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ABSTRACT  

Determining predictability in community turnover is a key ecological question. In the 

microbial world, seasonality has been reported for communities inhabiting temperate zones, 

but not much is known on seasonality for individual species. Specifically, we have a vague 

understanding on the amount of species displaying predictability during temporal community 35	  

turnover as well as on their dynamics. Here we developed a ‘Recurrence Index’ to quantify 

predictability in microbial species. Applying our index to 18S rDNA metabarcoding data 

from one of the longest temporal observatories of marine plankton we determined that 13% of 

the picoeukaryotic and 19% of the nanoeukaryotic species, accounting for about 40% of the 

community abundance in both fractions, feature predictable dynamics when sampled monthly 40	  

during 10 years. Thus, most of the species analysed had unpredictable temporal abundance 

patterns. Altogether, we show that species with both predictable and unpredictable temporal 

dynamics can occur within the same seasonal microbial community. 

 

  45	  
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INTRODUCTION  

A major challenge in ecology is to understand the mechanisms that determine 

community turnover across space and time. Community turnover can be explained by four 

main processes: selection, (ecological) drift, dispersal and speciation (Vellend 2010). 

Determining to what extent the combination of the latter four processes structure different 50	  

communities is a current challenge for ecologists. This framework that derives mostly from 

the study of multicellular organisms has recently been applied to the microbial world (Hanson 

et al. 2012; Stegen et al. 2013). Microbes are key players in most ecosystems, yet we have a 

limited understanding of what governs their community turnover. For prokaryotes, 

environmental selection seems to be the most important process structuring communities 55	  

(Lindström & Langenheder 2012) although there is also evidence indicating that stochastic 

processes (e.g. drift and dispersal) have a role (Ofiteru et al. 2010). Furthermore, multiple 

members of a community can be structured by distinct processes at different times, with some 

taxa responding, e.g., to selection, while others presenting stochastic assembly patterns 

(Langenheder & Szekely 2011; Stegen et al. 2013).  60	  

While many studies have concentrated on investigating spatial patterns of microbial 

community turnover (Lindström & Langenheder 2012), fewer have focused on exploring 

temporal dynamics (Fuhrman et al. 2015; Bunse & Pinhassi 2017). Given the relevance of 

microbial marine plankton for the functioning of the biosphere (Falkowski 2012), 

understanding the predictability in their dynamics should help comprehending their response 65	  

to disturbance or global change. Ascertaining predictability in community turnover can also 

provide hints on the amount of functional redundancy present in the ecosystem (Allison & 

Martiny 2008), as communities dominated by functionally interchangeable taxa may exhibit a 

low degree of predictability in species composition with time. In the latter case, ecological 
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drift could have a more relevant role than selection in determining community turnover 70	  

(Chase 2003).  

Annual cycles driven by meteorological seasons in temperate zones have clear effects 

on terrestrial ecosystems. In phytoplankton assemblages, yearly cycles in light, temperature 

and nutrients are known to induce clear abundance dynamics (estimated using chlorophyll-a 

concentration), generally with one or two abundance peaks per year, although cases with 75	  

unclear patterns have also been observed (Winder & Cloern 2010). To date, different studies 

indicate that microbial community turnover is correlated with meteorological seasons 

(Fuhrman et al. 2015; Bunse & Pinhassi 2017), but most studies of microbial community 

dynamics have focused on prokaryotes, although eukaryotes also constitute key elements of 

microbial communities (Caron et al. 2009). One could expect that due to the structural and 80	  

behavioural differences between eukaryotes and prokaryotes (Massana & Logares 2013; 

Keeling & Del Campo 2017) they may show different temporal dynamics. So far, temporal 

studies published (time series typically <5 years) hint at seasonality in microbial eukaryotic 

communities at the bulk level (Romari & Vaulot 2004; Countway et al. 2010; Kim et al. 

2014; Genitsaris et al. 2015; Piredda et al. 2017). 85	  

Most studies on microbial dynamics have investigated whole community patterns, 

which are driven by abundant taxa. Investigating the temporal behaviour of individual taxa is 

important as some members of a microbial community could respond differently to cyclic 

environmental variation, while others may present no response. Focusing on individual taxa 

may also help detecting differences in abundance dynamics over time and in their persistence, 90	  

with some species exhibiting i.e. smooth temporal fluctuations and others displaying rapid 

fluctuations. Furthermore, as most microbial communities are composed by a few abundant 

and a large number of low-abundant or rare taxa (Pedrós-Alió 2006, 2012; Logares et al. 
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2014; Logares et al. 2015), it is relevant to explore the temporal behaviour (i.e. the 

recurrence) across the taxa-abundance spectrum. Rare taxa can be metabolically active 95	  

(Logares et al. 2015), respond to environmental change (Campbell et al. 2011; Lindh et al. 

