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Abstract 

Background: While many have emphasized impaired reward prediction error (RPE) 

signaling in schizophrenia, multiple studies suggest that some decision-making 

deficits may arise from overreliance on RPE systems together with a compromised 

ability to represent expected value. Guided by computational frameworks, we 

formulated and tested two scenarios in which maladaptive representation of 

expected value should be most evident, thereby delineating conditions that may 

evoke decision-making impairments in schizophrenia. 

 

Methods: In a modified reinforcement learning paradigm, 42 medicated people with 

schizophrenia (PSZ) and 36 healthy volunteers learned to select the most frequently 

rewarded option in a 75-25 pair: once when presented with more deterministic (90-

10) and once when presented with more probabilistic (60-40) pairs. Novel and old 

combinations of choice options were presented in a subsequent transfer phase. 

Computational modeling was employed to elucidate contributions from RPE 

systems (“actor-critic”) and expected value (“Q-learning”). 

 

Results: PSZ showed robust performance impairments with increasing value 

difference between two competing options, which strongly correlated with decreased 

contributions from expected value-based (“Q-learning”) learning. Moreover, a subtle 

yet consistent contextual choice bias for the “probabilistic” 75 option was present in 

PSZ, which could be accounted for by a context-dependent RPE in the “actor-critic”. 

 

Conclusions: We provide evidence that decision-making impairments in 

schizophrenia increase monotonically with demands placed on expected value 

computations. A contextual choice bias is consistent with overreliance on RPE-based 

learning, which may signify a deficit secondary to the maladaptive representation of 

expected value. These results shed new light on conditions under which decision-

making impairments may arise. 
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Introduction 

Reinforcement learning (RL) and decision-making impairments are a recurrent 

phenomenon in people with schizophrenia (PSZ) and are thought to play a key role 

in abnormal belief formation (1) and motivational deficits (2). While many have 

emphasized an impairment in learning from prediction errors (3-5) (the difference 

between expectation and outcome), multiple studies suggest that some of these 

deficits may in fact arise from overreliance on prediction errors together with a 

compromised ability to represent the prospective value of an action or choice (i.e. 

expected value) (e.g. (6, 7), for overview see Waltz & Gold (2)). However, such 

conclusions have typically been based on inferences, rather than experimental 

designs intended to reveal such effects. We therefore formulated and tested two 

hitherto unexplored scenarios motivated by the posited computations under which 

deficits in the representation of expected value should be most evident. 

 Optimal decision-making relies on a pas de deux between a flexible and 

precise representation of expected reward values, supported by orbitofrontal cortex 

(OFC) (8-10), which is complemented by a gradual build-up of stimulus-response 

associations, credited to dopaminergic teaching signals (reward prediction errors; 

RPEs) that project to striatum (11, 12). Previous work has demonstrated that 

maladaptive representations of expected value, rather than diminished stimulus-

response learning per se, is one consistent feature of RL deficits in PSZ (13-15).  

 Findings of impaired representations of expected value in PSZ have often 

relied on computational models of learning and decision-making. In RL 

computational frameworks, it is thought that “Q-learning” and “actor-critic” models 

capture expected value and stimulus-response learning, respectively. In Q-learning 

(16), RPEs directly update the expected value of every choice option separately - 

similar to the representation of a reward value by OFC (17, 18) - and choices are 

driven by large action values. In contrast, in the actor-critic framework (19), choice 

preferences in the actor arise slowly on the basis of an accumulation of RPEs signaled 

by the critic, thought to reflect DA-mediated changes in synaptic weights in basal 

ganglia (20-22). Importantly, because the RPE fulfills different roles in these two 

computational frameworks (updating reward value directly versus modifying 
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stimulus-response weights), it follows that, by definition, reward value is more 

precisely represented in Q-learning than in actor-critic frameworks. In one study, we 

showed that a computational modeling parameter that captured the balance between 

Q-learning versus actor-critic-type learning was tilted in favor of the latter in PSZ, 

suggesting relative underutilization of expected value and, perhaps secondarily, 

overreliance on stimulus-response learning (6). To date, however, little is known 

about the conditions under which deficits in the computation of expected value 

should be most observable. 

