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microRNA are key regulators of the human
transcriptome across a number of diverse biolog-
ical processes, such as development, aging, and
cancer, where particular miRNA have been iden-
tified as tumour suppressive and oncogenic. In
this work, we sought to elucidate, in a compre-
hensive manner, across 15 epithelial cancer types
comprising 7,316 clinical samples from the Can-
cer Genome Atlas, the association of miRNA ex-
pression and target regulation with the pheno-
typic hallmarks of cancer. Utilising penalized re-
gression techniques to integrate transcriptomic,
methylation andmutation data, we find evidence
for a complex map of interactions underlying the
relationship of miRNA regulation and the hall-
marks of cancer. This highlighted high redun-
dancy for the oncomiR-1 cluster of oncogenic
miRNAs, in particular hsa-miR-17-5p. In addi-
tion, we reveal extensive miRNA regulation of
tumour suppressor genes such as PTEN, FAT4,
and CDK12, uncovering an alternative mecha-
nism of repression in the absence of mutation,
methylation or copy number changes.

The hallmarks of cancer very clearly outline the1

major phenotypic changes underlying the oncogenic2

process [24, 25]. These changes characterise can-3

cer as a disease, and may define actionable targets4

for therapeutic intervention. Since the definition of5

these characteristic hallmarks in 2001 [24], and the6

subsequent ‘genomic revolution’ that has occurred7

in the field of cancer biology, multiple groups have8

proposed gene expression signatures as biomarkers9

of these phenotypic hallmarks [26, 47, 53]. These10

gene signatures generally consist of a set of tens to11

several hundred coding genes, for which a summary12

metric of their collective expression is associated 13

with a known hallmark, and may help with defining 14

therapeutic strategies [3]. Encapsulated within this 15

methodology and these signatures is a vast amount 16

of biological discovery for particular genes impli- 17

cated in the development and progression of these 18

hallmarks. However, since the more recent publica- 19

tion of the updated hallmarks in 2011 [25], there has 20

been a second revolution in the field of genomics; 21

namely, the discovery of the diverse, critical roles of 22

non-coding RNAs in cancer. 23

Previously thought to be ‘junk DNA,’ non- 24

coding RNA are those RNA derived from DNA 25

that do not code for proteins, and consists of a di- 26

verse family of evolutionarily conserved species, in- 27

cluding long non-coding RNA (lncRNA), circular 28

RNA (circRNA), and microRNA (miRNA), among 29

others [23, 40, 41]. Much effort has focused on 30

the characterisation of these non-coding RNA, and 31

early work has shown that these species, particularly 32

miRNA, are involved in a number of cellular de- 33

velopmental, and differentiation processes [50]. In 34

addition, miRNA have been implicated in a num- 35

ber of human diseases, ranging from diabetes to 36

cancer, and in oncology, recent work has led to 37

the discovery of tumour-suppressive and oncogenic 38

miRNA [7, 42, 44, 49]. miRNA exert their function 39

within the cell primarily as repressors of protein 40

production, functioning as post-transcriptional reg- 41

ulators of mRNA, inhibiting translation or encour- 42

aging transcript degradation. miRNA exert their 43

effects by complementary base-pair binding to a 44

short 7-8 nucleotide ‘seed region’ typically located 45

on the 3’ untranslated region of the messenger RNA 46

which they inhibit [40]. A single miRNA is thought 47

1/22

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/238675doi: bioRxiv preprint 

https://doi.org/10.1101/238675


to able to exert its repressive effects on hundreds48

to thousands of transcripts, meaning that specific49

miRNA may have very wide-ranging and fast-acting50

effects on cellular phenotype [40]. Despite this po-51

tential, due to the highly variable effect on the single52

target transcripts and the many factors involved in53

post-transcriptional gene regulation in addition to54

miRNA, the repressive signal on their targets, both55

validated targets and predicted targets by sequence56

complementarity, remains challenging to detect in57

clinical datasets [6]. As a result, behavioural charac-58

terisation of miRNA has been progressing at a slow59

rate, with studies focusing on changes induced by a60

single miRNA or small families of miRNA, without61

any efforts for large-scale characterisation.62

A further complicating factor with respect to the63

study of miRNAs is the relative promiscuity of their64

targets [36]. A given miRNA may have thousands65

of targets, with many experimentally verified, but66

often these targets possess significant differences in67

function [54]. This has led to an almost paradoxi-68

cal finding about the effects of miRNAs, in that a69

single miRNA may theoretically exert effects in op-70

posing directions within the cell [54]. This paradox71

is resolved by the observation that miRNA likely72

play different roles depending on the environment in73

which they are expressed [10, 20, 36]. Therefore, in74

addition to the challenge of measuring the repressive75

effect of miRNAs within a transcriptome, the effect76

of a miRNA on a transcriptome may vary massively,77

depending on the relative abundance of each of its tar-78

gets. That is, a miRNA may only repress targets to79

which it is able to bind, and this requires the presence80

of the target in a detectable concentration compared81

to all others [14]. This means that the effect of a82

miRNA on phenotype can only be observed in sam-83

ples for which the transcriptomes are comparable in84

the expression of the key targets in consideration,85

and such effects are highly context-dependent.86

In this work, we show how this context-87

dependent action can be exploited to gain high confi-88

dence predictions uncovering known and unknown89

associations with miRNA and phenotype. Through90

the classification of tumour transcriptomes by gene91

expression signatures, we uncover the diverse roles92

of miRNAs in regulating the hallmarks of cancer.93

Our results point towards a scenario wherein the 94

trancriptome of the cancer cell, known to be driven 95

by dysregulation of tumour suppressor genes and 96

oncogenes, is heavily regulated by miRNAs. We 97

show that predicted miRNA-target associations that 98

retain significance across multiple cancer types in- 99

volve a number of critical tumour suppressor genes 100

and oncogenes. Study of these tumour suppressor 101

genes yields novel conclusions about their regula- 102

tion, particularly with respect to their repression by 103

miRNA, methylation and mutation, and the exclu- 104

sivity of the occurrence of these modes of regulation 105

across human cancers. 106

Results 107

Evaluation of Hallmark gene signatures 108

across cancers 109

The first prerequisite to our study was to identify 110

suitable biomarkers to infer cancer phenotype. In or- 111

der to achieve this, we chose 24 previously identified 112

gene expression signatures (Supplementary S1) that 113

have already been shown to be representative for a 114

wide number of samples, and a number of fundamen- 115

tal phenotypic properties, with the hopes of alleviat- 116

ing issues related to highly tissue-specific expression 117

patterns. With this in mind, we applied sigQC, an 118

R package encapsulating a robust methodology for 119

the evaluation of gene signatures on various datasets 120

for the basic statistical properties underlying their 121

applicability [16]. We ran this package on all combi- 122

nations of 15 datasets and 24 signatures considered 123

in this study, and tested the consistency of signature 124

performance across cancer types, giving confidence 125

in the application of the signatures to these datasets. 126

All summary plots from the sigQC quality control 127

protocol are presented in Supplementary Section S2. 128

Each of the signatures considered over the 15 epithe- 129

lial cancer datasets showed good applicability, strong 130

signature gene expression, moderate-strong compact- 131

ness, and good gene signature score variability, as 132

well as strong autocorrelation of signature metrics. 133

The previous validation of these signatures, and our 134

study-specific quality control results, justify our sub- 135

sequent use of these signatures in a pan-cancer man- 136
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ner, to identify conserved associations of miRNA137

