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Abstract 15

Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human 16

nutrition. We characterized 192 cauliflower accessions from the USDA and IPK 17

genebanks with genotyping by sequencing (GBS). They originated from 26 different 18

countries and represent about 44% of all cauliflower accessions in both genebanks. The 19

analysis of genetic diversity revealed that accessions formed two major groups that 20

represented the two genebanks and were not related to the country of origin. This 21

differentiation was robust with respect to the analysis methods that included principal 22

component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was 23

higher in the USDA collection and significant phenotypic differences between the two 24

genebanks were found in three out of six traits investigated. GBS data have a high 25

proportion of missing data, but we observed that the exclusion of single nucleotide 26

polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles 27

produced very similar results. The results indicate that the composition and type of 28

accessions have a strong effect on the structure of genetic diversity of ex situ collections, 29

although regeneration procedures and local adaptation to regeneration conditions may 30

also contribute to a divergence. Fst-based outlier tests of genetic differentiation 31

identified only a small proportion (<1%) of SNPs that are highly differentiated between 32

the two genebanks, which indicates that selection during seed regeneration is not a 33

major cause of differentiation between genebanks. Seed regeneration procedures of both 34

genebanks do not result in different levels of genetic drift and loss of genetic variation. 35

We therefore conclude that the composition and type of accessions mainly influence the 36

level of genetic diversity and explain the strong genetic differentiation between the two 37

ex situ collections. In summary, GBS is a useful method for characterizing genetic 38

diversity in cauliflower genebank material and our results suggest that it may be useful 39

to incorporate routine genotyping into accession management and seed regeneration to 40

monitor the diversity present in ex situ collections and to reduce the loss of genetic 41

diversity during seed regeneration. 42
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Introduction 43

The extent and type of genetic variation present in the germplasm of a crop is an 44

important component of efficient breeding programs, because it provides useful 45

information for the broadening of breeding pools, the utilization of heterosis and the 46

selection of parental lines. Also, this information helps breeders to narrow the search for 47

new alleles at loci of interest and assists in the identification of markers linked to 48

desirable traits for introgression into new varieties [1]. An assessment of genetic diversity 49

is also essential for the organization, conservation and use of genetic resources to develop 50

strategies for optimal germplasm collection, evaluation and seed regeneration [2]. 51

Ex situ conserved plant genetic resources (PGR) are plant genotypes that are stored 52

in central storage facilities. PGR are utilized to improve modern cultivars by the 53

introgression of new and exotic genetic variation into breeding pools (e.g., [3]). However, 54

PGR often experience a loss of genetic diversity, stronger inbreeding depression 55

(especially in outcrossing crops) and accumulation of deleterious alleles because of small 56

population sizes of individual genebank accessions. These processes may negatively 57

affect the success of ex situ conservation after several regeneration cycles [4, 5]. In 58

addition, strong selection caused by adaptation to the seed regeneration environment 59

may further reduce genetic variation. 60

Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop 61

worldwide and a valuable component of a healthy diet because of a high content of 62

glucosinolates with anticancer properties [6, 7]. Cauliflower and broccoli are currently 63

cultivated worldwide on about 1.2 Mio hectares, with an annual production of over 21 64

Mio. tons [8]. Genetic diversity of cauliflower was analyzed with a diversity of marker 65

systems like amplified polymorphic DNA (RAPD; [9]) or simple sequence repeats 66

(SSRs; [10,11]). These initial genotyping studies indicated that genetic diversity for 67

cauliflower was limited [11–13]. More recently, whole genome resequencing revealed the 68

genetic structure of cauliflower germplasm and identified genomic regions with low and 69

high genetic diversity, respectively [14]. Whole genome sequencing approaches are still 70

too expensive for large numbers of genebank accessions, or not necessary because 71

smaller polymorphism numbers are sufficient for the analysis of diversity and genetic 72

relationships. Reduced representation sequencing methods such as 73

genotyping-by-sequencing (GBS) are a cost-effective alternative because these methods 74

allow a high degree of multiplexing and tens of thousands of polymorphisms are 75

identifed in a single reaction without the need of a reference sequence [15–17]. In the 76

context of PGR, GBS was used to characterize the genetic variation of maize, sorghum 77

and switchgrass with respect to their known ancestral history and geographical 78

origin [18–20]. In Brassicaceae, GBS was used to analyse genetic diversity in yellow 79

mustard [21]. 80

The density of polymorphisms identified by reduced representation sequencing 81

methods like GBS are sufficient to conduct genome-wide analyses of diversity and to 82

construct core collections for further phenotyping or breeding. Our objective was to use 83