We therefore sought to test two predictions of our theoretical account, which 

emphasizes maladaptive representation of expected value (Q-learning) in PSZ:   

 

1. Counter-intuitively, and in contrast to many situations where PSZ may be 

most impaired at high levels of difficulty, our model based on less precise 

representations of reward value (decreased Q-learning) predicts that PSZ 

should suffer the largest decision-making deficits for the easiest value 

discriminations: that is, when the value difference between two competing 

options increases.  

 

2. Secondly, if PSZ rely more on actor-critic-type learning - because of a 

decrease in Q-learning - then stimulus-response learning governs action-

selection. In the actor-critic architecture, the tendency to repeat a choice or 

action is affected by the overall reward rate of the context, since RPEs are 

evaluated relative to that context. Therefore, a second diagnostic prediction is 

that context-dependent choice biases should be observable in PSZ even 

among items with identical reinforcement histories. 

 

In the current study, we test these two hypothesized consequences of deficits 

in the representation of expected value using a modified RL paradigm. Participants 

were presented with two pairs of stimuli with identical reward value; one pair was 

presented in a “reward-rich” context (where the other pair had a higher reward rate), 

while the other pair was presented in a “reward-poor context” (where the other pair 
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had a lower reward rate). Afterwards, participants were presented with old and 

novel combinations of choice options. We exploited the wide range in reward value 

to test our hypothesis relating to performance deficits as a function of the value 

difference between two competing options. Pairs with identical reward value in 

different contexts allowed us to address hypotheses relating to a contextual choice 

bias. 

To accomplish these aims, we used a previously-validated hybrid 

computational model that estimates one’s tendency to use Q-learning versus actor-

critic along a parametric continuum (6). As observed previously (6), we expected PSZ 

to rely less on Q-learning than actor-critic, resulting in the aforementioned deficits. 
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Methods and Materials 

 

Sample 

We recruited 44 participants with a Diagnostic and Statistical Manual of Mental 

Disorders, Version IV (DSM-IV) diagnosis of schizophrenia or schizoaffective 

disorder (PSZ) and 36 healthy volunteers (HV). Two PSZ were excluded; one 

participant was mistakenly administered an old version of the task, while another 

participant consistently performed below chance, leaving a sample of 42 PSZ. PSZ 

were recruited through clinics at the Maryland Psychiatric Research Center. A 

diagnosis of schizophrenia or schizoaffective disorder in PSZ, as well as the absence 

of a clinical disorder in HV, was confirmed using the SCID-I (23). The absence of an 

Axis II personality disorder in HV was confirmed using the SIDP-R (24). All PSZ 

were on a stable antipsychotic medication regimen. No changes in medication 

dose/type were made in the four weeks leading up to study participation. Major 

exclusion criteria included: pregnancy, current illegal drug use, substance 

dependence (in past year), a neurological disorder, and/or medical condition 

affecting study participation. All participants provided written informed consent. 

The study was approved by the Institutional Review Board of the University of 

Maryland SOM. 

 

Clinical ratings 

We used the Scale for the Assessment of Negative Symptoms (SANS; (25)) to assess 

negative symptoms. The Brief Psychiatric Rating Scale (BPRS) positive symptom 

factor (suspiciousness, hallucinations, unusual thought content, grandiosity) was 

used as a measure of positive symptom severity (26). Antipsychotic doses were 

converted to haloperidol equivalents according to Andreasen et al. (27). All 

participants received the Wechsler Abbreviated Scale of Intelligence (WASI-II) (28) 

and the MATRICS Consensus Cognitive Battery (29). All ratings were collected by a 

trained and experienced clinical research associate.  
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Reinforcement Learning Paradigm 

Participants completed an RL paradigm consisting of a 320-trial learning phase and 

112-trial transfer phase. 

