
“maindocument” — 2017/12/22 — page 1 — #1

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Sequence analysis

Hybrid correction of highly noisy Oxford Nanopore
long reads using a variable-order de Bruijn graph
Pierre Morisse 1,∗, Thierry Lecroq 1,∗ and Arnaud Lefebvre 1,∗

1Normandie Univ, UNIROUEN, LITIS, 76000 Rouen, France

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The recent rise of long read sequencing technologies such as Pacific Biosciences and Oxford
Nanopore allows to solve assembly problems for larger and more complex genomes than what allowed
short reads technologies. However, these long reads are very noisy, reaching an error rate of around 10 to
15% for Pacific Biosciences, and up to 30% for Oxford Nanopore. The error correction problem has been
tackled by either self-correcting the long reads, or using complementary short reads in a hybrid approach,
but most methods only focus on Pacific Biosciences data, and do not apply to Oxford Nanopore reads.
Moreover, even though recent chemistries from Oxford Nanopore promise to lower the error rate below
15%, it is still higher in practice, and correcting such noisy long reads remains an issue.
Results: We present HG-CoLoR, a hybrid error correction method that focuses on a seed-and-extend
approach based on the alignment of the short reads to the long reads, followed by the traversal of a
variable-order de Bruijn graph, built from the short reads. Our experiments show that HG-CoLoR manages
to efficiently correct Oxford Nanopore long reads that display an error rate as high as 44%. When compared
to other state-of-the-art long read error correction methods able to deal with Oxford Nanopore data, our
experiments also show that HG-CoLoR provides the best trade-off between runtime and quality of the
results, and is the only method able to efficiently scale to eukaryotic genomes.
Availability and implementation: HG-CoLoR is implemented is C++, supported on Linux platforms and
freely available at https://github.com/morispi/HG-CoLoR
Contact: pierre.morisse2@univ-rouen.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Since a few years, long read sequencing technologies are being developed,
and allow the solving of assembly problems for large and complex genomes
that were, until then, hard to solve with the use of short reads sequencing
technologies alone. The two major actors of these long read sequencing
technologies are Pacific Biosciences and Oxford Nanopore. The latter,
with the release of the MinION device, that can be run from a simple
laptop, allows a low-cost and easy long read sequencing.

Even though long reads can reach lengths of tens of kbps, they also
reach a very high error rate of around 10 to 15% for Pacific Biosciences,
and up to 30% for Oxford Nanopore. Due to this high error rate, correcting
long reads before using them in assembly problems is mandatory. Many
methods are available for short read error correction, but these methods are

not applicable to long reads, on the one hand because of their much higher
error rate, and on the other hand, because most of the error correction tools
for short reads focus on substitution errors, the main error type in Illumina
data, whereas insertions and deletions are more frequent in long reads.

1.1 Related works

Recently, several methods for long read error correction have been
developed. These methods can be divided into two main categories: either
the long reads are self-corrected by aligning them against each other
(PBDAG-Con (Chin et al., 2013), PBcR (Berlin et al., 2015)), or either a
hybrid strategy, using complementary short reads is adopted. In this case,
the short reads can either be aligned to the long reads (Nanocorr (Goodwin
et al., 2015), CoLoRMap (Haghshenas et al., 2016)), or be assembled into
contig on which the long reads are aligned (HALC (Bao and Lan, 2017)).
de Bruijn graph based methods, where the long reads are corrected by

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted December 22, 2017. ; https://doi.org/10.1101/238808doi: bioRxiv preprint 

https://doi.org/10.1101/238808


“maindocument” — 2017/12/22 — page 2 — #2

2 P. Morisse et al.

traversing the paths of the graph, also started to develop recently, in the
hybrid case (LoRDEC (Salmela and Rivals, 2014), Jabba (Miclotte et al.,
2016)), as well as in the non-hybrid case (LoRMA (Salmela et al., 2017),
Daccord (Tischler and Myers, 2017, unpublished)). NaS (Madoui et al.,
2015), instead of using short reads to correct the long reads, uses the long
reads as templates in order to recruit short reads and assemble them into
contigs, used as corrected sequences. This approach requires to align the
short reads to the long reads, in order to find seeds. The seeds are then
compared to all the other short reads, in order to recruit new short reads,
corresponding to low quality regions of the long read.

1.2 Limitations of current methods

Most of the current long read error correction methods only focus on
Pacific Biosciences long reads. Therefore, they manage to perform error
correction on long reads that display a maximum error rate of about 10 to
15%, but often do not manage to reduce the error rate at all when correcting
long reads having higher error rates. As Oxford Nanopore, even with recent
chemistries, faces difficulties lowering the error rate of the long reads below
15%, only a handful of methods can be applied on such data.

Moreover, those few methods, although managing to perform
satisfying error correction, tend to yield unsatisfying assembly results.
Our experiments show that only NaS manages to correct the long reads
well enough so that they can assemble into a decent number of contigs,
even on highly noisy data, but suffers from large runtimes.

1.3 Contribution

We introduce HG-CoLoR, a new long read hybrid error correction method
that combines both the main idea from NaS to initiate the correction by
using short reads that align to the long reads as seeds, and the use of a
variable-order de Bruijn graph, built from the short reads, in order to get
rid of the time consuming step of comparing all the short reads against
each other. HG-CoLoR indeed focuses on an approach where the seeds
are used as anchors on the variable-order de Bruijn graph, that is traversed
in order to link them together and to produce the corrected long reads.
Our experiments show that, while producing comparable results, even on
highly noisy long reads, HG-CoLoR is several orders of magnitude faster
than NaS. They also show that, when compared to state-of-the-art hybrid
and non-hybrid long read error correction methods, HG-CoLoR provides
the best trade-off between runtime and quality of the results, both in terms
of reduction of the error rate and in terms of contiguity of the assemblies
generated from the corrected long reads.