and signature gene expression across tissue types.138

Hallmark gene signatures association analy-139

sis reveals a complex pan-cancer miRNA reg-140

ulatory network141

To determine the association of gene signatures to142

miRNA expression, we set the signature score (see143

Online Methods) for each signature equal to a linear144

model consisting of all miRNAs showing at least145

moderate univariate predictive ability for the signa-146

ture summary score, as depicted in Figure 1a. Mul-147

tivariable linear modelling with L1/L2 penalized148

regression optimized by cross-validation was used149

as previously described [6] to identify the miRNAs150

which showed the greatest predictive ability for each151

hallmark signature score across the cancer types con-152

sidered, thereby identifying those miRNA common153

to the gene signature across tumour types (see On-154

lineMethods) . An example of the values for miRNA155

coefficients across cancer types following the model156

fitting is depicted in Figure 1b. miRNAs were then157

ranked based on their final model coefficient (reflec-158

tive of the strength of association to the signature),159

and miRNAs consistently ranking highly as posi-160

tive predictors of a given hallmark signature across161

cancer types were aggregated, from which statisti-162

cally significant miRNAs were isolated with the rank163

product test (signature-associated miRNAs). Like-164

wise, for each gene signature, the miRNAs most165

consistently ranked as strong negative predictors of166

signature score across cancer types were aggregated167

by a rank-based methodology (negatively signature-168

associated miRNA), as depicted in Figure 1c. This169

analysis reveals both many known and unknown170

significant associations between miRNA and gene171

signature scores, facilitating an understanding of the172

miRNA involved with hallmark phenotypes, provid-173

ing both novel hypotheses, and adding to evidence174

for existing ones.175

To verify the validity of these predictions, we176

considered the example case of miRNAs found to177

associate significantly with the hypoxia signatures178

considered. Hypoxia is one of the most studied mi-179

croenvironmental perturbations in the context of180

miRNA regulation, and one with a very well-defined 181

pathway, controlled largely by a single transcrip- 182

tion factor, HIF-1α [48]. Taking the intersection 183

of the sets of miRNAs found to associate positively 184

with the two previously validated hypoxia gene sig- 185

natures (Hypoxia, Buffa et al. [5], and Hypoxia, 186

MSigDb [34]), we obtained high confidence predic- 187

tions for hypoxia-associated miRNAs. 188

As shown in the Tables associated with Supple- 189

mentary S3, this analysis reveals that many of the 190

miRNAs found to be commonly associated with 191

both hypoxia gene signatures have been previuosly 192

identified as hypoxia regulated. High confidence 193

predictions are made for: hsa-miR-210-3p [8], -21- 194

3p, -21-5p, -23a-5p, -23a-3p, -24-3p, -24-2-5p, -27a- 195

5p, [31], let-7e-5p, let-7e-3p [11], -22-5p, -22-3p [57]. 196

This analysis also suggests significant, pan-cancer, 197

potential roles for other members of the let-7 family 198

of miRNAs in hypoxia; namely, let-7b-5p, let-7b-3p, 199

let-7d-5p, let-7d-3p, as well as hsa-miR-223-3p, -18a- 200

5p, and -28-3p, which have potentially escaped the 201

notice of other approaches. 202

In the context of all gene signatures considered, 203

we identify a global underlying ‘map’ connecting 204

each miRNA to each gene signature with which we 205

have found an association. As shown in Figure 1d, 206

this is a highly interconnected and complex network, 207

with the conservation of a core set ofmiRNAs shared 208

across the hallmarks of cancer. A similar analysis re- 209

veals an analogous result for the miRNA-hallmarks 210

network for the miRNA negatively associated with 211

both signatures, as described in Supplementary Sec- 212

tion S4. To validate the reproducibility of these re- 213

sults, we rebuilt the signature-miRNA linear model 214

using a large independent dataset, theMetabric breast 215

cancer cohort [13]. The miRNA identified as posi- 216

tively and negatively associated with gene signatures 217

in this dataset show highly significant concordance 218

over a majority of signatures with the correspond- 219

ing miRNAs identified from analysis of the TCGA 220

dataset (Supplementary Figure ??, Section S5). 221
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TNFa Signaling via NFKB, MSigDB

Immune, Desmedt 2008

Figure 1. Overview of approach used to identify hallmarks-associated miRNA. (a) Overview of the linear
model used in the fitting, for each gene signature and cancer type under consideration. (b) Example of a
heatmap depicting the values of the coefficients identified for the miRNA predictors (rows), across cancer
types (columns) for our previously developed angiogenesis signature [39]. (c) Consistently positive and
negatively ranking miRNA coefficients, identified as statistically significant by the rank product statistic,
are taken as the positive and negative hallmark-associated miRNA for each hallmark signature. (d) Network
‘map’ of signatures (coloured nodes) and their positively associated miRNA (grey nodes), connected by
edges when an association was found, highlighting strong interconnectivity between distinct molecular
signatures.