 

Learning Phase 

Participants were presented with pairs of stimuli and were asked to select one using 

their left (left stimulus) or right (right stimulus) index finger, after which they 

received positive (+$.05) or neutral ($0.00) feedback (figure 1). Choice feedback was 

delivered probabilistically according to three pre-determined contingencies (% 

positive feedback for optimal versus suboptimal choice): 1) 90-10, 2) 75-25, and 3) 60-

40 (figure 1).  

The 320-trial learning phase was divided into two blocks of 160 trials. One block 

consisted of 80 90-10 and 80 75-25 trials, while the other block consisted of 80 75-25 

and 80 60-40 trials. Trial presentation was pseudo-randomized within each block and 

block order was counterbalanced among participants. 

 

In total, there were eight pairs; two 90-10 pairs, two 60-40 pairs, and four 75-25 pairs 

(every pair was presented 40 times). Stimulus type (butterflies/birds), option-

probability pairing, and option-position pairing (left/right side of screen) were 

counter-balanced across participants. Note that two out of four 75-25 pairs always 

comprised bird-themed stimuli, and the other two pairs butterfly-themed stimuli 

(figure 1).  

 

By combining 75-25 pairs with more deterministic (90-10) and probabilistic (60-40) 

pairs in separate blocks, we aimed to investigate context-dependent RL, meaning 

that perceived choice value (here, 75-25 pairs) might be dependent on contextual 

reward rate (the average reward rate of optimal choice options within a block). 

Henceforth, we will refer to 75-25 pairs that were presented together with 90-10 pairs 

as “75-25D” (“D” for the more deterministic context) and 75-25 pairs that were 

presented with 60-40 pairs as “75-25P” (“P” for the more probabilistic context).  
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Transfer Phase 

The 112-trial transfer phase served two purposes: I) to assess the ability to compare 

choice options using their reward value, and, II) a formal test of a contextual choice 

bias.  

 

Every possible combination of two choice options (new and original combinations) 

was presented and the participant was instructed to “select the option that was 

rewarded most often” (figure 1). To prevent further learning, no feedback was 

delivered. Combining all possible choice options yielded twenty-eight combinations 

with non-identical expected value; twenty-two novel combinations (e.g. 90-60 or 

75D-10) and four original combinations (90-10, 75-25D, 75-25P, 60-40). In addition, 

we produced two novel combinations with identical expected value; 75P-75D and 

25P-25D. Supplementary table 1 gives an overview of transfer pairs that were used 

for the analyses described below. 

 

Note that there were two pairs of each contingency in the learning phase, with the 

exception of 75-25 pairs, of which there four. Thus, although every unique 

combination of choice options was presented only once in the transfer phase, there 

were always four presentations of each expected value combination (e.g. with two 

90-10 pairs one can generate four unique 90-10 combinations). 

 

Computational model 

Hybrid Model 

In an attempt to relate deficits in expected value and a contextual choice bias to latent 

variables, we used a previously-validated hybrid model allowing for combined 

influences of Q-learning and actor-critic frameworks on decision-making (6). The 

model with the best trade-off between model complexity, fit, and posterior predictive 

simulations contained six free parameters: a critic learning rate (αc), actor learning 

rate (αa), Q learning rate (αq), beta (β; inverse temperature), mixing (m), and 

undirected noise (ε) parameter, which were estimated for every subject via 
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maximum likelihood optimization (see supplemental text and supplemental figure 1 

for a detailed description of the model selection procedure). 

 

In actor-critic models, the critic learns state values, while the actor selects responses 

(19, 30). The critic learns about state value by observing outcomes and uses its own 

RPE [δ(t) = reward r(t) – expectation q(t)] to update the state value of a stimulus pair 

[state value v(t) = v(t-1) + αc*δ(t)]. The critic’s RPE also updates the actor’s action 

weights for chosen options [action weight aw(t) = aw(t-1) + αa*δ(t)]. Thus, action-

weights  - similar to action values in Q-learning - shape choice preferences. Collins 

and Frank (21) showed that a modified actor-critic was able capture the contributions 

of basal ganglia to a wide array of data. 