GBS for assessing the genetic diversity and genetic relationship of randomly selected 84

accessions of the USDA and IPK ex situ genebanks, which harbor large collections of 85

cauliflower accessions. We also investigated whether imputation of missing genotypes 86

improves diversity estimates and whether genetic and phenotypic diversity among 87

cauliflower accessions are correlated. Cauliflower is a predominately outcrossing species 88

whose pollination depends on insects. A self-incompatibility (SI) system prevents 89

self-fertilization, but high variation in the extent of SI was reported in different 90

landraces and varieties [22]. This variation has been used to select highly inbred and 91

highly homozygous lines for breeding. Both SI and cytoplasmatic sterility (CMS) 92

mechanisms are employed in hybrid breeding of modern varieties, which is now the 93

predominant breeding method. For these reasons, genebank accessions of cauliflower 94
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may be highly variable in their genetic diversity. In the present study, we focused on 95

characterising species-wide diversity and included only a single individual of each 96

accession to maximise diversity of number of accessions given the resources available. 97

We observed a high level of population structure among accessions, and in particular a 98

strong genetic differentiation between accessions from the two genebanks. 99

Materials and Methods 100

Plant material 101

A total of 191 cauliflower accessions were randomly selected and ordered from the 102

genebanks of the United States Department of Agriculture (USDA), USA and IPK 103

Gatersleben, Germany. They represent 47% (100 of 212) of the USDA and 40% (91 of 104

227) of the IPK cauliflower accessions, respectively. We selected accessions from these 105

two large genebanks because they harbor large collections of cauliflower that are 106

expected to reflect the worldwide diversity of this vegetable crop. According to the 107

passport information, the sample consists of traditional cultivars, breeding material, 108

hybrids, unverified genotypes, collector material, commercial vegetable seeds and 109

landraces (Table 1). Accessions originate from 26 countries and 11 accessions are of 110

unknown geographic origin. In addition, a single plant of the wild type of Brassica 111

oleracea was obtained from Heidelberg Botanic Garden and Herbarium (HEID), 112

Germany. All accessions of this study including accession type and country of origin are 113

listed in Table S1. 114

Genebank Combined

Accession type USDA IPK sets

Traditional cultivars 3 79 82
Breeding material 0 4 4
Hybrids 0 1 1
Unverified genotypes 92 1 93
Collector materials 4 0 4
Commercial vegetable seeds 1 0 1
Landraces 0 6 6
Wild relative 0 0 1

Total 100 91 192

Table 1. Counts of different types of genebank accessions genotyped.

Field experiment and phenotypic measurements 115

All accessions were evaluated for six morphological traits at six environments consisting 116

of two cultivation methods (organic and conventional) and three growing seasons (June 117

2011 and April/August 2012) in a randomized complete block design (RCBD) with two 118

replicates in each environment [23]. Five random plants per plot were evaluated every 119

three days for the following traits: curd width (cm), cluster width (cm), number of 120

branches, length of the apical meristem (cm), length of the nearest branch to apical 121

meristem (cm) and number of days from planting to appearance of the floral buds. 122

Morphological traits were measured according to Lan and Patterson (2000) [24]. 123

Phenotypic values were calculated as mean over locations and seasons. 124
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DNA extraction and genotyping by sequencing 125

Genomic DNA was extracted from leaf tissue three weeks after sowing in the green 126

house from a single individual of each accession according to a standard CTAB 127

protocol [25]. The quality and quantity of extracted DNA were checked with Nanodrop 128

2000c (Thermo Scientific), Qubit 2.0 Fluorometer (Life Technologies) and 3% agarose 129

gel. The final concentration of each DNA sample was adjusted to 100 ng/ml for DNA 130

digestion. GBS was carried out according to the protocol of Elshire et al. [15] with 131

minor modifications. The DNA was digested with the ApeK1 restriction enzyme. A 132

total of 96 barcodes were used, of which 64 barcodes were obtained with the web tool at 133

http://www.deenabio.com/services/gbs-adapters and 32 barcodes were taken 134

from [15]. All barcodes have an even distribution in length (4-8 nucleotides) and 135

nucleotide composition of nucleotides at each position (Table S2). The 192 genotypes 136

were divided into two libraries, each consisting of 96 genotypes. Before sequencing the 137

GBS libraries, the distribution of fragment sizes were determined with an Agilent 2100 138

Bioanalyzer (Agilent Technologies, Santa Clara, CA) to verify that adapter dimers are 139

absent and DNA fragments range between 170-350 bp [15]. The two libraries were 140

sequenced on two lanes of an Illumina HiSeq1000 at the Kompetenzzentrum 141

Fluoreszente Bioanalytik (KFB), Regensburg, Germany to produce 100 bp long 142

paired-end reads. 143

Sequence data analysis 144

Sequence reads were filtered for sequencing artifacts and low quality reads with custom 145