Multiple members of the same miRNA family222

display opposite tumour suppressor and onco-223

genic behaviour224

Subsets of miRNAs that typically share common,225

evolutionarily-conserved sequences or functional226

motifs in their sequences are grouped into fam-227

ilies [28, 29]. Interestingly, grouping the miR-228

NAs found to be significantly upregulated and sig-229

nificantly downregulated in association with each230

of the gene signatures considered reveals that a231

number of miRNAs from the same families are 232

present in different sets. That is, as summarised 233

in Supplementary Section S6, many of the same 234

miRNA families contain a significant number of 235

miRNAs, some of which are positively and others 236

negatively associated across gene signatures for the 237

hallmarks of cancer. In particular, the miR-17/17- 238

5p/20ab/20b-5p/93/106ab/427/518a-3p/519 and let- 239

7/98/4458/4500 families have multiple members 240

across signatures both in statistically significant pos- 241

itive and negative associations. This highlights once 242
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more the context-dependent nature of miRNA regu-243

lation, and the potentially antagonistic behaviours244

of miRNAs when grouped by family, supporting245

previous findings. Here, we argue that such a group-246

ing does not necessarily reflect conserved function247

in the different tumour tissues, and we highlight that248

an additional context-dependent functional miRNA249

classification uncovering key functional associations250

is desirable.251

Hallmarks-associated miRNA targets are sig-252

nificantly enriched for tumour suppressor253

genes254

Starting from a list of positively associated miRNA255

with each gene signature, we aimed to identify which256

predicted miRNA-target pairs showed strong evi-257

dence of negative regulation across cancer types. The258

union of five miRNA target prediction algorithms,259

as implemented by the Bioconductor package miR-260

NAtap was used [45], with a minimum number of261

two sources required to be included in the analysis262

(see Methods). We considered only the miRNA and263

predicted target mRNA pairs for which there was264

a statistically significant negative Spearman corre-265

lation of expression across at least 5 cancer types,266

and used a rank-product test to identify the miRNA-267

target pairs showing consistency across cancer types268

(Figure 2a). As depicted by the process in Figure 2b-269

c, analysis of these significant miRNA-target pairs270

revealed a strong enrichment for tumour suppressor271

genes (as defined by the COSMIC database list of272

141 TSG), as might be expected for miRNA associ-273

ated with oncogenic processes (p = 0.0006, two-sided274

Fisher’s exact test). To further test the significance of275

increased number of TSG repressed by the signature-276

associated miRNA, a bootstrap resampling-based277

approach (see Methods), was devised. From all ex-278

pressed miRNA across cancer types that could have279

been chosen as signature-associated miRNA, random280

lists of the same length as the number of signature-281

associated miRNA were chosen, and, via an analo-282

gous approach as above, the number of repressed283

TSG for these miRNA was determined. Repeating284

this resampling 1000x, the probability that 21 or285

more TSG were repressed by the chosen miRNA286

was p = 0.017, again suggesting strong significance 287

in the enrichment for TSG among the repressed 288

targets of the signature-associated miRNA. This sug- 289

gests that miRNA-mediated repression of tumour 290

suppressor genes may be relatively common, signifi- 291

cant, and associated with the phenotypic hallmarks 292

of cancer. 293

A different picture emerged upon repeating this 294

analysis for oncogenes, and for the miRNAs found 295

to be significantly negatively associated with one 296

or more hallmark signature. We identified 1283 sig- 297

nificantly anti-correlated miRNA-target pairs for 298

these downregulated hallmark-associated miRNAs. 299

Likewise, analysing all predicted miRNA-oncogene 300

interactions among the 231 COSMIC oncogenes, 301

there were only 2 showing significant anticorrela- 302

tion across tumour types with their predicted target 303

miRNA (ESR1 and ABL2). Taking the intersection 304

of these lists of 2 COSMIC oncogenes and the 1283 305

miRNA-oncogene pairs associated with gene signa- 306

tures identified only ESR1 (interacting withmiR-18a- 307

5p and miR-130b-3p) in common (p = 1.2 · 10−5, 308

Fisher’s exact test). This suggests that ESR1, estro- 309

gen receptor alpha, may play a significant role across 310

the hallmarks of cancer, and de-repression by reduc- 311

tion of its miRNA-mediated repression may play 312

a role in cancer phenotype, and ultimately, onco- 313

genesis [35, 52]. On the other hand, this result is 314

also a strong negative control for our analysis, and it 315

concurs in supporting the common oncogenic role 316

of miRNAs via co-ordinated repression of tumour 317

suppressor genes. 318

A core set of tumour suppressor genes are 319

associated with the hallmark gene signatures 320

across cancer types 321

Next, we asked whether our results could be bi- 322

ased by the initial selection of miRNA, namely the 323

ones associated with the cancer hallmarks. To an- 324

swer this, we conducted a complementary analy- 325

sis, namely we sought to determine which of the 326

miRNA-mediated tumour suppressor genes showed 327

significance in downregulation, in the context of 328

all other tumour suppressor genes. Thus, we re- 329

peated the previous analysis extended to all predicted 330
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miRNA-TSG pairs, considering again the significant331