2 NaS Overview
NaS is a hybrid method for the error correction of long reads that, unlike
other methods, generates corrected sequences from assemblies of short
reads, instead of using the short reads to correct the long reads. More
precisely, a corrected long read is produced as follows.

First, the short reads are aligned to the long read using BLAT (Kent,
2002) in fast mode, or LAST (Kielbasa et al., 2011) in sensitive mode, in
order to find seeds, which are short reads that align correctly to the long
read. Then, the discovered seeds are compared to all the other short reads
with the help of Commet (Maillet et al., 2014), and similar short reads,
which share a certain number of non-overlapping k-mers with the seeds,
are recruited. Finally, the obtained subset of short reads is assembled using
Newbler (from Roche company, unpublished), and a contig is produced,
and used as the correction of the original long read.

Usually, a single contig is produced, but in repeated regions, a few
bad reads can be recruited and yield erroneous contigs that must not be
associated with the long read. To address this issue, and produce a single

contig from multiple ones, NaS explicitly builds the contig-graph, and
weights each node with the seeds coverage of the associated contig. Once
the graph is built, the path with the highest total weight is chosen with the
Floyd-Warshall algorithm, and contigs along that path are assembled to
generate the final, unique contig. Finally, the short reads are aligned to the
produced contig in order to verify its consistency. The contig is output and
used as the correction of the initial long read if it is sufficiently covered by
the short reads.

The reads recruitment is the most crucial step of the method, as it
allows to retrieve short reads corresponding to low quality regions of the
long read. However, this step is also the bottleneck of the whole NaS
pipeline, as it is responsible for 70% of the total runtime on average.

3 Variable-order de Bruijn graph

3.1 de Bruijn graphs

The de Bruijn graph is a data structure that is widely used in assembly tools.
Its nodes are defined as the k-mers of the reads, and its edges represent
prefix-suffix overlaps of length k − 1 between the k-mers represented by
the nodes. However, despite its usefulness, it is known that the Bruijn graph
faces difficulties, due to the fact it fixes the k-mer size at construction time.
On the one hand, choosing a high value of k will allow the graph to better
deal with repeated regions, but will lead to missing edges in regions with
locally insufficient coverage. On the other hand, choosing a small value
of k will allow to correctly retrieve the edges of the graph in insufficiently
covered regions, but will lead to more difficulties with repeated regions.

To overcome these problems, modern assemblers usually build
multiple de Bruijn graphs of different orders. Although this approach
allows to increase the quality of the produced assemblies, it also greatly
increases both runtime and memory consumption, as multiple graphs need
to be built, instead of a single one.

More recently, a few methods were developed to allow the
representation of all the de Bruijn graphs, up to a maximum order K,
in a single data structure. The manifold de Bruijn graph (Lin and Pevzner,
2014), for example, associates arbitrary substrings with nodes, instead
of associating k-mers. This structure is however mainly of theoretical
interest, as it has not been implemented yet. Another implementation of a
variable-order de Bruijn graph has been proposed by Boucher et al. (2015).
It relies on the succinct representation of the de Bruijn graph by Bowe et al.
(2012), and supports additional operations that allow to change the order
of the graph on the fly. However, the current implementation only supports
construction up to an order of 64, which is too restrictive, as we do not
want to limit the highest possible value of K.

To overcome this issues, we introduce a new implementation of the
variable-order de Bruijn graph. It relies on PgSA (Kowalski et al., 2015),
an index structure that allows to answer various queries on a set of reads.

3.2 PgSA overview

PgSA is a data structure that allows the indexing of a set of reads, in order
to answer the following queries, for a given string f :

1. In which reads does f occur?
2. In how many reads does f occur?
3. What are the occurrences positions of f?
4. What is the number of occurrences of f?
5. In which reads does f occur only once?
6. In how many reads does f occur only once?
7. What are the occurrences positions of f in the reads where it occurs

only once?

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted December 22, 2017. ; https://doi.org/10.1101/238808doi: bioRxiv preprint 

https://doi.org/10.1101/238808


“maindocument” — 2017/12/22 — page 3 — #3

HG-CoLoR 3

In these queries, f can be given either as a sequence of DNA symbols,
or as a pair of numbers, representing respectively a read ID, and the starting
position of f is this read.

As previously mentioned, in order to answer these queries, an index
of the reads has to be built. PgSA builds it as follows. First, all reads with
overlaps are concatenated with respect to these overlaps, in order to obtain
a pseudogenome. If some reads for which no overlaps have been found
are left after the pseudogenome creation, they are simply concatenated
at the end of it. Then, a sparse suffix array of the pseudogenome is
computed, along with an auxiliary array allowing the retrieval of the reads
from the original set in the pseudogenome. Each record of this auxiliary
array associates a read ID in the original set of reads to a read offset in
the pseudogenome, and also contains flag data that bring complementary
information about the read and that is used in order to handle the queries.
The queries are processed by a simple binary search over the suffix array,
coupled with the use of this complementary information.

As the reads are overlapped during the pseudogenome computation,
and as PgSA does not record any information about their lengths, it only
allows the indexing and querying of a set of reads of constant length.
However, the length of the query string is not set at compilation time, and
PgSA therefore supports queries for strings f of variable length.