Python scripts, bwa [26] and FastQC [27]. Reads mapping to the PhiX genome, which 146

is used for calibration in Illumina sequencing, were identified and removed with bwa. 147

All reads with ambiguous ‘N’ nucleotides and reads with low quality values were 148

discarded. Remaining sequence reads were demultiplexed into separate files according to 149

their barcodes. After removal of the barcode sequence and end-trimming, reads had a 150

length of 88 bp. The pre-processed reads were then aligned to the genome of Brassica 151

oleracea sp. capitata cabbage line 02-12 [28] with bwa. SNP calling was performed with 152

SAMtools [29], bcfutils, vcfutils and custom Python scripts. The VCF file was parsed to 153

retain SNP positions with a coverage of at least 30, whereby at least ten reads had to 154

confirm the variant nucleotide. Positions not fulfilling these criteria were marked and 155

considered as missing data. A distance matrix was calculated using the SNP data as 156

input (Supplementary Note 1). 157

Analysis of genetic structure and genetic diversity 158

The genetic structure of the sample was investigated by various methods for comparison. 159

They included principal component analysis (PCA), as implemented in the R package 160

adegenet [30]. Also, a PCA of six morphological traits was performed with the prcomp 161

function in the stats R package [31] and a multivariate analysis of variation (MANOVA) 162

with the manova function of R. For post-hoc tests of phenotypic differentiation, a 163

single-factor ANOVA was calculated and a Bonferroni correction applied by applying a 164

critical threshold of p = 0.05/6 = 0.0083 to test results. The correlation between genetic 165

and phenotypic distances based on the PCA was determined with a Mantel test [32] in 166

the ade4 R package [33]. Principal coordinate analysis (PCoA) based on pairwise Fst 167

values between genotypes calculated with R adegenet R package [30], was used for 168

further analysis of population structure with the ape R package [34]. In addition, the 169

genetic relationship among accessions was assessed with a neighbor-joining tree (NJ 170

tree) based on a pairwise distance matrix with ape R package [34]. Population structure 171

was inferred with ADMIXTURE [35]. The number of subpopulations analyzed ranged 172
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from K = 1 − 10 and cross-validation was used to estimate the value of K which best 173

fits the data [36]. An Analysis of Molecular Variance (AMOVA) was carried out with 174

Arlequin v3.5.3.1 [37]. The extent of genetic differentiation (Fst) between the two 175

genebanks was estimated with the pairwise.fst function in the R package adegenet [30]. 176

For each group of accessions from USDA and IPK genebanks, we calculated the 177

observed and expected heterozygosities, Ho and Hexp, as well as the inbreeding 178

coefficient (F ) with adegenet. We also calculated percent polymorphic loci, %P, and 179

nucleotide diversity, π, with the R package pegas [38]. To compare the effects of missing 180

values and of genotype imputation on the population structure inference and genetic 181

diversity estimates, we carried out the analyses with three data sets: 1) data without 182

missing values, where all markers with missing values were excluded; 2) data with 183

missing values, in which all markers with missing values were retained; and 3) imputed 184

data, in which the missing values were imputed with fastPHASE [39]. 185

Detection of outlier SNPs 186

Outlier tests for highly differentiated SNPs between the sets from the two genebanks 187

(USDA and IPK) were based on a coalescent-based simulation method [40] implemented 188

in LOSITAN [41]. This method identifies putative targets genes that differentiated in 189

response to selection based on the distributions of expected heterozygosity and Fst 190

values under an island model. LOSITAN was run in two steps: in the first step, an 191

initial run with 50,000 simulations was performed with all SNPs and using the mean Fst. 192

After excluding a candidate subset of selected SNPs determined in the initial run, the 193

distribution of neutral Fst values were calculated. We also used Arlequin 3.5 [37] to 194

detect outlier SNPs by accounting for a hierarchical genetic structure based on 10,000 195

simulations under a hierarchical island model. For both methods, SNPs outside the 99 196

and 1% confidence areas were identified as candidate genes potentially affected by 197

directional and balancing selection, respectively. A further test of differentiation by 198

selection was conducted with BayPass v2.1 [42] which is a fast implementation of the 199

Bayenv2 algorithm [43].We first estimated the population covariance matrix Ω, which is 200

a variance-covariance matrix of allele frequencies, for the two groups of accessions from 201

each genebank was calculated from the final run of the MCMC after 100,000 iterations. 202