 

In contrast, in Q-learning models, RPEs are used to directly estimate an option’s 

expected value [action value av(t) = av(t-1) + αq*δ(t)], which governs future choices 

(16, 17, 19). Thus, there is an important conceptual distinction between actor-critic 

and Q-learning; whereas the former can develop a response tendency without 

knowing the value of a choice (because the actor does not observe outcomes and is 

informed only by the critic), the latter develops a value representation for every 

choice. A precise representation of action value, as in the Q-learning model, might be 

especially relevant when presented with new combinations of old choice options 

(e.g. 90>10, 60>40, thus 90>60). The m parameter in our hybrid model allows us to 

estimate parametric mixing between these two frameworks; an m parameter <.5 

suggests greater reliance on actor-critic learning, whereas an m parameter >.5 

suggest a greater contribution of Q-learning. Lastly, ε accounts for undirected noise, 

with more random behavior as ε approaches 1. Individual estimates of ε were used 

in the softmax function to allow for randomness in decision-making unrelated to 

learned values/weights (see Nassar and Frank (31) and references therein). 

 

Contextual choice bias 

The critic in actor-critic models represents the value of the overall state (19), where 

dopamine signals are thought to reflect RPEs relative to that state. In light of reward 
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rate in the generation of RPEs (32), we estimated a single state value (V) for each 

block, similar to “average reward” RL, where rewards are interpreted in relation to 

the long-term reward rate (33). Context-dependent state values allow for the 

possibility that individuals learn stronger response tendencies (actor-weights) 

toward 75% rewarding options learned in a context with relatively low reward rate 

(which should produce a greater RPE relative to the context) than those for 75% 

stimuli in contexts with high reward rate. Importantly, however, a contextual choice 

bias would only be present to the degree that participants relied on actor-critic type 

learning. If participants relied solely on action values, as in Q-learning, then 

contextual reward availability would not affect choice preferences.  

 

After fitting the hybrid model to the learning phase data, the final action weights of 

all eight original pairs were used to simulate transfer phase performance for all pairs 

(n(simulations)=250 for every participant).  

  

 

Statistical analyses 

Learning phase performance on every reinforcement contingency was averaged (per 

two pairs) and grouped into four bins of 20 trials. A 2x4x4 repeated-measures 

ANOVA using group status (predictor) and reinforcement contingency (4 levels) and 

trial-bin (bins; 4 levels) as dependent variables was run to test for a group-by-

condition-by-time interaction. Group-by-time and group-by-condition interactions 

were also investigated. Greenhouse-Geisser sphericity-corrected values were 

reported when assumptions were violated.  

 

Transfer phase accuracy was averaged across all four presentations of every unique 

(28) combination of expected values and compared using two-sample t-tests. 

Transfer phase pairs were next ranked on their value difference (supplementary 

table 1 for details regarding these outcome measures). A logistic regression analysis 

with value difference (left-right option) as predictor and correct choice (left vs. right 

button) as dependent variable was conducted to test the hypothesis that PSZ show 
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impaired performance with increasing value difference. Individual value difference 

slopes were compared in a two-sample t-test.  

 

Context-dependent learning (75P-75D trials) was investigated using a two-sample t-

test, as well as a one-sample t-test to compare preference for either option against 

chance. As an indirect measure of context-dependent learning, performance on all 

trials where 75P and 75D stimuli were presented with any other option (excluding 

the 25 stimulus that they were originally partnered with) was compared in a 2x2 

group-by-pair ANOVA 

 

Correlation analyses with clinical and psychometric variables were carried out using 

Pearson’s r and Spearman’s ρ (when distributions were skewed). Significance 

thresholds were set to p<.05. 
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Results 

 

Demographics 

Participant groups were matched on most demographics. However, PSZ did have a 

lower IQ-score than HV, as well as poorer MATRICS performance (table 1).  