3.3 Variable-order de Bruijn graph representation

A maximum order K is chosen, and the K-mers of the reads are indexed
with PgSA, to be able to represent the nodes of all the de Bruijn graphs up
to this maximum order. The edges of a given node, for any de Bruijn graph
of order k ≤ K, are retrieved by querying the index, using the third query
(i.e. what are the occurrences positions of f?), with the suffix of length
k − 1 of the k-mer represented by the node. The query returns a set of
pairs of numbers, each of these pairs representing respectively aK-mer ID
and the occurrence position of the query string in that K-mer. The pairs
are then processed, and only those whose position component does not
represent the suffix of length k − 1 of the associated K-mer are retained
(so that the occurrence can be extended to the right into a k-mer). These
extended occurrences define the k-mers that have a prefix-suffix overlap
of length k − 1 with the k-mer represented by the currently considered
node, and thus the edges of this node.

As the edges are retrieved by querying the index, it is also easy to
traverse the graph backward. For a given order k, instead of being queried
with suffixes of the k-mers represented by the nodes, the index is simply
queried with their prefixes. The returned sets of pairs are then processed
in the same fashion as for forward traversal, except that only the pairs
whose position component does not represent the prefix of length k −
1 of the associated K-mer are retained to define the edges. For better
understanding, the algorithm allowing to retrieve the edges of any given
node, forward or backward, in the de Bruijn graph of any order k ≤ K,
is given in Algorithm 1.

4 Methods

4.1 Overview

HG-CoLoR, like NaS, aims to initiate the correction by using short reads
that align to the long reads as seeds. However, its main objective is to get
rid of the time consuming step of reads recruiting, that requires to compare
the seeds to all the other short reads. To do so, it focuses on a seed-and-
extend approach, and extended with the help of the previously described
variable-order de Bruijn graph. This graph is built from the short reads, by
choosing a maximum order K and indexing their K-mers with PgSA, and
is traversed by querying the index, as previously described. For each long
read, the graph is traversed in order to link together the associated seeds,

Input : s string, k integer, b boolean, K integer
Output : E, the edges of the node representing the k-mer s in

the de Brujin graph of order k. If b = 0, the graph is
traversed forward, either, it is traversed backward.

Auxiliary: occs (integer, integer) set, i integer, id integer, pos
integer

1 begin
2 E ← ∅
3 occs← ∅
4 if b = 0 then
5 occs← getOccurrencesPositions(s[1..k − 1])

6 else
7 occs← getOccurrencesPositions(s[0..k − 2])

8 i← 0

9 while i < size(occs) and size(E) < 4 do
10 (id, pos)← occs[i]

11 if b = 0 and pos+ k ≤ K then
12 E ← E ∪ {(s, getKmer(id)[pos..pos+ k − 1])}
13 else if b = 1 and pos > 0 then
14 E ← E ∪ {(s, getKmer(id)[pos− 1..pos+ k − 2])}

15 i← i+ 1

return : E
Algorithm 1: Retrieve the edges of a given node.
getOccurrencesPositions and getKmer are both PgSA functions
that allow respectively to retrieve the occurrences positions of the given
string in the set of K-mers, and to retrieve the sequence corresponding
to the K-mer of identifier id. Line 2: Start with an empty set of edges.
Lines 3-7: If traversing the graph forward, get the occurrences positions
of the suffix of s in the set of K-mers, if traversing it backward, get
the occurrences positions of its prefix. Lines 8-15: Process the list
of occurrences positions. The processing is stopped when all the
occurrences have been processed or when 4 edges have been found, as
we work with the DNA alphabet and cannot find more than 4 edges per
node. Lines 11-12: If traversing forward and if the position component
does not represent the suffix of length k− 1 of the K- mer of identifier
id, add an edge to the k-mer starting at position pos in this K-mer.
Line 13-14: If traversing backward and if the position component does
not represent the prefix of length k − 1 of the K-mer of identifier id,
add an edge to the k-mer starting at position pos− 1 in this K-mer.

used as anchors. The path of the graph that was followed to link two seeds
together thus dictates a corrected sequence for the missing part of the long
read. Finally, once all the seeds have been linked, the tips of the obtained
sequence are extended by traversing the graph again, to reach the borders
of the original long read. HG-CoLoR’s workflow is summarized in Figure
1, and its four main steps are described below.

Despite high similarities with other graph based methods, in particular
with LoRDEC, using short reads that align to the long reads as anchors on
the graph, is quite different from using solid k-mers from the long reads.
Indeed, in the case of Oxford Nanopore data, due to the very high error
rate of the long reads, even short, solid k-mers have a high chance to be
erroneous. Such erroneous k-mers would therefore lead to the use of bad
anchors, and thus to unsatisfying correction results. However, as short
reads are accurate, they can be used as reliable anchors, with little to no
chance of being erroneous. Moreover, using short reads as anchors also
allows to directly build the graph with large values of k, without needing
to perform multiple rounds of correction, increasing the value of k at each
step, in the same fashion as LoRMA.