associations across at least 5 cancer types, and then332

collated with a rank product test, as summarised by333

Figure 2d. Considering themiRNA-TSG pairs found334

to be of significance in both analyses from Figures 2c335

and d, we identified a set of 22 miRNA-TSG pairs,336

comprising 8 TSG (FAT4, TGFBR2, ARHGEF12,337

DNMT3A, CDK12, ACVR2A, SFRP4, and PTEN)338

and 17 miRNAs in Figure 2e, in common. We show339

also that the miRNA found to be associated to each340

of these TSG are, in many cancer types, expressed341

at significantly higher levels in wildtype cases for342

the associated TSG, across multiple tumour types343

(Supplementary Figure ??, Section S7). These re-344

sults show that for these tumour suppressor genes, i)345

miRNA-TSG interactions show significance across346

cancer types, and more so than all other TSG con-347

sidered, ii) miRNA-TSG interactions show strong348

associations with the phenotypic hallmarks of can-349

cer, and iii) miRNA-TSG interactions may show350

increased importance in cases with wild-type TSG.351

Importantly, the conserved miRNA-TSG regulation352

across cancer types reveals this as a potential new353

common epigenetic mechanism, alternative to ge-354

netic mutations, to achieve functional inhibition of355

TSGs in cancer.356

The action of hallmarks-associated miRNAs357

shows cancer context-dependency358

The presented analysis highlights the action of359

miRNA in cancer. However, to further understand360

if this was cancer-specific, we sought to determine361

whether similar conclusions could be reached when362

analysing non-tumour tissues. Starting from the as-363

sociated adjacent normal tissue datasets from TCGA364

for tissue types with at least 20 samples for both365

miRNA and mRNA expression (BRCA, UCEC,366

HNSC, KIRC, LUAD, and BLCA), we fitted a lin-367

ear model for gene signature score as a function of368

all miRNA, for each signature, in each of the 6 tissue369

types. Aggregating coefficients across tissue types,370

we found that while a highly significant number of371

miRNA associated with the gene signature scores372

across tissue types are the same as uncovered for373

the cancer tissues, there are significant differences.374

Across signatures, an overlap of on average 54% was 375

observed for signature-associated miRNA, showing 376

high statistical significance for miRNA positively 377

and negatively associated with signatures (p < 10−19
378

in all cases, by Fisher’s exact test). 379

Examining the targets of these positively 380

signature-associated miRNA from normal tissues, 381

we identified 233 recurrently negatively correlated 382

miRNA-target pairs, of which two contain miRNA- 383

TSG pairs (CEBPA and NCOA4). However, this 384

overlap of the 142 unique genes among the 233 385

miRNA-target pairs with the 141 COSMIC tumour 386

suppressor genes does not show significance, and 387

may be due to chance alone (p = 0.26 by Fisher’s 388

exact test). Thus, while the biology captured by 389

the phenotypes of the gene signatures may be con- 390

sistent, more than chance alone would predict, be- 391

tween tumour and normal samples, the resultant 392

miRNA-target interactions are significantly differ- 393

ent, and miRNA-TSG enrichment is not retained 394

among normal tissue samples, highlighting the con- 395

text dependency of these associations. 396

Analysis of modes of regulation confirms 397

that copy number and mutational status are 398

key determinants of TSG expression 399

With a set of TSG purported to be significantly regu- 400

lated by miRNA in relation to phenotype identified, 401

we next sought to characterise the determinants of 402

their expression. In particular, we consider an ap- 403

proach integrating multiple lines of genomic infor- 404

mation; namely, methylation status, copy number, 405

miRNA expression, and mutational status (see Meth- 406

ods), with the linear model depicted in Figure 3a. 407

Notably, when considering the impact of miRNA in 408

this model, we considered all reported miRNA to po- 409

tentially discover novel miRNA-target interactions. 410

We then fit this model with penalised linear regres- 411

sion over the various cancer types, and then subse- 412

quently aggregated coefficients by the rank product 413

statistic to identify recurrently positive and nega- 414

tive predictors across cancer types, for each of the 415

8 tumour suppressor genes identified in Figure 2e. 416

This analysis yields both expected results, such as the 417

important positive predictive role of copy number 418
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hsa-miR-21-5p
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Figure 2. Approach used for interpreting miRNA-target interactions. (a) First, miRNA-target pairs
for each positively associated hallmark-associated miRNA were identified, and the correlation between
these was determined. (b) Next, the correlations across cancer types were aggregated, and those identified
as consistently negative-ranking were identified with the rank product statistic. (c) Among this list of
miRNA-mRNA target pairs, there was highly significant enrichment for tumour suppressor genes, as
identified by the Fisher exact test. (d) The same procedure as described in (a) and (b) was repeated for all
miRNA and all predicted target TSG pairs. (e) From the lists identified in (b) and (d), we identified those
miRNA-TSG pairs in common, and plot their interactions on a circos plot, showing the repressive actions
of each miRNA on its predicted target TSG.

for each of the tumour suppressor genes, as seen in419

the left panel of Figure 3b, and novel associations,420

such as the positive association of many miRNA,421

and some methylation probes with TSG expression422

in some cases. These miRNA may be co-expressed423

for a variety of reasons, such as competitive inter-424

actions, repression of repressors of the TSG, or a425

nearby genomic locus, though penalised regression426

minimises the effect of co-location because of the427

inclusion of copy number as a covariate.428

Likewise, the identified modes of negative regula- 429

tion give expected results, with non-sense mutations 430

and frame shift deletions consistently negatively as- 431

sociated with TSG mRNA expression. Further, be- 432

cause this analysis was done with all miRNA, and 433

not just those predicted to have a given TSG target, 434

these results may implicate novel miRNA-TSG in- 435

teractions. The complete rank product tables and 436

all autocorrelation matrices can be found in Supple- 437

mentary Section S8. 438
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PTEN, FAT4, and CDK12 tumour suppres-439