 

Learning Phase performance 

We observed a group*probability interaction (F3,228=4.39, p=.005), such that HV 

outperformed PSZ in the 90-10 (p=.002), 75-25D (p=.007), 75-25P (p=.04), but not 60-40 

(p=.63), probability condition (Figure 2A). Group*probability*time (F9,684=.98, p=.46) 

and group*time (F3,228=.62, p=.60) interactions were not significant. Performance on 

60-40 trials in bin 4 was significantly above chance for both groups (HV: t35=2.88, 

p=.007; SZ: t41=2,64, p=.01) 

 

Transfer Phase performance 

Despite poorer learning accuracy in PSZ there were no group differences in transfer 

accuracy for 90-10, 75-25D, 75-25P or 60-40 pairings (all p>.39; Figure 2B), with 

accuracy above chance on all pairs.  

 

Smaller performance improvements with increasing value difference in PSZ 

Accuracy on all novel pairs is shown in Supplemental Figure 2. When all 

combinations of reward contingencies were considered, accuracy on trials with a 

value difference of 35 (t77=3.55, p=.06), 50 (t77=4.26, p=.04), and 60 (t77=4.08, p=.05) were 

(trend-wise) greater in HV compared to PSZ (Figure 2C). This was also true when 

using only novel pairs or only pairs consisting of one choice option from each 

context (Figure 2C). To formally test the presence of a greater accuracy deficit with 

increasing value difference, we compared individual slopes from a logistic regression 

predicting accuracy as a function of value difference. Using all pairs (t74=5.84, p=.02), 

novel pairs (t74=6.99, p=.01), and novel context pairs (t73=6.05, p=.02), the slope for HV 

was always greater than PSZ (these results could not be used in 4 participants due to 

limited choice variability; Figure 2D). This all suggests that PSZ, compared to HV, 
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improved less as the value difference between two competing stimuli increased, 

thereby confirming our first initial hypothesis. 

 

Context influences perceived stimulus value in PSZ, but not HV 

A direct comparison of 75D-75P performance revealed no significant group 

difference (t77=1.61, p=.21) (Figure 2E). PSZ (one sample t-test against chance: t41=-

2.10, p=.04), but not HV (t41=0.01, p=.99), did however show a significant preference 

for 75P over 75D. The more indirect group*pair interaction for 75P and 75D 

performance versus other options showed similar numerical patterns but was not 

significant (t1,67=2.11, p=.15). Nevertheless, PSZ (t41=-2.52, p=.015), but not HV (t35=-.67, 

p=.51), more often selected 75P than 75D when paired with another option (Figure 

2E). The direct and indirect measure of context-sensitivity correlated in PSZ 

(Pearon’s r= -.53, p<.001) Taken together, these results provide subtle yet consistent 

evidence that context may impact perceived choice value in PSZ, but not HV. To 

formally test whether the trial-by-trial pattern of choices can be explained by context-

dependent value learning, we next turn to computational model results. 

 

Computational modeling results 

As predicted, the mixing (m) parameter was significantly greater in HV than PSZ 

(t76=2.51, p=.01), suggesting that PSZ relied more on actor-critic, and less on Q-

learning, than HV. In addition, the undirected noise parameter was greater in PSZ 

than HV (t76=2.52, p=.01) (Figure 3A; supplementary table 2 for parameters per 

subject). 

 

True to the actual learning phase data, model simulations revealed numerically 

greater performance in HV relative to PSZ for 90-10, 75-25D, 75-25P (but not 60-40) 

contingencies, which became (trend-)significant when increasing the number of 

simulations (n(simulations) = 1000 shown in Figure 3B). Because the number of trials 

in the transfer phase was relatively small (four per combination) and the amount of 

undirected noise may be greater during learning compared to transfer phase 

performance, we set ε to 50% of the original value during transfer phase simulations. 
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All findings remained when simulating transfer data with ε set to 100% 

(Supplemental Figure 3). 

 

Predicted group differences in transfer phase accuracy on 90-10, 75-25D, and 75-25P 

pairs were small, as was the case in the original data, yet (trend) significant, owing to 

the number of simulations (Figure 3C; n(simulations) for all transfer data = 250). 

Importantly, the hybrid model predicted numerically greater performance deficits in 

PSZ with increasing value difference (Figure 3D). The direct and indirect context 

effects in PSZ were both present in the simulated data (Figure 3E): that is, I) a 

preference for 75P over 75D (t40=2.59, p=.01) and II) a preference for 75P over 75D 

when paired with all other stimuli (t39=2.03, p=.05). One outlier in the PSZ sample 

with high values overall/difference scores was removed from the simulated data; 

excluding this subject from the actual data did not change the results. 