We used 360 (25%) randomly selected SNP markers from the SNP dataset without 203

missing values. To evaluate the robustness of this matrix, we repeated the calculation 204

with five randomly drawn SNP sets and calculated the average correlation coefficient of 205

estimated variance and covariance parameters from all 10 pairwise comparisons of 206

matrices. The resulting average correlation coefficient was 0.99, which indicates a high 207

convergence of Ω matrices based on different random SNP sets. The Ω matrix was then 208

used to control for the genome-wide genetic relationship among groups in the calculation 209

of the XTX statistics for each SNP by using 100,000 iterations of the MCMC. The 210

XTX statistic is equivalent to the Fst value as a measure of population differentiation. 211

Data availability 212

Raw sequence data have been submitted to Short Read Archive (SRA) under accession 213

number PRJEB8701. Aggregated data (e.g., SNP calls) and analysis scripts are 214

available on the Zenodo data repository (DOI:10.5281/zenodo.887955). 215
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Results 216

SNP identification by GBS analysis 217

To analyse genetic diversity in the sample we included one individual plant per genebank 218

accession. The sequencing data of the 192 accessions consisted of 455 Mio. reads with a 219

length of 100 bp. Quality filtering removed 5.2% of reads because they mapped to the 220

PhiX genome or were of low quality, and read number per accession ranged from only 80 221

to 7.1 Mio with an average of 2.4 Mio reads. Eighteen accessions with less than 200,000 222

reads were excluded from further analysis because the proportion of missing data in 223

these accessions was too high. A total of 133 Mio reads mapped to the B. oleracea 224

reference genome (Figure 1). The percentage of mapped reads per genotype against B. 225

oleracea ranged from 14% to 35% with an overall average of 29% (Table S3). Based on 226

the mapping to the Brassica oleracea reference genome, 120,693 SNPs were detected in 227

the remaining 174 samples (120,693 SNPs with missing data and 1,444 SNPs without 228

missing data in any of the accessions). The mean percentage of missing data across all 229

genotypes was 42% and values ranged from 19% to 77% per genotype. The number of 230

SNPs and percentage of missing data per genotype are shown in Table S4. 231

Mapped reads
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Fig 1. Histogram of read counts mapped to the reference genome.

Analysis of genetic population structure 232

The genetic structure of the whole collection (n = 174) was analyzed with PCA, PCoA 233

and ADMIXTURE. Here, we present the results for the set of 1,444 SNPs without 234

missing data, but the same results were obtained with the other two data sets with 235

missing or imputed data (in both cases, n = 120, 693), which are provided as 236

Supplementary Information. 237

The marker-based PCA showed a clear differentiation between the two genebanks for 238

the SNP data (Fig. 2A). The first two axes explained 21% of the overall variance and 239
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Fig 2. Principal component analysis (PCA) of SNP markers and
phenotypic traits. (A) PCA of 1,444 GBS-derived SNPs without missing data in any
of the accessions. (B) PCA of six phenotypic traits measured in two locations over three
growing periods. In both PCA analyses, the two larger dots indicate the centroids and
their confidence regions for the genebanks.

separated accessions from the USDA and IPK genebanks. The SNP data sets with 240

missing and imputed values showed the same genetic structuring (Fig. S1). 241

Further analyses confirmed the genetic differentiation of accessions and reveal that 242

the largest proportion of genetic variance is explained by the difference between the two 243

genebanks. A PCoA based on pairwise Fst values separated the USDA from the IPK 244

accessions on the first principal component axis, which explained 24% of the overall 245

variance, whereas the second axis explained only 8% of the variance (Fig. S2). A 246

neighbor joining (NJ) tree based on a pairwise distance matrix separated the 174 247

accessions into two distinct groups (Fig. 3A) representing the two genebanks. In both 248

groups, accessions are not differentiated into well-supported subgroups that reflects the 249

country of origin (Fig. 3B). The NJ trees based on the SNP data with missing or 250

imputed data (120,693 SNPs in both data sets) confirm these results (Fig. S3). 251

USDA
IPK

BA

Fig 3. Neighbor joining tree of 174 cauliflower accessions. The NJ tree is
based on the pairwise distance matrix using data without missing values (1,444 SNPs).
(A) The two genebanks are represented as different colors. (B) Each country of origin of
the original seeds as stated in the passport information is represented with a different
color.

In addition to the differentiation between genebanks the previous analyses also 252

indicate the presence of additional clusters. We therefore used ADMIXTURE to infer 253

population structure and to estimate the number of genetic clusters that is most 254
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consistent with the data. For K = 2, two groups mainly differentiated between the two 255

genebanks (Fig. 4, S4 and S5). Based on cross-validation, ADMIXTURE identified five 256

genetically different clusters as most consistent with the GBS data without missing 257

values With K = 5, the IPK accessions cluster into two distinct groups with some 258

degree of admixture, whereas the USDA accessions do not form distinct clusters and 259

show a high level of admixture (Figure 4). 260
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Fig 4. Genetic structure of 174 cauliflower genotypes inferred with
ADMIXTURE The number of predefined clusters ranged from K = 2 − 6 and was
inferred using SNPs without missing values (n = 1, 444).

