the average
error and runtime with respect to all the three parameters. A high scale parameter (e.g., s0 = 2) will slightly increase
the average error of cwDTW on both datasets (Fig. 7(A) and (E)), while the average error of cwDTW almost remains
the same for different level parameters (Fig. 7(B) and (F)). In practice, a radius value of higher than 50 seems to be

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2017. ; https://doi.org/10.1101/238857doi: bioRxiv preprint 

https://doi.org/10.1101/238857


9

sufficient. In terms of runtime, different values of the scale parameter do not influence the runtime much (Fig. 7(C)
and (G)), whereas a lower level parameter results in higher runtime (Fig. 7(D) and (H)). This is due to the fact that
cwDTW runs the original DTW without any constraint for the coarsest level. Thus if L is too small, the number of
peaks in the CWT sequences is high, which results in high runtime for the original DTW. Overall, a higher radius
value leads to higher runtime. Summing up these observations, a parameter combination of r = 60, s0 =

√
2 and

L = 4 gives a practically good tradeoff between error and speed for nanopore signal mapping.

Figure 7: Parameter sensitivity analysis of cwDTW on the HM4530 (upper panel) and PP4782 (lower panel) datasets. (A)&(E):
effects of the scale parameter s0 and radius r on the average error over the two sets. (B)&(F): effects of the level parameter L and
radius r on the average error over the two sets. (C)&(G): effects of the scale parameter s0 and radius r on the runtime over the two
sets. (D)&(H): effects of the level parameter L and radius r on the runtime over the two sets.

4.3.2 Performance comparison on signal mapping with similar lengths

One of the main advantages of cwDTW is the ability to handle signal sequences that have orders of magnitude different
lengths. This is achieved by the introduction of the scale factor α in consideration of the length ratio during CWT.
On the contrary, FastDTW performs coarsening by 2-factor down-sampling, which does not solve the issue caused by
length difference and leads to deviations of the warping path. Such deviations will accumulate through iterations and
finally corrupt the results.

In order to evaluate the performance of cwDTW on sequences with similar lengths, we created two datasets,
HM4530F and PP4782F, from HM4530 and PP4782, respectively. The expected signal sequences in HM4530F and
PP4782F are the feature sequences extracted by CWT with scale 2

√
2 from the expected signal sequences in HM4530

and PP4782, respectively. And the raw signal sequences in HM4530F and PP4782F are the feature sequences extracted
by CWT with scale 2α

√
2 from the raw signal sequences in HM4530 and PP4782, respectively, where α is the temporal

ratios in the two sets. Consequently, for HM4530F, the average length of the expected signal sequences is 1558 and
that of the raw signal sequences is 1572, whereas for PP4782F, the average length of the expected signal sequences is
3912 and that of the raw sequences is 3957. These two sets thus contain sequences with similar lengths to be mapped.

Table 2: Average error of FastDTW and cwDTW with different radius and scale parameter values on the HM4530F and PP4782F
datasets. Here we fixed L = 4 for both algorithms.

Radius 10 20 30 40 50 60 70 80 90 100

H
M

45
30

F FastDTW 107% 75% 59% 49% 43% 38% 34% 32% 29% 28%
cwDTW (2) 19.3% 8.7% 4.5% 2.5% 1.5% 0.9% 0.6% 0.4% 0.3% 0.2%

cwDTW (
√
2) 17.1% 6.8% 2.8% 1.4% 0.7% 0.4% 0.2% 0.1% 0.1% 0.1%

cwDTW (1) 15.7% 5.7% 2.3% 0.9% 0.4% 0.2% 0.1% 0.1% 0.0% 0.0%

PP
47

82
F FastDTW 89% 61% 47% 38% 33% 28% 25% 23% 21% 20%

cwDTW(2) 14.6% 6.8% 3.8% 2.4% 1.5% 1.0% 0.7% 0.5% 0.3% 0.2%
cwDTW(

√
2) 13.7% 6.2% 3.1% 1.6% 0.9% 0.5% 0.3% 0.2% 0.1% 0.1%

cwDTW(1) 13.1% 5.8% 2.6% 1.1% 0.5% 0.3% 0.1% 0.1% 0.0% 0.0%

Table 2 summarizes the average error of FastDTW and cwDTW with different radius and scale parameter values
over HM4530F and PP4782F. It is clear that cwDTW still drastically outperforms FastDTW regardless of the parameter
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settings. When the radius is at least 60, cwDTW can always keep the mapping error to be lower than 1% for both
datasets, whereas the error of FastDTW is at least 20%. Further experiments show that to reduce the error of FastDTW
to be below 10%, one needs to set the radius parameter to be around 200, which consequently increases the search
space and thus runtime dramatically.