sor genes show exclusive regulation by either440

miRNA, promoter methylation or mutation441

across cancer types442

Once the modes of regulation and their relative im-443

portance was established (Figure 3), we sought to444

determine the relative occurrence of each of these445

modes of regulation. We identified which negative446

regulators co-occurred with each other as synergis-447

tic repressors, and conversely which were exclusive448

repressors (Figure 4a). A cursory analysis of auto-449

correlation heatmaps (e.g. Figure 4a) revealed that450

in some cases, the regulation by miRNA appeared451

to be exclusive from the regulation by methylation452

probes. A full series of heatmaps for all cancer types453

considered and all tumour suppressor genes with454

their associated negative regulators identified is pre-455

sented in Supplementary Section S9, Figures ??- ??,456

and for an independent dataset in Figure ??, details457

described in Online Methods. These results suggest458

that TSG expression can be altered by either miRNA459

or methylation, in addition to deletion or mutation,460

in a ‘BRCA-ness’-like phenomenon [43]. To charac-461

terise this, we devised a bootstrap resampling based462

approach (see Online Methods), to determine signif-463

icance of the difference in co-correlation between464

the miRNA and the methylation probes themselves,465

and then with each other. For each cancer type, we466

calculated the significance value of this proportion467

(Figure 4b), and from this analysis, it arose imme-468

diately that for each of the TSG considered, there469

are tumour types in which the regulation is consis-470

tently exclusive. Further, it also arose that across471

multiple cancer types, three key tumour suppressor472

genes, PTEN, FAT4, and CDK12, consistently tend473

towards exclusivity in their regulation, lending sup-474

port for the importance of miRNA-based regulation475

of these genes. We further use the identified nega-476

tively associated miRNA and methylation probes,477

along with mutation status, to define subgroups of478

samples, for which we show decreased TSG expres-479

sion in the subgroups with high expression of these480

miRNA or high methylation of these probes, in Fig-481

ures ??- ?? in Supplementary section S10. Further,482

we show that the miRNA-high and highly methy-483

lated samples have transcriptomes altered in a similar484

manner as in TSG mutated cases, via an analysis of 485

differentially expressed genes in both cases, with sig- 486

nificantly positively associated fold changes across 487

cases, in Figures ??- ?? in Supplementary Section S10. 488

ARHGEF12, SFRP4, TGFBR2, and their 489

cognate miRNAs, are consistently associated 490

with breast cancer molecular subtype 491

Next, we sought to identify associations with tu- 492

mour molecular subtypes, and as an initial analy- 493

sis chose the molecular subtypes of breast cancer, 494

owing to both the well-defined subtypes and the 495

relatively large number of cases available for each 496

subtype. An analysis of the eight identified tumour 497

suppressor genes consistently negatively downregu- 498

lated by miRNA across cancer types shows that in 499

many cases, their mRNA levels are inversely associ- 500

ated with breast cancer molecular subtype. In par- 501

ticular, the basal subtype shows the lowest median 502

expression of ARHGEF12, SFRP4, and TGFBR2, as 503

compared to normal tissue, luminal A, B, Her2 am- 504

plified, or normal subtypes of breast cancer as shown 505

in Supplementary Figure ?? in Section S11, and this 506

association is retained when cases are restricted to 507

wildtype expression of ARHGEF12, SFRP4, and 508

TGFBR2. At the level of the associated miRNA iden- 509

tified as negative regulators of these TSG, we show 510

that the median expression of these miRNA is also 511

significantly associated with breast cancer molecular 512

subtype, and inversely related to TSGmRNA expres- 513

sion by subtype. We have also shown that these asso- 514

ciations are preserved when samples with non-silent 515

mutations in the TSG are removed. For further vali- 516

dation, we also show reproducibility of these TSG 517

and miRNA associations to breast cancer subtype in 518

the independent Metabric dataset (N = 1293) [13]. 519

Discussion 520

In this work we have carried out a comprehensive 521

and rigorous association analysis of human transcrip- 522

tomic and genomic data to leverage an understanding 523

of the role of miRNA in regulating complex pheno- 524

types, through the lens of established gene expression 525

signatures. Gene signatures represent transcriptomic 526
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Figure 3. Approach used in determining the regulation of each TSG identified as potentially significantly
miRNA-regulated. (a) The linear model used whilst determining predictors of TSG mRNA expression. (b)
Model coefficients were aggregated across cancer types with the rank product statistic, and those identified
as statistically significant positive and negative predictors are depicted alongside the -log of their rank
product p-value.

association and we utilised them in two key ways,527

adding significant power to the analysis. Firstly, we528

use gene signatures to understand the relationship be-529

tween non-coding RNA and phenotype; this exploits530

the phenotypic associations intrinsic to established531

gene signatures. Secondly, because miRNA can only532

repress mRNA that are present in sufficient quantity533

in a cell, when inferring function, it is vital to ‘group’534

transcriptomic profiles by miRNA targeted gene ex-535

pression. This allows for an understanding of the536

miRNA-mediated gene regulation important to the537

phenotype one wishes to uncover. Thus, this anal-538

ysis represents a novel and powerful assessment of539

the complexity of miRNA regulation of phenotypes, 540

particularly in the context of cancer. 541

Our work begins with ensuring applicability of 542

the gene signatures, and then for each signature, we 543

gain an understanding of the miRNA both signifi- 544

cantly up- and down-regulated in association with 545

the signature score. From this, we obtain the net- 546

work shown in Figure 1, which describes for the 547

first time in a detailed fashion, and across cancer 548

types, the contribution of individual miRNA to the 549

complex cancer phenotype. We also show repro- 550

ducibility of this network in an independent dataset, 551

by considering the overlap with the network recon- 552
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Figure 4. The approach used to determine the exclusivity of each mode of gene regulation on expression
for the TSG considered. (a) Depiction of the autocorrelation heatmap for the expression of the various
negative regulators of the tumour suppressor gene, and the variables considered and their meaning, as
depicted. (b) Plots depicting the spread of the percentiles on the empiric CDF for the distributions for the
pairwise differences of the variables identified in (a) through a bootstrapping-based analysis, as described
in the Methods section.

structed using theMetabric dataset and the same gene553

signatures. Moreover, repeating this analysis, group-554

ing the miRNA significantly upregulated and down-555

regulated by miRNA family, illustrates that many556

miRNA families participate with members antago-557

nistically across the hallmarks of cancer; including 4558

of the top 5 most common miRNA families identi-559

fied by our analysis (miR-25 family, miR-17 family,560

miR-15abc family, and let-7 family). This challenges561

the biological hypothesis of miRNA families acting562

in a generally coordinated fashion across multiple563

phenotypic states, and highlights the context depen-564

dent behaviour of individual miRNA themselves, 565

regardless of grouping by family [20,28,29]. Further 566

strengthening the argument for context-dependent 567

actions of miRNA is the observation that we have 568

made for the gene signature network reconstructed 569

from 6 tissue types with samples of adjacent normal, 570

non-tumour tissue. While a significant proportion 571

(54%) of miRNA found to be associated with the 572

gene signatures are the same as for the tumour tissues, 573

the analysis of the targets of these miRNA reveals 574

that they do not show enrichment for TSG in their 575

targets, despite being concordant to the findings in 576
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tumour tissue, again highlighting the context depen-577