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted December 22, 2017. ; https://doi.org/10.1101/238808doi: bioRxiv preprint 

https://doi.org/10.1101/238808


“maindocument” — 2017/12/22 — page 4 — #4

4 P. Morisse et al.

short reads QuorUM corrected short reads KMC3
solid
k-mers

short reads filtration
filtered corrected

short reads

PgSA

variable-order
de Bruijn graph

BLASRlong reads seeds
seeds linking

+
tips extension

corrected long reads

Fig. 1. HG-CoLoR’s workflow. First, the short reads are corrected with QuorUM in order to get rid of as much sequencing errors as possible. Then, a maximum order K is chosen for the
graph, and the K-mers from the corrected short reads are obtained with KMC3. To further reduce the error rate, a filtration step is applied to the corrected short reads, and those containing
weak K-mers are removed. For the same reason, only the solid K-mers from the corrected short reads are indexed with PgSA, to represent the variable-order de Bruijn graph. The previously
filtered corrected short reads are then aligned to the long reads with the help of BLASR in order to find seeds. Each long read is then processed independently. For each of them, the graph is
traversed in order to link together the associated seeds, used as anchors, in order to retrieve corrected sequences for the missing parts of the long read. Then, the tips of the sequence obtained
after linking together all the seeds are extended in both directions by traversing the graph, to reach the initial long read’s borders. Finally, the corrected long read is output.

4.2 Short reads correction and graph construction

Even though short reads are already accurate prior to any correction, they
still contain a small fraction of errors. As HG-CoLoR seeks to build a
variable-order de Bruijn graph of high maximum order from the short
reads, as much errors as possible have to be removed from this data, to
avoid erroneous paths in the graph. To do so, the short reads are corrected
with the help of QuorUM (Marçais et al., 2015), which provides the best
trade-off between runtime and quality of the correction, among all the
tested short read error correction tools.

A maximum order K is then chosen for the graph, and the K-mers
from the corrected short reads are extracted with KMC3 (Kokot et al.,
2017). To further reduce the error rate of the short reads data, and thus
avoid bad seeds and chimeric paths on the graph, short reads containing
weak K-mers (i.e. K-mers that appear less than a certain threshold) are
filtered out and not used in the following steps, and only the solid K-mers
are used to build the graph.

4.3 Seeds retrieving and merging

Like with NaS, the seeds are found by aligning the short reads to the long
reads. This step is performed with the help of BLASR (Chaisson and Tesler,
2012), an alignment tool originally designed to align long reads dominated
by insertion and deletion errors to a reference genome, that however also
manages to nicely deal with this type of errors when aligning short reads
to long reads. Each long read is then processed independently, and two
phases of analysis are applied to the associated seeds.

First, if the alignment positions of a given pair of seeds indicate that
they overlap over a sufficient length, their assumed overlapping sequences
are compared, and the two seeds are merged accordingly. If the alignment
positions indicate that the two seeds do overlap, but over an insufficient
length, or if the assumed overlapping sequences do not coincide, only the
seed with the best alignment score is kept.

Second, once all the seeds with overlapping alignment positions have
been merged or filtered out, sequence overlaps between consecutive seeds
having close alignment positions are computed. As in the previous step,
if a given seed perfectly overlaps another one over a sufficient length, the
two seeds are merged. This step allows to take into account small insertion
errors in the long reads that were not detected during the alignment step,
and that could lead to difficult linkings in the next step.

4.4 Seeds linking

Once the seeds have been found and merged for all the long reads, HG-
CoLoR processes each of the long reads independently and attempts to link

together their associated seeds by considering them as pairs, and traversing
the graph. For a given pair, the seed that has the leftmost alignment position
is called the source, and the one that has the rightmost alignment position
is called the target. To link a pair of seeds together, the rightmost K-mer
of the source and the leftmost K-mer of the target are used as anchors on
the graph. The graph is then traversed, in order to find a path between the
two anchors. When such a path is found, the sequence it dictates is used
as a correction for the missing part of the long read.

HG-CoLoR traverses the variable-order de Bruijn graph starting from
its highest order. The order is decreased at a given node only if this node
does not have any edge for the current order, or if all its edges for the
current order have already been explored and did not allow to reach the
destination. When the order of the graph is decreased, the size of the k-
mers from the source and from the destination is decreased accordingly,
so that they can still be used as anchors. A minimum order is also set, so
that HG-CoLoR does not traverse de Bruijn graphs representing short, and
probably meaningless overlaps. When facing branching paths for a given
order k, HG-CoLoR performs a greedy selection. The edge leading to the
node representing the k-mer having the highest number of occurrences is
therefore explored first. This greedy selection allows to avoid traversing
too many nodes representing k-mers having low frequencies, that, despite
the correction and filtration steps, may contain a sequencing error. When a
path from the source to the target is found, it is considered as optimal due
to the greedy selection and to the fact that the order of the graph is only
locally decreased. It is thus chosen as the correction for the missing part
of the long read. We voluntarily select the optimal path this way, instead
of exploring multiple ones and selecting the one that aligns the best to the
long read as the correction, in order to avoid prohibitive runtimes.

We also set a mismatches threshold t when linking two seeds together.
We therefore consider that the source and the target can be linked together
if a path starting from the anchor K-mer of the source reaches a K-mer
having less than t mismatches with the anchor K-mer of the target. Such
a threshold allows to overcome the few mismatches errors that can still be
present on the seeds, despite the correction and filtration steps.