We further tested cwDTW on two benchmark datasets, Trace and Gunpoint, used in the evaluation of FastDTW
[10]. Each of these sets contains sequences with short lengths, ranging from 150 to 275. The comparison results
show that cwDTW still significantly outperforms both FastDTW and PrunedDTW in terms of the average error, under
all the settings of the radius parameter (Section S2). Taking together all the consistent results from Sections 4.3.1,
4.3.2 and S2, it can be concluded that cwDTW is very robust to the temporal scale, and can handle both balanced and
unbalanced cases efficiently and accurately. Two case studies are presented in Section S3 to illustrate how cwDTW
can correct errors in the warping path.

4.3.3 Importance of the feature extraction strategy

We further investigated the importance of the feature extraction strategy by peak picking described in Section 3.1.2,
for which we compared the proposed strategy with two alternative approaches: equal averaging and peak averaging.
Suppose at level l, there are Ll peaks. The proposed peak picking strategy uses these Ll peaks as the feature sequence.
For equal averaging, the original signal sequence is equally partitioned into Ll bins and the average signal values
in these bins are extracted as the feature sequence. For peak averaging, the original signal sequence is partitioned
according to the locations of the Ll peaks, and the average signal values in the window composed of the left and right
half bins of each peak are used as the feature sequence. Therefore, for all three strategies, the length of the feature
sequence is the same.

Figure 8: Comparison between FastDTW and cwDTW with three different strategies for feature extraction over the HM4530F and
PP4782F datasets. Here we fixed L = 4 for all the algorithms.

Figure 8 shows the comparison between FastDTW and cwDTW with three different feature extraction strategies
over HM4530F and PP4782F datasets. It is clear that the proposed cwDTW always performs the best regardless of the
radius value, followed by cwDTW with the peak averaging strategy for feature extraction. This suggests that the peak
signals in CWT contain more stable and useful information than the locally averaged values around the peaks. This is
consistent with previous studies which show that CWT can keep a compact and denoised representation of the original
signal [18]. The performance of the equal averaging strategy, on the other hand, is sensitive to the choice of the scale
parameter and is far less accurate than that of the original cwDTW and the peak averaging strategy. This implies that
the peak locations captured by CWT are important to extract useful information. These results justify the use of the
peak picking strategy as the feature extraction method in cwDTW.

5 Conclusion
We proposed a novel continuous wavelet dynamic time warping algorithm for unbalanced global mapping in nanopore
sequencing. The proposed algorithm performs coarsening on the input signal sequences via CWT with different
resolutions. Peaks are picked from CWT sequences to form feature sequences. The warping path obtained from a
coarser resolution is used to obtain a context-dependent boundary to constrain the warping path at a refiner resolution.
Comprehensive experiments on both real nanopore datasets with unbalanced sequences and benchmark datasets with
balanced sequences demonstrated the effectiveness and efficiency of cwDTW, which cannot be achieved by the state-
of-the-art DTW algorithms. The proposed algorithm provides a powerful tool for various nanopore sequencing tasks,
such as base calling, reads mapping, variant identification, and methylation detection. In addition, the generic nature
of cwDTW makes it a useful method for mapping temporal sequences of biological, video, audio and graphical data.
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[8] I. Sović, M. Šikić, A. Wilm, S. N. Fenlon, S. Chen, and N. Nagarajan, “Fast and sensitive mapping of nanopore sequencing
reads with graphmap.,” Nature communications, vol. 7, p. 11307, Apr. 2016.

[9] T. Szalay and J. A. Golovchenko, “De novo sequencing and variant calling with nanopores using poreseq.,” Nature biotech-
nology, vol. 33, pp. 1087–1091, Oct. 2015.

[10] S. Salvador and P. Chan, “FastDTW: Toward accurate dynamic time warping in linear time and space,” Intelligent Data
Analysis, vol. 11, no. 5, pp. 561–580, 2007.

[11] G. Al-Naymat, S. Chawla, and J. Taheri, “Sparsedtw: A novel approach to speed up dynamic time warping,” in Proceedings
of the Eighth Australasian Data Mining Conference-Volume 101, pp. 117–127, Australian Computer Society, Inc., 2009.

[12] D. F. Silva and G. E. A. P. A. Batista, Speeding Up All-Pairwise Dynamic Time Warping Matrix Calculation, pp. 837–845.

[13] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping for datamining applications,” in Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 285–289, ACM, 2000.

[14] S. Chu, E. Keogh, D. Hart, and M. Pazzani, “Iterative deepening dynamic time warping for time series,” in Proceedings of the
2002 SIAM International Conference on Data Mining, pp. 195–212, SIAM, 2002.