 

Correlations among performance measures, model parameters and clinical variables 

The m (Spearman’s ρ=-.67, p<.001) and ε (Spearman’s ρ=.38, p<.001) parameter 

significantly correlated with the slope of the value difference effect in the entire 

sample, suggesting that decreased reliance on Q-learning and greater undirected 

noise were associated with smaller performance improvements with increasing value 

difference (Figure 4A/4B).  

 

Next, we focused on the αc parameter, which can produce the context effect within 

the actor-critic model. To demonstrate this, m and ε were both fixed at 0 and the 

direct and indirect context effect were simulated, thereby removing contributions 

from Q-learning and undirected noise, while all other parameters were set to original 

values. In PSZ, αc correlated with the size of the simulated direct (Spearman’s ρ=-.42, 

p<.005) and indirect (Spearman’s ρ r=.47, p<.001) context effect. This confirms our 

intuition that varying levels of critic learning rate are sufficient to account for the 

context effect. Moreover, when simulating data using individual m and ε parameters, 

αc-weighted [αc*(1-m)] also significantly correlated with the simulated indirect 

context effect (Pearson’s r=.34, p=.02), while the correlation with the simulated 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 22, 2017. ; https://doi.org/10.1101/238089doi: bioRxiv preprint 

https://doi.org/10.1101/238089
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(Pearson’s r=-.28, p=.07) and actual (Pearson’s r=-.13, p=.41) direct context effect was 

in the expected direction but not significant. This provides evidence that greater αc 

values can account for a context-dependent choice bias, although this also crucially 

depends on the degree to which participants rely on Q-learning and the amount of 

undirected noise. 

 

Finally, we looked at associations with clinical ratings. In PSZ with some degree of 

randomness (i.e. ε>0; n=21), there was a trend for ε to correlate positively with SANS 

total scores (Spearman’s ρ=.42, p=.06), suggesting that individuals with greater 

motivational deficits may show more undirected noise. SANS total scores did not 

correlate with m (Pearson’s r=.14, p=.38). M also did not correlate with IQ (HV 

Spearman’s ρ=.28 p=.10: SZ Spearman’s ρ=.18, p=.27). In PSZ (Spearman’s ρ=-.36, 

p=.02) and (trend-wise in) HV (Spearman’s ρ=.31, p.06), ε correlated with IQ. Finally, 

αc correlated with IQ in PSZ (Spearman’s ρ=-.34, p=.03), but not in HV (Spearman’s 

ρ=-.18 p=.31). 

 

M, ε and αc did not correlate with haloperidol equivalents (all p>.71), BPRS positive 

symptoms (p>.31) or age (p>.32).  
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Discussion 

Using theory-based predictions, our primary aim was to investigate two 

hypothesized RL and decision-making deficits that could result from a relative 

underutilization of expected value. As predicted, PSZ showed robust performance 

impairments as the difference in reward value between two choice options increased.  

Moreover, we observed a subtle yet consistent contextual choice bias that was not 

present in controls: when presented with two options of identical reward value (75D 

and 75P), or when these options were paired with options of other reward value, PSZ 

preferred the 75 option from the more probabilistic context (75P). 

 Performance deficits amplified at greater levels of value difference are 

diagnostic of a change in the choice function rather than a general learning 

impairment, which would typically manifest in the opposite manner: that is, worse 

performance for more difficult judgments. These results are particularly noteworthy 

because they further corroborate the notion that certain learning and decision-

making deficits in PSZ are associated with a selective deficit in the representation of 

expected value. A more general learning impairment, potentially via altered RPE 

signaling of midbrain DA neurons (1, 3, 5), would predict that performance 

impairments in PSZ increase in conditions where the value difference between two 

choice options is subtle. We have previously observed a hint for performance deficits 

at greater levels of value difference in other RL tasks (6, 34), suggesting that this is a 

recurrent impairment in PSZ. Our computational model provides evidence that such 

impairments stem from a decrease in action value (Q-) learning (via the m 

parameter). Importantly, these results conceptually replicate our previous work for 

the first time, in which we showed a decreased contribution of Q-learning during a 

gain-seeking/loss-avoidance task (6). In the current study, performance impairments 

were also in part related to increased undirected noise (ε), which accounts for non-

deterministic choices even in the face of strong evidence. We have observed this in 

previous reinforcement learning studies (15), and, in the current study, was mostly 

driven by PSZ with greater motivational deficits. 