dency in miRNA-mediated gene regulation.578

As might be expected, given the complexity of579

the action of non-coding RNA, we show in this580

work that for a given phenotype, single miRNA-581

target interactions do not account for the observed582

behaviour; rather it is subtle changes by a network of583

miRNAs, interacting with a set of targets in a coordi-584

nated manner, that serve to tune the transcriptome585

to achieve the complex phenotype. That is, because586

the targets of a given miRNA are predicted to be vari-587

able in their function, and are not all present in ev-588

ery sample at ‘repressable’ concentrations, the same589

miRNA can be associated with opposing phenotypic590

effects in different contexts, as reported by Denzler591

et al. in [14] for competing endogenous RNA. We592

show that the behaviour of miRNA is highly context593

dependent, and through the pan-cancer analysis, we594

have aimed to reduce the complexity of this context595

dependency by only selecting those interactions sig-596

nificantly occurring across cancer types. However,597

we caution that because miRNA are so context de-598

pendent, sample purity arises as an important issue599

in identifying pan-cancer miRNA signals. Further600

study into deconvolution methodologies enabling601

more accurate quantification of miRNA abundance602

from purely tumour samples will likely elucidate a603

clearer picture of miRNA-target interactions.604

As miRNA are increasingly also thought of as605

potential therapeutic agents, because miRNA effects606

are highly context dependent and miRNA act in co-607

ordinated networks, if miRNA are to have effective608

therapeutic function, a single miRNA may be an609

ineffective strategy. Rather, we pose that a cocktail610

of miRNA will be necessary to sufficiently modify611

the tune of the symphony playing within the cancer612

cell, perhaps explaining poor therapeutic efficacy613

with current single miRNA-based therapeutics. For614

miRNA therapeutics to achieve function, we pose615

that these will likely have to be based on a number616

of miRNA, given to a highly selected group of pa-617

tients with transcriptomes deemed to be responsive618

to this network perturbation, and that in patients619

without these profiles, such a cocktail would require620

modification in order to be effective. Further, by621

using more than a single miRNA as a therapeutic622

agent, the off-target effects that have significantly 623

limited development in this field may be mitigated, 624

by buffering for this with other miRNA in off-target 625

tissues [1]. 626

In this work we further the knowledge of which 627

miRNA are involved in creating the phenotypes 628

of cancer, across tissue types, to identify miRNA- 629

TSG targets showing exclusive miRNA-mediated 630

suppression. This suggests that a phenomenon simi- 631

lar to that of the previously described ‘BRCA-ness,’ 632

wherein a miRNA, miR-182, has been shown to 633

repress BRCA and confer sensitivity to PARP in- 634

hibitors in a subset of tumours [43], may be at work 635

within many cases, and across multiple tumour sup- 636

pressor genes. Additionally, recent work has shown 637

how ‘epimutations’ may result in aberrantly methy- 638

lated sites that can recapitulate the phenotype of a 639

mutated tumour suppressor such as DNMT3A in 640

leukaemia [27]. This raises the suggestion that there 641

are tumour suppressor genes for which a mutation 642

is not requisite for inactivation, but rather, inactiva- 643

tion is achieved through miRNA-mediated repres- 644

sion or methylation-mediated repression alone. For 645

the TSG we have identified, we have also shown (see 646

Online Materials), that the TSG mutations are oc- 647

curring independently of MYC amplification status, 648

which has been recently identified as an independent 649

regulator of miRNAs. In addition, we show that 650

such MYC amplification status is indeed associated 651

with miRNA expression for the miRNA found to 652

be negatively associated with each of the TSG in 653

a majority of cases (Supplementary Figure ??, Sec- 654

tion S12). Further, we have shown that in partic- 655

ular tumours, for PTEN, CDK12, and FAT4, this 656

miRNA or methylation-based suppression happens 657

independently of other gene regulatory factors, such 658

as mutations and copy number changes. 659

Lastly, we show how using generally validated, 660

and specifically quality-controlled, gene signatures 661

describing biologically conserved phenotypes can be 662

used to collate large datasets to derive inference about 663

miRNAs, a species whose signal has been tradition- 664

ally hard to detect. The ability of this approach to 665

capture tumour biology is highlighted through the 666

identification of tumour suppressor genes showing 667

miRNA-mediated regulation across tumour types, 668
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which we have shown have a very strong association669

to breast cancer molecular subtype. Specifically, this670

analysis points towards the role of decreased mRNA671

levels of ARHGEF12, SFRP4, and TGFBR2 in asso-672

ciation with the poor-prognosis basal breast cancer673

subtype [2, 51]. Having identified potential nega-674

tive regulators of these TSG, we show how these675

miRNA alone associate with breast cancer subtype,676

elevated in the basal subtype, capturing potentially677

novel biological association.678

Finally, the presented methodology may be used679

in future work encompassing both more specific sig-680

natures, as well as larger, more expansive datasets681

to derive even greater confidence in particular asso-682

ciations. This approach will enable the functional683

annotation of a greater variety of miRNAs, illumi-684

nating their critical role in post-transcriptional gene685

regulation.686

Online Methods687

Gene signatures considered688

We consider a wide variety of gene signatures, touch-689

ing upon many of the hallmarks of cancer, as de-690

scribed in the original and updated work by Hana-691

han and Weinberg [24, 25]. Signatures were selected692

through a review ofMSigDB hallmarks signatures, as693

well as through a review of the literature, and those694

used are summarised in Table 3 [34]. We note that695

while many of these signatures were derived for a696

particular tumour type, we have applied them across697

many different tumour types, but before doing so,698

we have performed an evaluation step (sigQC) to699

ensure that each signature used is applicable to ev-700

ery dataset under consideration, in Supplementary701

section S1, Figures ??- ??.702

Datasets considered703

In selecting datasets for this analysis, we initially704

aimed to select those comprising a comprehensive705

set of cancer types, with each type represented by706

a sufficient number of clinical samples, so as to re-707

duce the effects of noise. Thus, we initially began708

with a consideration of all cancer types represented709

within the Cancer Genome Atlas datasets (TCGA),710

and limited based on origin of neoplasm and num- 711

ber of patients for whom miRNA-sequencing was 712

carried out [55]. The RSEM normalised gene ex- 713

pression, mature miRNA normalised expression 714

data, copy number, mutation, and methylation 715

data were accessed from the Firebrowse database at 716

http://www.firebrowse.org. In particular, we con- 717

sidered all cancer types which were epithelial or glan- 718

dular with respect to histology, and with at least 200 719

samples with miRNA-sequencing data. These two 720

filters limit the cancers considered to a total of 15 721

epithelial or glandular neoplasms, comprising a wide 722

variety of cancer types, enabling the strong detec- 723

tion of fundamental biology. Furthermore, among 724

these tumour types, there are 7,738 clinical samples, 725

for which 7,316 have miRNA-sequencing data. The 726

tumour types, along with their sample counts are 727

presented in Table 1. Details of the number of sam- 728

ples included for each data type are presented in 729

Table 2, and we note that for any analysis presented, 730

any dataset present with fewer than 9 samples was 731

excluded from analysis. This restriction excluded the 732

analysis of COAD, OV, and UCEC datasets from 733

the analysis of tumour suppressor genes, oncogenes, 734

and exclusivity of regulation. 735

miRNA family database 736

miRNA ranked across different cancer types were 737

further grouped together by microRNA family, as 738

defined by the targetscan database, implemented in 739

R as the targetscan.Hs.eg.db package [12, 33]. 740

Statistical methodology 741

Transcriptomic data 742

Data were taken from the GDAC Firebrowse TCGA 743

portal provided by the Broad Institute. miRNA 744

datasets used were log2 normalised mature miRNA 745

counts for all cancer types. mRNA datasets used 746

were normalised RSEM genes taken from data 747

through the Illumina HiSeq RNAseq v2 platform. 748

These expression data were then transformed by the 749

transformation log2(x+ 1), for x as the original ex- 750

pression value, and this was used in all further com- 751

putation for all cancer types and signatures. Where 752
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Table 1. TCGA datasets considered and associated total clinical sample counts.
Dataset Abbreviation Clinical samples
Breast invasive carcinoma BRCA 1098
Ovarian serous cystadenocarcinoma OV 602
Lung adenocarcinoma LUAD 585
Uterine corpus endometrial carcinoma UCEC 560
Kidney renal clear cell carcinoma KIRC 537
Head and neck squamous cell carcinoma HNSC 528
Lung squamous cell carcinoma LUSC 504
Thyroid carcinoma THCA 503
Prostate adenocarcinoma PRAD 499
Colon adenocarcinoma COAD 460
Stomach adenocarcinoma STAD 443
Bladder urothelial carcinoma BLCA 412
Liver hepatocellular carcinoma LIHC 377
Kidney renal papillary cell carcinoma KIRP 323
Cervical squamous cell carcinoma and endocer-
vical adenocarcinoma