[15] D. Bylund, R. Danielsson, G. Malmquist, and K. E. Markides, “Chromatographic alignment by warping and dynamic pro-
gramming as a pre-processing tool for parafac modelling of liquid chromatography–mass spectrometry data,” Journal of
Chromatography A, vol. 961, no. 2, pp. 237–244, 2002.

[16] M. Müller, H. Mattes, and F. Kurth, “An efficient multiscale approach to audio synchronization.,” in ISMIR, pp. 192–197,
2006.

[17] T. Prätzlich, J. Driedger, and M. Müller, “Memory-restricted multiscale dynamic time warping,” in Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE International Conference on, pp. 569–573, IEEE, 2016.

[18] C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bulletin of the American Meteorological society, vol. 79,
no. 1, pp. 61–78, 1998.

[19] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 11, no. 7, pp. 674–693, 1989.

[20] J. Z. Song, K.-M. Duan, T. Ware, and M. Surette, “The wavelet-based cluster analysis for temporal gene expression data,”
EURASIP Journal on Bioinformatics and Systems Biology, vol. 2007, pp. 2–2, 2007.

[21] S. Barbon, R. C. Guido, L. S. Vieira, E. S. Fonseca, F. L. Sanchez, P. R. Scalassara, C. D. Maciel, J. C. Pereira, and S.-H. Chen,
“Wavelet-based dynamic time warping,” Journal of Computational and Applied Mathematics, vol. 227, no. 2, pp. 271–287,
2009.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2017. ; https://doi.org/10.1101/238857doi: bioRxiv preprint 

https://doi.org/10.1101/238857


12

[22] H. Skutkova, M. Vitek, K. Sedlar, and I. Provaznik, “Progressive alignment of genomic signals by multiple dynamic time
warping,” Journal of theoretical biology, vol. 385, pp. 20–30, 2015.

[23] C. A. Ratanamahatana and E. Keogh, “Three myths about dynamic time warping data mining,” in Proceedings of the 2005
SIAM International Conference on Data Mining, pp. 506–510, SIAM, 2005.

[24] M. Jain, S. Koren, J. Quick, A. C. Rand, T. A. Sasani, J. R. Tyson, A. D. Beggs, A. T. Dilthey, I. T. Fiddes, S. Malla, et al.,
“Nanopore sequencing and assembly of a human genome with ultra-long reads,” bioRxiv, p. 128835, 2017.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 23, 2017. ; https://doi.org/10.1101/238857doi: bioRxiv preprint 

https://doi.org/10.1101/238857


13

Appendix

S1 Context-dependent Bounded Dynamic Time Warping
It should be noted that all the peaks are directly extracted from the CWT of the signals, which is the main difference between
our algorithm and other DTW variants [10, 16, 17]. Different scales of CWT will result in peaks on different levels. In our
algorithm, given the base scale s0 and the level L, for l 6 L, the lth level scale is defined as sl = 2l−1s0. Consequently,
the lth CWT spectra for the raw signal sequence and the expected signal sequence are defined as Xl

p = CWT(Xp, α · 2l−1s0)
and Xl

g = CWT(Xg, 2
l−1s0), respectively. The peak extraction defined in Section 3.1.2 is denoted as operation [IXl , PXl ] =

PickPeaks(Xl), where PXl is the vector of peak intensities and IXl is the vector of peak indexes in the sequence Xl.
Our algorithm starts with the coarsest level L. For [IXL

g
, PXL

g
] = PickPeaks(XL

g ) and [IXL
p
, PXL

p
] = PickPeaks(XL

p ), there
is no boundary that can be used for mapping and the feature sequences are short. Thus, the original DTW is applied to map PXL

g

and PXL
p

(as illustrated in Fig. 5(B)). Here, we denote WL = DTW(PXL
g
, PXL

p
) as the path generated by DTW from the Lth level

feature sequences. For each wL = (i, j) element in WL, a mapping related to Xg and Xp can be obtained by remapping IXL
g

and
IXL

p
. For the (L− 1)th level, we constraint the search space according to the warping path from the Lth level. In general, for any

arbitrary level l, the feature sequences [IXl
g
, PXl

g
] = PickPeaks(Xl

g) and [IXl
p
, PXl

p
] = PickPeaks(Xl

p) can be mapped by DTW
constrained by the warping path, Wl+1, from the (l + 1)th level. The constraint is determined as follows:

1. Given Wl+1, remap each wl+1 = (i, j) to the original resolution sequences Xg and Xp to gain the mapping W orig
l+1 ;

2. For each worig
l+1 = (iorig, jorig), search in IXl

g
to find index i′ such that IXl

g
(i′ − 1) ≤ iorig and IXl

g
(i′) ≥ iorig; and find

index j′ such that IXl
p
(j′ − 1) ≤ jorig and IXl

p
(j′) ≥ jorig;

3. Form a tentative path, W̃l, for level l by setting w̃l = (i′, j′);
4. Interpolate between (i′ − 1, j′ − 1) and (i′, j′), i.e. fill the index gap in W̃l to create an interpolated warping path W ∗l ;
5. Generate the search boundary from W ∗l by extending each element (i, j) in four directions with radius r to create an area
i− r, i+ r, j − r, j + r (as illustrated in Fig. 5(C) and (D)).