 Which mechanisms could underlie a selective impairment in the 

representation of expected value? Decreased learning from gains, as opposed to 
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intact loss-avoidance, has been identified as one potential mechanism (6, 14, 35, 36). 

In this study, impaired performance on more deterministic pairs, associated with 

more gains than neutral outcomes, but spared performance on 60-40 trials, where 

learning occurs almost equally from gains and neutral outcomes, provides 

circumstantial evidence for this notion. One improvement compared to previous 

paradigms is that, here, we focused on reward value instead of contrasting valence 

conditions, which is a more direct test of expected value deficits. The current results 

show for the first time that a diminished role of expected value in driving choices can 

lead to suboptimal behavior in a dose-response fashion; that is, performance 

impairments increase monotonically with increased demands placed on expected 

value computations. This work further strengthens the claim that deficits in the 

representation of expected value are a central feature of learning and decision-

making impairments in schizophrenia, and here we reveal when these deficits 

should be most evident.  

 The relationship between the value difference effect and Q-learning fits well 

with previous neuroimaging studies. Previous work has identified attenuated 

expected value signals in insula and anterior cingulate, regions that encode (state-

dependent) expected value (37, 38), in PSZ with motivational deficits (5, 14). 

Ventromedial and orbitofrontal prefrontal cortex dysfunction, consistently involved 

in tracking reward value (8, 9, 39), has also been linked to learning and decision-

making deficits in schizophrenia (40, 41). Thus, a diminished role for expected value 

in decision-making, demonstrated by the value difference effect and confirmed by 

our computational model, are suggestive of impairments in a range of cortical areas 

that encode reward value.  

 We have argued that underutilization of expected value and increased 

reliance on stimulus-response learning can also enhance the effect of context on 

stimulus valuation, leading to a unique prediction in which preferences can arise 

among choice options with identical reinforcement probabilities. For this hypothesis 

we found subtle but consistent evidence in PSZ, but not controls, which could be 

accounted for by a context-dependent state-value RPE (via αc). Although the effect of 

contextual reward availability on decision-making was subtle in PSZ, these findings 
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are noteworthy. Klein et al (42) revealed that learning the value of one stimulus 

relative to another can lead to sub-optimal decision-making. In their study, a relative 

RPE signal was specifically encoded by the striatum. Despite clear differences 

between the task design of Klein et al. (42) and the current study, most notably pair-

wise versus block-wise context effects, their work does provide evidence for the 

notion that the effect of context on perceived stimulus value seems to be encoded 

specifically by brain regions typically associated with RPE signaling. 

 Related to this point, we did not find evidence of group differences on 60-40 

trials (also see Waltz et al. (34)), where performance improved gradually and likely 

relies on slow accumulation of RPEs (17). Subtle evidence for a context effect, a 

relative increase in the contribution of actor-critic-type learning, and no group 

difference in performance on 60-40 trials are consistent with relatively intact striatal 

function in our medicated sample. These findings align well with intact striatal RPE 

signaling in medicated individuals with schizophrenia (43) as well as normalization 

of reward signals following treatment with antipsychotics (44). Given evidence of 

abnormal RPE signals in unmedicated individuals with psychosis (45), studies into a 

contextual choice bias in unmedicated participants could promote further 

understanding of the degree to which striatal stimulus-response learning might be 

involved. 