CESC 307

not otherwise specified, signature scores are taken753

as the median of log2-transformed expression of all754

signature genes for each sample. Metabric datasets755

for normalised miRNA and mRNA expression756

were taken from the European Genome-Phenome757

Archive (EGA) under study accession numbers758

EGAD00010000434 and EGAD00010000438.759

Penalised linear regression760

The aim of the penalised linear regression method-761

ology was to determine those miRNA which most762

strongly predict (positively or negatively), the gene763

expression summary score for each signature. With764

consideration of this, the linear regression was de-765

signed such that the model utilised the expression766

levels of each individual miRNA as a covariate, in767

order to predict the signature score, taken as the me-768

dian of the log-transformed expression levels of the769

signature genes. We note that in order to facilitate770

direct comparability between distinct signatures and771

caner types, we first normalised both the scores and772

miRNA expression levels to a mean of zero and unit773

variance. This transformation ensures that the co-774

efficients and their relative values are comparable775

between cancer types and signatures.776

We used multivariate penalised linear regres-777

sion, with 10-fold cross validation, as previously de- 778

scribed [6] to infer significant relationships between 779

miRNA and gene signatures without overfitting our 780

model. Specifically, first a univariate model filter 781

was applied to the data to select miRNA used for 782

penalised multivariate linear regression. Then, the 783

penalised multivariate linear model with the least 784

predictive error (as assessed on the validating folds) 785

was selected, and coefficients for these miRNA were 786

used for further analysis. All model-fitting, includ- 787

ing the initial filtering, was done with 10-fold cross- 788

validation, and was carried out using the penalized 789

package in R [21, 22]. The initial univariate filter 790

was applied to remove miRNA showing little pre- 791

dictive power from the multivariate linear model, 792

and only those miRNA with p < 0.2 significance 793

in the univariate linear model predicting signature 794

score were considered. This permissive p-value was 795

used to assure that the multivariate linear model did 796

not contain artificially stringent associations, as the 797

penalization procedure also functions as a stringency 798

filter, reducing the false discovery rate. The multi- 799

variate linear regression was carried out as a penalised 800

L1/L2 regression to reduce complicating effects of 801

co-correlated miRNAs as predictors of the signature 802

scores. To tune the parameters for the combined 803

L1/L2 regression, a range of values (0, 0.01, 0.1, 1, 804
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Table 2. Counts of common samples with miRNA, mRNA, mutation, methylation, and copy num-
ber data.

Dataset mRNA samples miRNA mRNA and miRNA
mRNA, miRNA,

mutation, methylation,
and copy number

BRCA 782 755 499 324
OV 307 461 291 0

LUAD 517 452 449 181
UCEC 177 412 174 4
KIRC 534 255 255 121
HNSC 520 486 478 244
LUSC 501 342 342 51
THCA 501 502 500 396
PRAD 497 494 493 329
COAD 286 221 221 0
STAD 415 389 370 230
BLCA 408 409 405 128
LIHC 373 374 369 186
KIRP 291 292 291 148
CESC 304 307 304 190

10, 100), was tested for the L2 parameter, while in805

each case the L1 parameter was optimised. Follow-806

ing computation of all models, the model with the807

greatest log-likelihood was chosen.808

Rank product analysis809

Once coefficients were obtained for the linear model810

via the penalised regression approach described ear-811

lier, these were collated into matrices with columns812

defined by cancer type, for each of the gene sig-813

natures considered. These coefficients were then814

fractionally-ranked both from most negative to most815

positive, and most positive to most negative in value.816

The rank product statistic, as described by Breitling817

et al., in 2004, for these fractional ranks was then con-818

sidered, and the coefficients were ranked in terms819

of their significance of rank product test statistic,820

as implemented by the RankProd R package [4, 9].821

This was used to give high-confidence rankings of822

miRNA associated both positively and negatively823

with the various signatures considered.824

Validation of miRNA-signature interactions 825

In order to ensure reproducibility of the approach 826

used to identify gene signature-associated miRNA, 827

we repeated the linear modeling procedure across the 828

independent Metabric matched miRNA and mRNA 829

microarray dataset of 1293 samples [13]. We mapped 830

each gene signature to corresponding Ensembl IDs, 831

and repeated the combined univariate-multivariate 832

linear modeling approach over all miRNA probes. 833

The miRNA probes identified as positive and neg- 834

ative coefficients were then identified, and mapped 835

to their corresponding mature miRNA ID. The sta- 836

tistical significance of this overlap is shown in Sup- 837

plementary Figure ??, and was calculated using the 838

Fisher exact test. Nearly all signatures show strong 839

statistical significance, and in the majority of cases 840

not reaching statistical significance, signature appli- 841

cability to the Metabric dataset may present an issue, 842

as signatures contained a high proportion of genes 843

with low variance, which presents an issue for signa- 844

ture applicability, particularly for microarray-based 845

datasets. 846
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Table 3. Gene signatures considered and associated hallmarks of cancer.
Signature name Reference Number of genes Associated hallmarks
Epithelial Mesenchymal Transi-
tion, MSigDB

MSigDB [34] 200 Activating invasion and metastasis

Invasiveness Marsan et al., 2014 [38] 16 Activating invasion and metastasis
Oxidative Phosphorylation,
MSigDB

MSigDB [34] 200 Deregulating cellular energetics

Reactive Oxygen Species Pathway,
MSigDB

MSigDB [34] 49 Deregulating cellular energetics

G2M Checkpoint, MSigDB MSigDB [34] 200 Enabling replicative immortality
PI3K-AKT-MTor Signaling,
MSigDB

MSigDB [34] 105 Evading growth suppressors

Xenobiotic Metabolism, MSigDB MSigDB [34] 200 Evading growth suppressors
DNA Repair, MSigDB MSigDB [34] 150 Genome instability and mutation,

Enabling replicative immortality
p53 Pathway, MSigDB MSigDB [34] 200 Genome instability and mutation,

Enabling replicative immortality
Hypoxia Buffa et al., 2010 [5] 51 Inducing angiogenesis
Angiogenesis, MSigDB MSigDB [34] 36 Inducing angiogenesis
Hypoxia, MSigDB MSigDB [34] 200 Inducing angiogenesis
Angiogenesis, upregulated Desmedt et al., 2008 [15] 5 Inducing angiogenesis
Angiogenesis Masiero et al., 2013 [39] 43 Inducing angiogenesis
Proliferation, upregulated Desmedt et al., 2008 [15] 140 Sustaining proliferative signaling
KRAS Signaling, Up, MSigDB MSigDB [34] 200 Sustaining proliferative signaling
Inflammatory Response, MSigDB MSigDB [34] 200 Tumour-promoting inflammation,

Avoiding immune destruction
IL2-STAT5 Signaling, MSigDB MSigDB [34] 200 Tumour-promoting inflammation,