Despite the clear genetic differentiation between the two genebanks, a very large 261

proportion of genetic variation (90%) segregates within rather than between genebanks 262

(5%; AMOVA, p < 0.001; Tables 2, S5 and S6). This is consistent with a low overall 263

genetic differentiation between the two genebanks (Fst = 0.029). The mean pairwise Fst 264

of accessions within each genebank was 0.301 for the USDA and 0.160 for the IPK 265

accessions (estimated from 1,444 SNPs without missing values), showing that the USDA 266

accessions are more differentiated from each other than the IPK accessions. 267
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Table 2. Analysis of molecular variance (AMOVA) of different groups
based on SNP data without missing values.

Level of variation Sum of Variance % variance P -value
Squares component explained

Among groups (genebanks) 1,032 5.43 6 <0.001
Within groups 31,448 91 94 <0.001
Total 32,489 96

Levels of genetic diversity 268

For a further comparison between accessions from the two genebanks, we calculated 269

various genetic diversity parameters (Table 3). Values for expected heterozygosity, 270

observed heterozygosity, percentage of polymorphic SNPs and nucleotide diversity were 271

all larger in the USDA than in the IPK accessions. Accessions showed a high inbreeding 272

coefficient (F > 0.5), which did not differ between both genebanks. 273

Table 3. Measures of diversity within two genebanks based three different
data sets. Sample size of USDA accessions, n = 93 and of IPK accession,
n = 81.

SNPs without missing values SNPs with missing values Imputed SNPs
(1,444 SNPs) (120,693 SNPs) (120,693 SNPs)

Statistic USDA IPK USDA IPK USDA IPK

He 0.157 0.088 0.214 0.149 0.201 0.107
Ho 0.167 0.127 0.419 0.339 0.094 0.077
F 0.501 0.500 0.501 0.501 0.495 0.507
π 0.158 0.089 0.157 0.095 0.202 0.110

He = Expected heterozygosity, Ho = Observed heterozygosity, F = Inbreeding
coefficient, π = nucleotide diversity.

Identification of highly differentiated outlier SNPs 274

The strong genetic clustering of accessions from the two genebanks despite a low overall 275

FST value suggests that a small number of SNPs are responsible for the differentiation. 276

To identify polymorphisms whose allele frequencies differ between the two genebank 277

collections, we performed outlier tests using the GBS data without missing values (1,444 278

SNPs). LOSITAN identified 182 (12.6%) SNPs as outliers (Table S7) based on Fst 279

values between the two populations (FDR < 0.1). Arlequin identified only 79 (5.5%) 280

SNPs as outliers (Table S8). Since no p-values can be calculated for the XTX statistic, 281

we ordered SNPs by the rank order of XTX values, as suggested by [43] to detect 282

strongly differentiated SNPs. A total of 73 SNPs were among the top 5% (Table S9). 283

The Venn diagram in Figure 5 shows little overlap of highly differentiated SNPs 284

detected between pairs of methods, and only one SNP was identifed as an outlier by all 285

three methods. 286

Phenotypic differentiation between genebanks 287

Since the genetic analysis indicated a strong differentiation of accessions from the two 288

genebanks, we also investigated their phenotypic differentiation. A PCA of phenotypic 289
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Fig 5. Overlap between outlier SNPs. Venn diagram of all significantly
differentiated SNPs detected with Arlequin (p < 0.05), LOSITAN (p < 0.05) and
BayPass (top 5% XT X values).

traits indicated a weaker differentiation between USDA and IPK accessions (Fig. 2B) 290

than the genotyping data, although the centroids of each cluster are clearly 291

differentiated. The IPK accessions clustered more strongly than the USDA accessions 292

which indicates a lower phenotypic variation and is also consistent with the genotyping 293

data. The lower phenotypic than genetic differentiation between the genebanks reflects 294

genotype x environment (GxE) interactions of phenotypic traits as inferred in a 295

previous study [23]. The first principal component explained almost half of phenotypic 296

variation in the total sample and the second about 20% (Figure 6A). The variable 297

correlation plot indicates that the curd related traits are strongly related to the first 298

principal component, whereas days to bolting (flowering time) shows a very high 299

correlation with the second principal component (Figure 6B). 300
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Fig 6. Parameters of PCA with phenotypic variation. (A) Percent variance explained
by each of the six principal components. (B) Variable correlation plot on the first two
principal components. The quality of traits on the PC map is expressed as distance
between traits and the origin. Traits that are distant from the origin are well
represented on the factor map.