That is, the warping path at level l is searched within a narrow boundary along the warping path at level l + 1, which makes
constrained DTW very efficient. On the other hand, we do not assume the warping paths at levels l and l + 1 to have any overlap,
which prevents the mapping error to be propagated.

S2 Performance Comparison on Benchmark Datasets with Similar Lengths
Two datasets from the UCRArchive5 are used to compare the performance of cwDTW, PrunedDTW6 and FastDTW. The two
datasets are the Trace dataset and the Gunpoint dataset, which were also used to evaluate FastDTW [10]:

Figure S1: Illustration of the representative time series sequences in the Trace (in blue) and the Gunpoint (in red) datasets.

Trace contains 200 time series sequences. This dataset contains real instrumentation data from a nuclear power plant with
several types of simulated transient events inserted that simulate instrumentation failure. Each time series sequence has a length of
275 points. Time series in this dataset have similar overall shapes, as illustrated as the blue curve in Fig. S1.

Gunpoint contains 200 time series sequences. Each time series sequence has a length of 150 points. The dataset contains two
classes, a gun being drawn from a holster and a gun being pointed. The movements are represented by a time series of the hand’s
x-axis position over time. An illustration of a representative sequence is given as the red curve in Fig. S1.

5http://www.cs.ucr.edu/˜eamonn/time_series_data/
6PrunedDTW is a recent DTW algorithm and the code can be found at http://sites.labic.icmc.usp.br/prunedDTW/.
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In this experiment, we randomly selected one of the sequences in each dataset as the reference sequence and used the others
as the query sequences. According to the shapes of the sequences of the two datasets, we roughly set the scale parameter s0 of
cwDTW to 100 for the Trace dataset and 60 for the Gunpoint dataset. Since the sequences in these datasets are very short, we used
L = 1.

(A) Trace (B) Gunpoint

Figure S2: Performance comparison in terms of the relative distance error of cwDTW, FastDTW and PrunedDTW on the Trace and
Gunpoint datasets. The x-axis is the radius parameter and the y-axis is the relative distance error to the original DTW.

Fig. S2 shows the comparison results of cwDTW, PrunedDTW and FastDTW with different settings of the radius parameter.
It is clear that cwDTW is always the best method on both datasets in terms of the relative distance error, regardless of the radius
parameter. FastDTW performs significantly better than PrunedDTW. In particular, when the radius is at least 15, cwDTW can reach
an error rate that is very close to zero. Therefore, cwDTW performs consistently well on mapping short sequences with similar
lengths.

S3 Case Studies
Here we show two case studies to investigate the reason for cwDTW’s superior performance. The first case study is a test case from
the Trace dataset used by FastDTW [10] and the second one is a test case from the HM45307 dataset. Here, we fixed L = 4, and
r = 10 for the first case and r = 50 for the second one, for both FastDTW and cwDTW (s0 =

√
2).

(A) A case study from the Trace dataset (B) A case study from the HM4530 dataset

Figure S3: Two case studies. The x-axis is the index of the expected signal sequence and the y-axis is the index of the raw signal
sequence. The blue, red and orange curves represent the warping paths returned by the original DTW, FastDTW and cwDTW,
respectively.

From Fig. S3, we can find that the warping path generated by cwDTW is very close to that by the original DTW. As shown in
Fig. S3(A), for the first case, the warping path generated by cwDTW is exactly the same as the one produced by the original DTW,
whereas the warping path generated by FastDTW has two regions with clear deviations (marked in green ovals). For the much
longer sequences shown in Fig. S3(B), the warping path generated by cwDTW still overlaps with the one by DTW in most of the
cases, whereas the one generated by FastDTW differs significantly from the optimal path. From the location marked by the green
oval in Fig. S3(B), the warping path of FastDTW starts deviating from the optimal path and this deviation propagates. This is due
to the fact that FastDTW uses a down sampling strategy and thus the points with important information might be lost. On the other
hand, since the peaks of the CWT spectra are context-dependent, it is possible for cwDTW to correct the mapping errors as the

7Data ID: c1bbcb7c-dc57-4469-9a5d-2cc486d5edd5.
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resolution becomes finer. This is demonstrated by the deviation in the warping path generated by cwDTW at index around 40000
in the x-axis in Fig. S3(B), where cwDTW corrects the mapping error so that the following path converges back to the optimal one.
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