However, short reads from a different region of the reference genome
may align to the long read and may be used as seeds. As such seeds could
lead to impossible linkings, even if all the existing paths of the graph were
explored, a threshold on the maximum number of branches explorations
is set. If this threshold is reached, and no path has been found to link the
source and the target together, the current linking iteration is given up,
and HG-CoLoR attempts to skip the target that could not be reached. In
other words, the source remains the same, the target that could not be
reached is ignored, the target is defined as the following seed, and a new
linking iteration is performed. An illustration of this process is given in

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted December 22, 2017. ; https://doi.org/10.1101/238808doi: bioRxiv preprint 

https://doi.org/10.1101/238808


“maindocument” — 2017/12/22 — page 5 — #5

HG-CoLoR 5

Supplementary Figure S2.
As skipping seeds can lead to an important number of failed linking

attempts, if erroneous seeds are present in great proportion on a long read,
a threshold on the maximum number of seeds that can be skipped is set.
Once this threshold is reached, as none of the linking attempts succeeded,
HG-CoLoR splits the corrected long read. The part corresponding to the
seeds linked so far is output, and the graph is traversed again, in order to
try to link together the remaining seeds, including the ones it attempted
to skip, independently of the previous part. We chose to always split the
long reads in order to avoid reporting erroneous bases from the long reads,
or bases corresponding to wrongly aligned seeds. Reporting such bases
would indeed decrease the quality of the correction, and negatively impact
the downstream assemblies.

4.5 Tips extension

Finally, it is obvious that the seeds do not always align right at the beginning
and at the end of the long reads. Thus, in order to get as close as possible
to its original length, once all the seeds of a given long read have been
linked, HG-CoLoR keeps on traversing the graph to extend the tips of the
produced corrected long read. In the same fashion as in the previous step,
the traversal starts from the highest order of the variable-order de Bruijn
graph, and the order is decreased at a given node only if this node does
not have any edge for the current order. The tips of the corrected long
read are thus extended until either the original long read’s borders or a
branching path are reached. Indeed, in the case of tips extension, when
facing a branching path, HG-CoLoR has no clue as to which path to chose
and continue the extension with, nor any anchors, unlike when it attempts
to link two seeds together. Therefore, greedy selection and exploration of
multiple branches are useless and the extension is simply stopped when
such a situation occurs. In the case of split long reads, every fragment is
extended as mentioned.

5 Results and discussion
We ran experiments on three real datasets of inscreasing size: one from
A. baylyi, one from E. coli and one from S. cerevisae. They include
respectively 381 Mbp, 134 Mbp and 1,173 Mbp of Oxford Nanopore
MinION long reads, and 224 Mbp, 232 Mbp and 625 Mbp of Illumina short
reads. All details are given in Supplementary Table S1. Unless otherwhise
sepecified, all experiments were run on a 32 GB RAM machine equipped
with 16 cores.

We compare HG-CoLoR against hybrid error correction tools NaS
and Jabba, and also against two self-correction methods, namely Daccord
and the method used in the assembler Canu (Koren et al., 2017). We
evaluate the accuracy of the different tools with two different approaches.
First, we analyze how well the long reads were corrected, by aligning
them to the reference genomes, and second, we investigate the quality of
the assemblies that can be generated from the corrected long reads. The
Nanocorr, CoLoRMAP, LoRDEC, LoRMA, and HALC softwares were
also tested, but as they led to unsatisfying results, we discard them from
the comparison. Due to its large runtimes, NaS was only executed in fast
mode.

5.1 Parameters

We ran multiple rounds of correction with HG-CoLoR on the S. cerevisae
dataset to experiment with the parameters. Thereby, we found that using
a variable-order de Bruijn graph of maximum order K = 100 yielded
the best compromise between runtime, number of corrected long reads,
proportion of split long reads, average length and number of corrected
bases (see Supplementary Figure S1). The minimum overlap length to
allow the merging of two seeds during the second step was set to 99,

accordingly to the maximum order K chosen for the graph. The minimum
order of the graph was set to k = 50, as setting it to larger values
resulted in less corrected long reads, that were more split, and thus
shorter, due to local drops of coverage. Setting it to smaller values also
resulted in more split, and shorter long reads, due to the exploration
of meaningless edges, especially in repeated regions, in addition to
larger runtimes (see Supplementary Figure S2). The maximum number
of branches explorations was set to 1,500, as decreasing it also resulted in
more split, and shorter long reads, and increasing it more barely yielded
better results, but increased the runtime (see Supplementary Figure S3).
For similar reasons, the maximum number of seed skips was set to 5,
and the mismatches threshold was set to 3. For the alignment of the
short reads to the long reads, BLASR was used with default parameters
except for bestn, that was set to 50 instead of 10, in order to obtain a
greater number of seeds, and therefore correct more long reads. Yet again,
increasing this parameter to larger values only impacted the runtime, and
did not meaningfully improve the correction results, while decreasing it
induced a drop of the number of corrected long reads. As we only use a
50x coverage of short reads, the K-mer solidity threshold was set to 1 (i.e.
all the K-mers were considered as solid). Canu was run with parameters
-correct, -nanopore-raw, stopOnReadQuality=false, due
to the high error rate of the long reads, corOutCoverage=300, in order
to correct as many long reads as possible, and genomeSize set to the
exact number of bases of each reference genome. Other tools were run
with default or recommended parameters. To allow better comparison, the
short reads were corrected with QuorUM before running Jabba, instead of
using Karect (Allam et al., 2015), the tool recommended by the authors.
All tools were run with 16 processes.

5.2 Comparison of the quality of error correction

The long reads were aligned with Last prior to any correction, as it deals
better with raw long reads. The different correction tools were then run,
and the obtained corrected long reads were aligned with BWA mem (Li
and Durbin, 2010) given their high accuracy. Results are given in Table 1
and discussed below.