To test which traits are significantly differentiated between genebanks, we used 301
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MANOVA for comparison because some traits are strongly correlated (Figure S6). The 302

strongest correlation is between length of nearest branch to apical meristem and length 303

of apical meristen (r = 0.798, p = 10−12). The phenotypic variance was different 304

between accessions from both genebank, and the MANOVA with genebank as grouping 305

factor strongly supported the phenotypic differentiation (Pillai test statistic: 0.3158, 306

p < 10−11). A post-hoc analysis of single-factor ANOVA with Bonferroni correction 307

revealed that only the traits curd width (F = 15.4, p = 0.0001254) and cluster width 308

(F = 67.8, p < 10−14) differed between genebanks. 309
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Fig 7. Box plots of six curd-related traits in accessions grouped by seed source (USDA
and IPK genebanks). Significant differences between the two genebanks as observed
from a single-factor ANOVA with Bonferroni correction of p-values. The p-values for
the two traits with significant differences are shown. Individual phenotype values are
averages of 6 environments (2 locations and 3 growing seasons each). The upper and
lower hinges correspond to the first and third quartiles (the 25th and 75th percentiles),
and the whiskers extend to the largest value no further than 1.5 * IQR (inter-quartile
range), or distance between the first and third quartiles. Phenotypic data are from [23].

Finally, a Mantel test showed a positive correlation of phenotypic and genetic 310

similiarities between pairs of accessions (r = 0.291, p < 0.001). 311
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Discussion 312

Assessment of genetic diversity by GBS 313

Previously, the genetic diversity of cauliflower was assessed with different types of 314

markers and based on small data sets. This limitation can be overcome by 315

sequencing-based methods like GBS [15]. Although we generated a large number of raw 316

reads, a substantial proportion of reads (71% on average) did not align to the B. 317

oleracea reference genome, similar to what has been observed in maize [18]. Such a high 318

proportion of unmapped reads may result from the evolutionary divergence between the 319

subspecies B. oleracea spp. capitata (cabbage) from which the reference genome was 320

produced and cauliflower, B. oleracea var. botrytis. This interpretation is confirmed by 321

the pan-genome analysis of B. oleracea cultivars [14,44]. Another explanation is that 322

the reference genome is still incomplete. The proportion of matching reads may be also 323

influenced by a limited sensitivity of the Burrows-Wheeler Alignment (BWA) algorithm 324

or a high proportion of presence/absence variation (PAV) [18]. 325

GBS was used for a wide range of species and is an effective method for generating 326

tens of thousands SNP markers [15, 17], but the high proportion of missing data, which 327

in our study varied between 19% and 77% per accessions, is a major disadvantage [15]. 328

Possible solutions to reduce the proportion of missing data include the sequencing to 329

higher read depths [16] or the imputation of missing values, which we pursued in this 330

study. A comparison of diversity estimates obtained with the three SNP sets indicates 331

that estimates of observed heterozygosity, Ho, are influenced by missing data, whereas 332

estimates of the inbreeding coefficient and nucleotide diversity, π are very similar 333

(Table 3). Therefore, genome-wide parameters like diversity or genetic structure can be 334

estimated with or without missing data. Due to the rapidly decreasing sequencing costs 335

and protocols for low-cost preparation of whole genome sequencing libraries [45], low 336

coverage genome sequencing is rapidly becoming the method of choice for characterizing 337

the genomic diversity of species with moderate genome sizes such as B. oleracea. The 338

correlation of phenotypic and genotypic distance as indicated by the Mantel test 339

indicates that genotyping can be used to assemble phenotypically diverse core 340

collections for further evaluation. 341

Patterns and causes of genetic structure in cauliflower 342

accessions 343

Despite the high proportion of missing data, GBS allowed to analyze genetic diversity 344

and population structure in B. oleracea genebank accessions. Our sample of cauliflower 345

accessions form groups that do not reflect their geographic origin but the seed source 346