 To summarize, this work provides specific evidence that decision-making 

impairments in schizophrenia increase monotonically with demands placed on 

expected value computations. Overreliance on stimulus-response learning as a result 

of underutilization of expected value may produce additional violations of optimal 

decision-making policies, such as a contextual or relative choice bias. This work 

provides a novel source of evidence suggesting a diminished role of expected value 

in guiding optimal decisions in schizophrenia and sheds light on the conditions that 

facilitate such impairments. 

 

Limitations 

Some limitations warrant discussion. While we were able to replicate our previous 

finding of decreased Q-learning/increased actor-critic learning in PSZ (6), the m 
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parameter was not associated with symptom ratings. Previous studies investigating 

RL deficits in schizophrenia have reported mixed results regarding relationships to 

negative symptoms (6, 35, 46). Clinical status, symptom severity, and experiment 

design (notably, the wide range in reinforcement contingencies and the emphasis on 

expected value computations) might explain some of these discrepancies.   

 Moreover, an alternative account of the current findings is that PSZ may rely 

less on model-based strategies (47). Both Q- and model-based learning make 

identical predictions for this task: that is, Q-learning predicts improved performance 

at greater levels of value difference via action-value learning, while model-based 

strategies predict improved performance when action-outcome sequences are better 

understood. Importantly, this alternative explanation does not change the 

interpretation of increased reliance on model-free stimulus-response learning in PSZ.  
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Table 1. Demographics 

  HV (n=36)  PSZ (n=42)  t/X2  p 

Age   42.81 (8.86) 44.60 (8.26) -.92 .36 

Gender [F, M]  [12, 24] [13, 29] .05 .82 

Race      

African American, Caucasian, Other [11,24,1] [13,25,4] 2.74 .60 

Education level (years)  14.86 (1.99) 12.69 (2.20) 4.49 <.001 

Maternal education level  13.60 (2.19) 13.46 (2.51) .25 .80 

Paternal education level  13.29 (3.05) 13.89 (4.20) -.70 .48 

WASI-II IQ score  114.86 (10.59) 98.10 (14.89) 5.76 <.001 

MATRICS Domains     

Processing Speed 54.66 (9.47) 35.12 (11.57) 7.99 <.001 

Attention/Vigilance 51.77 (11.47) 41.45 (12.44) 3.75 <.001 

Working Memory 54.23 (10.16) 38.02 (11.13) 6.62 <.001 

Verbal Learning 50.11 (10.58) 36.69 (8.10) 6.30 <.001 

Visual Learning 45.46 (11.23) 35.02 (13.49) 3.64 <.001 

Reasoning 53.84 (9.99) 43.02 (9.64) 4.82 <.001 

Social Cognition 50.91 (8.93) 36.83 (11.12) 6.04 <.001 

Antipsychotic Medication    

Total Chlorpromazine - 332.36 (424.21) - - 

Total Haloperidol - 6.88 (9.10) - - 

Clinical Ratings     

BPRS Positive (sum) - 9.30 (5.37) - - 

SANS AA (sum) - 22.21 (9.66) - - 

SANS EE (sum)  13.5 (9.84) - - 

*MATRICS ratings and IQ score missing for 1 HV 

*M Education missing for 1 HV and 5 PSZ 

*P Education missing for 1 HV and 4 PSZ 

*CPZ/Haldol missing for 1 PSZ 
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Figure 1 Overview of the reinforcement learning-and-transfer paradigm 
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Figure 2 Learning and transfer phase performance 

 

Solid bars represent HV; bars with diagonal lines represent PSZ. *= p<.05, ** = p<.01, *** = p<.001, a = 

trend (p = .06-.09). Error bars represent 95% CI, except for learning phase data, where bars represent 

SEM. Asterisks above error bars represent significant preference against chance; asterisks above solid 

horizontal line represent between- or within-group differences. Bottom row, center: “75D vs. All/75 vs. 

All” = performance on 75D/P trials versus all choice options of non-identical value. Bottom row, right: 
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separate plots for 75D and 75P versus other choice options broken down by their value difference (x-

axis). 
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Figure 3 Hybrid model parameters and simulated data 

 

n(simulations)=250, simulated with ε of 50% 
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Figure 4 Significant correlations among model parameters, symptoms, and 

performance 
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