Jabba clearly performed the best when it comes to runtime,
outperforming all the other tools by several orders of magnitude. It also
produced corrected long reads that aligned with a high identity. However,
although highly accurate, these corrected long reads did not manage to
completely cover any of the reference genomes. These unresolved regions
likely come from the important proportion of split long reads that were
produced, due to the fact that Jabba uses a de Bruin graph of fixed order,
and therefore faces problems with local drops of coverage. Pre-processing
the short reads using Karect, as recommended by the authors, did not show
any significant improvement (see Supplementary Table 2).

Apart from Jabba, the two self-correction tools outperformed the two
others hybrid-correction methods in terms of runtime. However, the error
correction was not very efficient, as the produced corrected long reads still
displayed a large proportion of errors, as high as 8% for those produced
by Daccord on the A. baylyi dataset. The average length of the long reads
corrected with Daccord was also smaller than the average length of the
original long reads, due to the high proportion of split long reads. Even
on a cluster with large resources none of these two tools managed to
correct the highly noisy S. cerevisae dataset, underlining the fact that
hybrid error correction remains the only way to to correct highly noisy
Oxford Nanopore long reads.

Therefore, only NaS and HG-CoLoR managed to produce corrected
long reads that covered the whole reference genomes with a high identity,
except for a few regions of S. cerevisae, due to the fact that neither the
original long reads nor the short reads did cover the whole genome. Despite
a smaller number of output corrected long reads, HG-CoLoR yielded more

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted December 22, 2017. ; https://doi.org/10.1101/238808doi: bioRxiv preprint 

https://doi.org/10.1101/238808


“maindocument” — 2017/12/22 — page 6 — #6

6 P. Morisse et al.

Method Original Jabba NaS HG-CoLoR Canu Daccord
A. baylyi
Number of reads 89,011 16,618 24,063 25,214 8,122 19,623
Split reads (%) 0 4.90 0 0.82 5.47 53.02
Average length 4,284 10,260 8,840 11,400 9,345 3,244
Number of bases (Mbp) 381 179 213 290 81 175
Average identity (%) 70.09 99.40 99.82 99.73 97.79 91.92
Genome coverage (%) 100 99.82 100 100 99.79 100
Runtime N/A 2min 94h18min 1h38min 32min 45min
E. coli
Number of reads 22,270 21,005 21,818 21,961 17,154 17,478
Split reads (%) 0 4.98 0 0.10 0.38 34.40
Average length 5,999 5,797 7,926 6,115 7,080 4,495
Number of bases (Mbp) 134 128 173 134 122 119
Average identity (%) 79.46 99.81 99.86 99.71 96.23 98.51
Genome coverage (%) 100 99.43 100 100 99.99 99.99
Runtime N/A 3min 72h02min 1h11min 36min 30min
S. cerevisae
Number of reads 205,923 33,484 71,793 70,305 _ _
Split reads (%) 0 11.47 0 5.80 _ _
Average length 5,698 6,455 5,938 6,961 _ _
Number of bases (Mbp) 1,173 243 426 521 _ _
Average identity (%) 55.49 99.54 99.59 98.96 _ _
Genome coverage (%) 99.90 93.32 98.70 99.31 _ _
Runtime N/A 12min > 16 days 10h53min _ _

Table 1. Statistics of the long reads, before and after correction by the different
methods. The number of reads column account for the number of corrected
long reads, not for the number of output fragments. Precise runtime is omitted
for NaS on S. cerevisae because the results did not compute in 16 days, and
the execution was therefore stopped. NaS corrected reads for this dataset were
obtained from the Genoscope website. Results are omitted for the two self-
correction tools on S.cerevisae, since they could not correct the long reads.

corrected bases than NaS, and covered the reference genome better. For
all the datasets, the long reads corrected with NaS aligned with a slightly
higher identity than those corrected with HG-CoLoR. However, despite
being run in fast mode, NaS was several orders of magnitude slower than
HG-CoLoR on all the datasets.

As a result, despite its larger runtimes than self-correction methods,
and its slight disadvantage on the alignment identity of the corrected long
reads when compared to NaS, HG-CoLoR displayed the best trade off
between runtime and quality of the results.

5.3 Comparison of the quality of assembly

The corrected long reads were assembled using Canu, without the
correction and trimming steps. The following parameters were used for all
of the assemblies: OvlMerSize=17, OvlMerDistinct=0.9925,
OvlMerTotal=0.9925. The genomeSize parameter was set
independently to the exact number of bases of each reference genome. All
the other parameters were set to their default values. Comparisons of the
assemblies against the reference genomes were performed with MUMmer
(Kurtz et al., 2004). Results are given in Table 2 and discussed below.

In agreement with what we observed in Table 1, the fact that the
long reads corrected with Jabba did not manage to cover the whole
reference genomes resulted in highly fragmented assemblies, that could not
resolve large regions of the reference genomes. As a result, despite their
high accuracy, those corrected long reads yielded the most fragmented
assemblies, that covered the least the reference genomes, and that
displayed the smallest NG50 sizes.