(i.e., ex situ genebank). A geographic population structure was found in previous survey 347

of cauliflower cultivars [9] despite a smaller sample size than our study. Furthermore, 348

patterns of genetic diversity of switchgrass, maize and sorghum genebank accessions 349

obtained with GBS was consistent with the ancestral history, morphological types and 350

geographic distribution of these crops [18–20]. The clustering and the different levels of 351

genetic diversity between genebanks suggest that other factors than geographic origin 352

determine the genetic relationship of accessions. 353

First, the accession types (landraces vs. cultivars) and collection dates may result 354

from different collection strategies between genebanks that may be responsible for the 355

observed clustering of accessions. For example, the USDA sample includes a much 356

higher proportion of unverified material than the IPK sample which mostly consist of 357

modern varieties. Passport data suggest that many accessions in the ’unverified’ group 358

of USDA and the ’cultivar’ group of IPK reflect common cultivars (or possibly 359

landraces) that were commercially available during the time of collection. Five 360
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accessions in the IPK set differed markedly from the other IPK accessions in all 361

analyses and they clustered together with the set of USDA accessions. They consist of 362

four landraces and one hybrid (Table S1), supporting the notion that the USDA 363

genbank included more sources of germplasm that resulted in a larger collection of 364

genetically diverse landraces (which were labeled as ’unverified’) than the IPK genbank. 365

The significant difference in average collection date between both genebanks may 366

further contribute to their differentiation. According to the passport data, the USDA 367

accessions are on average more than 15 years older than the IPK accessions. The USDA 368

accessions were collected between 1948 to 1981 with an average of 1959, whereas the 369

IPK accessions were collected between 1957 to 2002 with an average of 1974. For this 370

reason, the observed population differentiation may also be caused by various process 371

such as breeding progress, seed management strategies, inbreeding or genetic drift of B. 372

oleracea germplasm. Unfortunately, limited passport information did not allow us to 373

account for the breeding history and relationships among varieties as co-variate in the 374

population structure analysis and to disentangle the effects collection date and 375

geographic origin on diversity estimates. In addition, the absence of a strong geographic 376

structure may result from a combination of low genetic diversity in cauliflower [11,12], 377

an exchange of seeds over large distance in historical time, and a high level of gene flow 378

due to outcrossing with other varieties [46]. On the other hand, the lower genetic 379

diversity of the IPK relative to the USDA accessions may be caused by a higher 380

proportion of modern cultivars, which have a narrower genetic basis resulting from 381

modern breeding methods. These different processes are difficult if not impossible to 382

reconstruct and confound the analysis of genetic diversity. 383

A second explanation for differentiation between genebanks are seed regeneration 384

procedures which may affect genetic diversity [47–50]. In several species, ex situ 385

conserved genetic resources had a lower diversity than in situ conserved 386

populations [51–53] or historical material [46]. A reduction in the diversity of ex situ 387

genebank material is mainly caused by a small number of individuals per accession that 388

are usually conserved. Such accessions are exposed to genetic bottlenecks, inbreeding 389

depression, the accumulation of mildly deleterious mutations and a loss of genetic 390

diversity by random drift [6, 52, 54, 55]. A high overall inbreeding coefficient of >0.5 for 391

all accessions estimated from the GBS data suggest an impact of small population size 392

on genetic diversity. The inbreeding coefficient depends on the breeding history of the 393

material before inclusion into the genbank and the seed propagation protocols. The seed 394

regeneration procedures at the USDA and IPK genebanks likely did not contribute 395

much to the observed differentiation. Seed regeneration at the USDA genebank is 396

carried out in 12 x 24 ft cages (corresponding to 26.8 m2) with mesh covers to prevent 397

cross-pollination by insects and a population size of at least 100 plants per accession. At 398

IPK, cauliflower accessions are cultivated in small glass houses containing other species 399

as well. The total area is about 6 m2 and population size is 20-25 plants. At IPK, seeds 400

are regenerated after 20 years and at USDA after 15 years, which on average 401

corresponds to 1.5 and 4 regeneration cycles for the material included in this study. 402

Using the formula for calculating the expected decay in heterozygosity, 403

Ht = H0 × (1 − 1/Ne)
t [56], the expected relative decay in heterozygosity of USDA 404

genebank accessions is ∆H = (1 − 1/100)4 = 0.96 under the assumption that on average 405

each accession has undergone 4 regeneration cycles, and of IPK accessions 406

∆H = (1 − 1/20)1.5 = 0.93. Although a more rapid decay in heterozygosity is expected 407

in the IPK collection, the difference is rather small. 408

Natural and/or artificial selection during seed propagation of genebank accessions 409

may also impact genetic diversity and differentiation in ex situ genebanks. The 410

cauliflower accessions were collected in different regions of the world, and selection of 411

genes controlling photoperiod sensitivity, flowering time, and other traits caused by 412
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local adaptation to the propagation environment may have occured. The effect of 413

selection on fitness and genetic diversity can be quite strong. A significant correlation 414

between genetic and phenotypic distance shown by the Mantel test and a high 415

heritability of traits like flowering time [23] indicate a strong phenotype-genotype 416

relationship that facilitates a rapid evolutionary response to selection. During seed 417