Avoiding immune destruction
IL6-JAK-STAT3 Signaling,
MSigDB

MSigDB [34] 87 Tumour-promoting inflammation,
Avoiding immune destruction

TGFβ Signaling, MSigDB MSigDB [34] 54 Tumour-promoting inflammation,
Avoiding immune destruction

TNFα Signaling via NF-κB,
MSigDB

MSigDB [34] 200 Tumour-promoting inflammation,
Avoiding immune destruction

Immune Invasion, upregulated Desmedt et al., 2008 [15] 92 Tumour-promoting inflammation,
Avoiding immune destruction

Target analysis847

Targets were aggregated for each miRNA using the848

miRNAtap database in R, as implemented through849

the Bioconductor targetscan.Hs.eg.db package [46].850

The default settings of using all 5 possible target851

databases: DIANA [37], Miranda [17], PicTar [32],852

TargetScan [19], and miRDB [56], with a minimum853

source number of 2 were used, and the union of all854

targets found was taken as the set of targets for a855

given miRNA.856

For each of these target-miRNA pairs, the Spear-857

man correlation coefficient was calculated across ev-858

ery cancer type for miRNA versus target mRNA 859

expression, partial to mutation status of the mRNA, 860

and if this value reached statistical significance of 861

p < 0.05, it was recorded, and otherwise was omit- 862

ted and recorded as NA. Note that mutational status 863

was reported as a binary variable with a value of 864

1 for any non-silent, non-intronic mutation, and 0 865

otherwise. The target-miRNA pairs with at least 5 866

non-zero entries across cancer types were kept for 867

further analysis, and subsequently were analysed us- 868

ing the rank product statistic, to identify those pairs 869

with consistently negative correlations, across cancer 870

types, with respect to all other hallmarks-miRNA 871
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pairs. Partial correlations were done in R using the872

ppcor package [30].873

Furthermore, in the global analysis of all TSG-874

miRNA pairs, we considered every TSG-miRNA875

predicted target pair, and again considered the Spear-876

man correlation partial to mutation status, omitting877

the value as NA if significance p < 0.05. The rank878

product statistic was again considered on those pairs879

with at least 5 non-zero values across cancer types,880

thereby identifying those TSG-miRNA pairs con-881

sistently negatively correlated across cancer types,882

significantly with respect to all other TSG. Lists883

of known oncogenes and tumour suppressor genes884

were taken from the COSMIC database [18]. Be-885

cause MYC amplification is a possible confounder to886

the miRNA identified as associated with TSG across887

cancer types, we checked to ensure that mutation888

of the 8 TSG identified, across cancer types, does889

not co-occur significantly with MYC amplification.890

Of the 96 TSG-cancer type pairs (8 TSG over 12891

cancer types), none showed significance in the over-892

enrichment by a one-sided Fisher exact test for MYC893

amplification and TSG mutation after correcting for894

multiple testing.895

Bootstrap resampling to determine signifi-896

cance of TSG enrichment among repressed897

targets898

To determine the significance of the number of the899

TSG repressed among the repressed targets of the900

miRNA identified as signature-associated, we resam-901

pled from all miRNA that could possibly selected902

as signature associated (i.e. those with at least 80%903

non-zero expression across samples in at least one904

tumour type), and created 1000 resampled lists of905

random miRNA of the same length as the number906

of signature-associated miRNA. Using these lists and907

the methodology above, miRNA targets were iden-908

tified, and those miRNA-target correlations (partial909

to mutation status) consistently negatively ranking910

compared to all others across tumour types were911

recorded for each list. Among these repressed tar-912

gets, we identified the number of TSG overlapping913

with the COSMIC TSG list, and used this to define914

the empirical distribution of the number of TSG915

overlapping with the miRNA targets. Then from 916

this distribution, to determine the significance for 917

the 21 TSG overlapping the repressed TSG targets 918

of the signature-associated miRNA, we determined 919

the empirical CDF percentile for the value 21, re- 920

ported as 0.983, yielding p = 0.017 from this analy- 921

sis. To ensure that 1000x bootstrap resampling was 922

sufficient, we used the QQ plot for the empirical 923

distribution to ensure close adherence to normality 924

for this distribution. 925

Analysis of TSG regulation 926

In analysing the regulation of the TSG identified as 927

related to the hallmarks of cancer and potentially 928

amenable to miRNA regulation, we first limited the 929

samples under consideration to those where copy 930

number data, gene expression data, miRNA expres- 931

sion, mutation data, and methylation data were all 932

present. Mutation data was again taken as a bi- 933

nary variable, but as opposed to the partial correla- 934

tion analysis, mutations were stratified into their re- 935

ported types (e.g. missense mutations are all grouped 936

together, etc.). That is, the missense mutation vari- 937

able would only contain a value of 1 if the sample 938

had a missense mutation in the gene of interest, and 939

0 otherwise. All variables considered in the linear 940

regression were standardised to a mean of 0, and a 941

standard deviation of 1. 942

L1/2 penalty-based penalised linear regression 943

was then performed, in the same manner as above, 944

for the linear model described in Figure 3a. Sub- 945

sequently, coefficients were aggregated across the 946

various cancer types and after the rank product test 947

was applied, those predictors showing statistically 948

consistent positive or negative coefficients were iden- 949

tified. Following this, the autocorrelation of each 950

of these predictor variables was considered, for each 951

of the TSG in each cancer type, as depicted by the 952

heatmap in Figure 4a. 953

Analysis of the exclusivity of gene regulation 954

To determine the exclusivity of gene regulation, we 955

calculated the empiric distributions of the variables 956

Πρk as defined graphically in Figure 4. These repre- 957

sent the proportion of miRNA-miRNA or miRNA- 958
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methylation or methylation probe-methylation959

probe pairs that show significant positive Spear-960

man co-correlation (p < 0.05). For the bootstrap-961

ping analysis, we resampled the datasets, choosing962

miRNA and methylation probes in the same num-963

ber as the heatmap in question, and then considered964

the distributions of the pairwise differences in the965

variables Πρk . From these distributions for the pair-966

wise differences, we were able to infer the percentile967

on the empirically constructed CDF that the true968

case represented, the results of which are depicted in969

Figure 4b, showing, for each gene and cancer type,970

the percentile on the pairwise difference empiric971

distribution for the observed heatmap.972

The calculations for the analysis of TSG regula-973

tion and analysis for the exclusivity of gene regula-974

tion were repeated for an idependent dataset com-975

prising matched mRNA, miRNA, CNV, mutation,976

and methylation data for 93 patients with ovarian977

cancer, from theOV-AU project from the ICGC data978

portal [58]. Results of this analysis are highlighted979

in Supplementary Section S9, Figure ??.980
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