Surprisingly, the long reads corrected with the two self-correction
tools, despite their higher error rate and their weaker coverage depth than
long reads corrected with the hybrid tools, assembled into a small number
of contigs, that displayed high NG50 sizes, both on the A. baylyi and the
E. coli datasets. However, due to the high error rate of the long reads, these
assemblies displayed the lowest identities when compared to the reference

Method Jabba NaS HG-CoLoR Canu Daccord
A. baylyi
Long reads coverage 50x 59x 81x 22x 49x
Number of contigs 14 1 1 3 1
NG50 216,679 3,629,508 3,634,118 2,887,573 3,520,381
Genome coverage (%) 89.03 100 99.99 99.39 100
Identity (%) 99.94 99.99 99.94 97.04 97.06
E. coli
Long reads coverage 28x 37x 29x 26x 26x
Number of contigs 41 1 1 3 2
NG50 138,730 4,635,116 4,703,199 3,155,369 4,558,944
Genome coverage (%) 95.81 99.90 100 99.82 100
Identity (%) 99.99 99.99 99.99 97.23 97.84
S. cerevisae
Long reads coverage 20x 35x 43x _ _
Number of contigs 138 119 77 _ _
NG50 47,164 146,459 292,707 _ _
Genome coverage (%) 68.67 97.44 97.08 _ _
Identity (%) 99.99 99.95 99.89 _ _

Table 2. Statistics of the assemblies generated from the corrected long reads.
Reported identities stand for the 1-to-1 alignments.

genomes. Moreover, on these two datasets, assemblies generated from
long reads corrected with Daccord outperformed those generated from
long reads corrected with Canu in terms of contiguity, NG50 size and
coverage of the reference genomes. On the A. baylyi dataset, the long
reads corrected with Daccord even assembled into a single contig.

On the A. baylyi and the E. coli datasets, NaS and HG-CoLoR produced
corrected long reads that assembled into a single contig. The NG50 sizes
of these assemblies were highly similar, and the only differences between
the two tools were a small region of E. coli that was not covered by the
assembly generated from the long reads corrected with NaS, and a slightly
lower identity when compared to the reference genome for the assembly
generated from the long reads corrected with HG-CoLoR on the A. baylyi
dataset. However, on the S. cerevisae dataset, the assembly generated
from long reads corrected with HG-CoLoR outperformed the assembly
generated from long reads corrected with NaS in terms of contiguity and
NG50 size, even though it slightly less covered the reference genome.

5.4 Scalability

To investigate the scalability of our method, we tested it on a dataset from
the larger eukaryotic genome of C. elegans. It includes 2 Gb of real Oxford
Nanopore MinION long reads and 5 Gb of Illumina short reads simulated
with ART (Huang et al., 2012), as no real Illumina reads of satisfying
length quality were available. Details are given in Supplementary Table
S1. NaS was not run due to its prohibitive runtime, and Daccord did not
manage to perform correction, even on a cluster with large resources.
We therefore only compare HG-CoLoR against Jabba and Canu. Error
correction and assembly statistics are given in Table 3. Similarly to our
previous observations, Jabba performed orders of magnitude faster than
the two other tools, and produced high quality corrected long reads,
that weakly covered the reference genome, and yielded an unsatisfying
assembly. Canu also performed faster than HG-CoLoR, and produced
more corrected long reads, that covered the reference genome well, but still
displayed a high proportion of error. The assembly generated from these
reads thus displayed a low identity, and, surprisingly, failed to resolve 11%
of the reference genome. HG-CoLoR managed to correct the long reads
so that they both display a high identity and cover the reference genome
well. The assembly generated from these reads also had a high identity,
and displayed the highest proportion of genome coverage. The runtime
was similar to NaS on the A. baylyi dataset, that contained close to 12

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted December 22, 2017. ; https://doi.org/10.1101/238808doi: bioRxiv preprint 

https://doi.org/10.1101/238808


“maindocument” — 2017/12/22 — page 7 — #7

HG-CoLoR 7

Method Original Jabba HG-CoLoR Canu
Correction
Number of reads 363,500 219,925 271,738 340,826
Split reads (%) 0 20,46 11.63 0
Average length 5,524 3,910 5,161 5,408
Number of bases (Mbp) 2,008 1,060 1,599 1,843
Average identity (%) 71.07 99.85 98.95 85.63
Genome coverage (%) 99.99 95.43 99.88 99.89
Runtime N/A 1h16min 94h21min 16h38min
Assembly
Long reads coverage 20x 11x 16x 18x
Number of contigs 530 1,374 830 1,049
NG50 _ _ 183,098 116,510
Genome coverage (%) 15.80 53.62 94.91 88.75
Identity (%) 92.99 99.97 99.87 95.60

Table 3. Statistics of the long reads and of the generated assemblies on the C.
elegans dataset. Omitted NG50 sizes mean that the assemblies did not reach
half of the genome size.

times less bases, attesting the better scalability of our method. Moreover,
it is worth noting that the memory peak for HG-CoLoR was only of 10GB,
making it able to scale to large genomes even on a reasonable setup.

6 Conclusion
We described HG-CoLoR, a new hybrid method for the error correction of
long reads, that, like NaS, initiates the correction by using short reads that
align to the long reads as seeds. HG-CoLoR however, instead of recruiting
new short reads in an all-against-all comparison step and assembling them,
like NaS, relies on an extension step based on a variable-order de Bruijn
graph. This graph, which is built from the short reads, is used to extend
and link together the seeds, which are used as anchors, in order to correct
uncovered regions of the long reads by a simple traversal.

Our experiments show that, compared against state-of-the-art hybrid
and non-hybrid error correction tools HG-CoLoR, offers the best trade-off
between runtime and quality of the results, both in terms of quality of the
error correction itself, and in terms of quality of the assemblies generated
from the corrected long reads. Further experiments also show that our
method is the only one able to efficiently scale to eukaryotic genomes.