regeneration, pollination is managed with commercial pollinators like bumblebees, but 418

the reproductive success is not closely monitored and the effect of selection on the 419

relationship structure is unknown. To test the potential impact of selection, we used 420

three outlier tests to identify highly differentiated SNPs. Out of 1,444 tested SNPs 421

without missing data, 12.5% (LOSITAN), 5.5% (Arlequin) and 5% (BayPass) were 422

classified as highly differentiated between the two sets of accessions. The three methods 423

differ in their approach to control for population structure and kinship to reduce the 424

proportion of false positives. Shimada et al. [57] suggested to consider only SNPs that 425

were identified by more than one method as true outliers, and such an approach was 426

further confirmed in a simulation study of non-equilibrium populations [58]. Hence, in a 427

comparison of outliers identified in our data (Figure 5), we identified only 0.8% (12 out 428

of 1,444 SNPs) of SNPs as outliers by LOSITAN and BayPass, 0.6% (0) by LOSITAN 429

and Arlequin, 0% (0) of SNPs by BayPass and Arlequin, and only a single SNP by all 430

three methods. Overall, this is a small proportion (<1%) of the total number of SNPs 431

tested. In conclusion, if natural or unintentional artificial selection during seed 432

regeneration contribute to genetic differentiation, it may either weak selection, affect 433

only few genomic regions or occur in regions that were not tagged by the SNPs of this 434

study. The identification of strongly differentiated SNPs rests on the assumption that 435

both collections derive from the same ancestral population, which likely is not true for 436

our sample. The comparison of allele frequencies of accessions over seed regeneration 437

cycles with higher marker densities is a more powerful approach to detect the effect of 438

selection on ex situ genebank material, and facilitates the close monitoring of allele 439

frequency changes and a better management of ex situ germplasm collections. 440

Characterizing genebank accessions with GBS 441

A major advantage of GBS and related methods is their applicability to any species. 442

These methods do not entail setup costs like SNP arrays and do not cost much per 443

individual genotype, but provide sufficient power for genome-wide analyses of 444

population structure and genetic relationships. On the other hand, GBS has a high 445

proportion of missing data that may reduce the power for correct estimation of 446

population parameters. Data imputation was suggested as a solution because it can be 447

accurate and then increase the quality of genomic selection or association 448

mapping [59,60]. In our study, however, a comparison between three GBS-derived data 449

sets consisting of SNPs without missing values, SNPs with missing values, and imputed 450

SNPs revealed only a minor effect of missing data and data imputation on the ability to 451

infer the population structure, although diversity estimates differed significantly 452

between imputed and non-imputed data (Table 2). This result confirms a previous 453

study [61] in which the estimation of heterozygosity and inbreeding coefficients was less 454

accurate with a high proportion of missing data and estimation biases were much 455

smaller for data sets with missing values than for imputed data sets. Furthermore, the 456

density of GBS-derived markers are frequently too low to detect footprints of 457

selection [62] caused by the different history of genebank collections or ongoing selection 458

during seed regeneration. The correlation of genetic and phenotypic differentiation of 459

collections (Figure 7) indicates that GBS is a highly suitable approach for defining core 460

collections and sets of genetically differentiated genebank accessions that are further 461

used for whole genome sequencing, phenotypic characterization or the establishment of 462

(pre-)breeding populations. 463
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Conclusions 464

Our study outlined the usefulness of GBS to characterize the genetic diversity of 465

genebank accessions of a minor crop like cauliflower. A key result was the strong 466

differentiation of genetic diversity between the two genebanks which most likely reflects 467

the different collection histories of the two genebanks. Due to a lack of detail in the 468

passport information, factors influencing genetic diversity like sampling strategy, 469

regeneration procedures and selection during regeneration could not be well 470

reconstructed, although the type of accessions included (landraces vs. cultivars) likely 471

has a strong influence. The low cost of GBS and low-coverage genome sequencing 472

suggest that a lack of passport information can be substituted by high-resolution 473

genotyping and suitable analysis methods to characterize the diversity of germplasm 474

from different sources. This facilitates the exchange of material between genebanks and 475

the construction of core collections that harbor a high proportion of species-wide genetic 476

and phenotypic diversity for a more efficient utilization of plant genetic resources [63]. 477

GBS-derived polymorphisms may facilitate an exchange of germplasm between 478

genebanks, but this requires an infrastructure for genomic data management similar to 479

the information system already in place for passport data. Our work also demonstrated 480

monitoring of genetic diversity during seed regeneration allows to manage diversity 481

within accessions to mitigate some disadvantages of small population sizes of ex situ 482

conserved plant genetic resources, in particular for outbreeding crops such as cauliflower. 483
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