The development of this method and our experiments underline the
fact that, despite already being useful, self-correction methods are still not
completely applicable to Oxford Nanopore long reads. Indeed, they do not
manage to perform error correction at all on long reads sequenced with
early chemistries, that display a very high error rate. They also do not scale
to eukaryotic genomes, either completely failing to perform correction,
or barely reducing the error rate, despite an acceptable error rate of the
original long reads. Therefore, hybrid approaches remain interesting to
correct Oxford Nanopore long reads, either in the case of large genomes,
or in the case of very high error rates, as resequencing with more recent
chemistries is not always affordable, and that even recent sequencings
rarely display an error rate below 15% in practice.

As further work, we plan to focus on a new implementation of PgSA,
as the current one does not support parallel querying of the index, and
therefore forces current implementation of HG-CoLoR to use mutexes.
Getting rid of that need would reduce the runtime of the method. Another
index structure allowing to query a set of k-mers with strings of variable
length, and supporting parallel querying, could also replace PgSA. Another
direction is to try out other aligners for the alignment step of the short reads
to the long reads, in order to possibly discover the seeds quicker, or correct
more long reads.

Acknowledgements
The authors would like to thank the Genoscope for the availability of most
of the data used in this paper. Part of the computation for this work has
been executed on intensive computation resources from the CRIANN.

Funding
This work was supported by Défi MASTODONS C3G project from CNRS.

References
Allam, A., Kalnis, P., and Solovyev, V. (2015). Karect: accurate correction of

substitution, insertion and deletion errors for next-generation sequencing data.
Bioinformatics, 31, 3421–3428.

Bao, E. and Lan, L. (2017). HALC: High throughput algorithm for long read error
correction. BMC Bioinformatics, 18, 204.

Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., and Phillippy,
A. M. (2015). Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nature biotechnology, 33, 623–630.

Boucher, C., Bowe, A., Gagie, T., Puglisi, S. J., and Sadakane, K. (2015).
Variable-Order De Bruijn Graphs. In Proceedings of the 2015 Data Compression
Conference, pages 383–392, Washington, DC, USA. IEEE Computer Society.

Bowe, A., Onodera, T., Sadakane, K., and Shibuya, T. (2012). Succinct de Bruijn
Graphs, pages 225–235. Springer Berlin Heidelberg, Berlin, Heidelberg.

Chaisson, M. J. and Tesler, G. (2012). Mapping single molecule sequencing reads
using basic local alignment with successive refinement (BLASR): application and
theory. BMC Bioinformatics, 13, 238.

Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C.,
Clum, A., Copeland, A., Huddleston, J., Eichler, E. E., Turner, S. W., and Korlach,
J. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT
sequencing data. Nature Methods, 10, 563–569.

Goodwin, S., Gurtowski, J., Ethe-sayers, S., Deshpande, P., Schatz, M. C., and
Mccombie, W. R. (2015). Oxford Nanopore sequencing, hybrid error correction,
and de novo assembly of a eukaryotic genome. Genome Research, 25, 1750–1756.

Haghshenas, E., Hach, F., Sahinalp, S. C., and Chauve, C. (2016). CoLoRMap:
Correcting Long Reads by Mapping short reads. Bioinformatics, 32, i545–i551.

Huang, W., Li, L., Myers, J. R., and Marth, G. T. (2012). ART: a next-generation
sequencing read simulator. Bioinformatics, 28, 593–594.

Kent, W. J. (2002). BLAT - The BLAST-Like Alignment Tool. Genome research,
12, 656–664.

Kielbasa, S. M., Wan, R., Sato, K., Kiebasa, S. M., Horton, P., and Frith, M. C.
(2011). Adaptive seeds tame genomic sequence comparison. Genome Research,
21, 487–493.

Kokot, M., Długosz, M., and Deorowicz, S. (2017). KMC3: counting and
manipulating k-mer statistics. Bioinformatics, 33, 2759–2791.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy,
A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k -mer
weighting and repeat separation. Genome Research, 27, 722–736.

Kowalski, T., Grabowski, S., and Deorowicz, S. (2015). Indexing Arbitrary-Length
k-Mers in Sequencing Reads. PLOS ONE, 10, 1–16.

Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., and
Salzberg, S. L. (2004). Versatile and open software for comparing large genomes.
Genome Biology, 5, R12.

Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics, 26, 589–595.

Lin, Y. and Pevzner, P. A. (2014). Manifold de Bruijn Graphs, pages 296–310.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Madoui, M.-A., Engelen, S., Cruaud, C., Belser, C., Bertrand, L., Alberti, A.,
Lemainque, A., Wincker, P., and Aury, J.-M. (2015). Genome assembly using
Nanopore-guided long and error-free DNA reads. BMC Genomics, 16, 327.

Maillet, N., Collet, G., Vannier, T., Lavenier, D., and Peterlongo, P. (2014). Commet:
Comparing and combining multiple metagenomic datasets. In IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), Belfast, United Kingdon.

Marçais, G., Yorke, J. A., and Zimin, A. (2015). QuorUM: An Error Corrector for
Illumina Reads. PLOS ONE, 10, 1–13.

Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de Peer, Y., Audenaert,
P., and Fostier, J. (2016). Jabba: hybrid error correction for long sequencing reads.
Algorithms for Molecular Biology, 11, 10.

Salmela, L. and Rivals, E. (2014). LoRDEC: Accurate and efficient long read error
correction. Bioinformatics, 30, 3506–3514.

Salmela, L., Walve, R., Rivals, E., and Ukkonen, E. (2017). Accurate selfcorrection
of errors in long reads using de Bruijn graphs. Bioinformatics, 33, 799–806.

is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review)this version posted December 22, 2017. ; https://doi.org/10.1101/238808doi: bioRxiv preprint 

https://doi.org/10.1101/238808