2015) and present repeatable community assembly patterns (Alonso-Saez et al. 2015). In 

temporal surveys, rare taxa can be assigned to one of three categories: (a) “Seasonal” taxa that 

were rare at the time of sampling, but which are systematically recruited to the abundant 

community during specific time periods, (b) “Opportunistic taxa” that are generally rare but 100	  

become abundant exceptionally and for a short time [a.k.a. conditionally rare taxa, (Shade et 

al. 2014)], or (c) “permanently rare” taxa that never (within the limitations of the sampling 

design) become abundant (Logares et al. 2015). 

 Here we analyse and quantify the recurrence in the long-term community dynamics of 

microbial eukaryotes inhabiting an oligotrophic coastal site in the Mediterranean Sea [Blanes 105	  

Bay Microbial Observatory, BBMO, (Gasol et al. 2016)]. Microbial eukaryotes were sampled 

monthly during 10 years in two size fractions and their diversity was assessed by high-

throughput sequencing the 18S rDNA (V4 region). We developed a metric to detect and 

quantify temporal recurrence in different taxa (hereafter Recurrence Index), which allowed us 

to determine that 13.2% and 18.6 % of the pico- and nanoeukaryotic Operational Taxonomic 110	  

Units (OTUs), representing up to 40% of the relative abundance, featured predictable 

dynamics. We also observed that the overall system presents annual seasonality with two 

main recurrent configurations, and that these communities did not increase their 

differentiation along the 10 sampled years.  

  115	  
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MATERIALS AND METHODS 

Study site and sampling 

We carried out a monthly sampling during 10 years at the Blanes Bay Microbial 

Observatory (BBMO) located in the North Western Mediterranean Sea (41º40’N, 2º48’E). 

This is a well-studied temperate oligotrophic coastal site that has relatively little human or 120	  

riverine influence (Gasol et al. 2016). Surface water was sampled about 1 km offshore over a 

water column of 20 m depth, from January 2004 to December 2013. Water temperature and 

salinity were measured in situ with a CTD. Seawater was pre-filtered through a 200 µm 

nylon-mesh, transported to the laboratory under dim light in 20 L plastic carboys, and 

processed within 2 h. Samples for determination of chlorophyll-a concentration were filtered 125	  

in GF/F filters, extracted with acetone and processed by fluorometry (Yentsch & Menzel 

1963). Inorganic nutrients (NO3
-, NO2

-, NH4
+, PO4

3-, SiO2) were measured 

spectrophotometrically using an Alliance Evolution II autoanalyzer (Grasshoff et al. 1983). In 

statistical analyses, these variables were standardized as z-scores, that is, deviations of the 

values from the global mean. 130	  

About 6 L of the 200 µm prefiltered seawater were sequentially filtered using a 

peristaltic pump through a 20 µm nylon mesh, a 3 µm pore-size polycarbonate filter of 47 mm 

diameter (nanoplankton fraction, 3-20 µm), and a 0.2 µm pore-size Sterivex unit (Millipore, 

Durapore) [picoplankton fraction, 0.2–3 µm]. Sterivex units and the 3 µm filters were stored 

at -80ºC. DNA extractions were performed at the end of the sampling period using a standard 135	  

phenol-chloroform protocol (Schauer et al. 2003; Massana et al. 2004), with a final step of 

purification in Amicon units (Millipore). Nucleic acid extracts were quantified in a 

NanoDrop-1000 spectrophotometer (Thermo Scientific) and stored at -80ºC until analysis. 
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DNA sequencing and bioinformatics   140	  

The eukaryotic universal primers TAReukFWD1 and TAReukREV3 (Stoeck et al. 

2010) were used to amplify the V4 region of the 18S rDNA (~380 bp). PCR amplification and 

amplicon sequencing was carried out at the Research and Testing Laboratory (http://	  

rtlgenomics.com/) using the Illumina MiSeq platform (2x250 bp paired-end sequencing). 

Illumina reads were processed following an in-house pipeline (Logares 2017). Operational 145	  

Taxonomic Units (OTUs) were delineated by clustering sequences at 99% similarity using 

UPARSE (Edgar 2013) as implemented in USearch v8.1. Only OTUs present in at least 3 

samples were retained. Taxonomy was assigned roughly at class-level by BLASTing OTU 

representative sequences against PR2 (Guillou et al. 2013) and two in-house marine protist 

databases (available at https://github.com/ramalok) based in a collection of Sanger sequences 150	  

(Pernice et al. 2013) or 454 reads (Massana et al. 2015). Metazoan, Streptophyta and 

nucleomorphs were removed. Two OTU tables were generated: (1) the pico-nano-eukaryotic 

OTU-table had 120 samples of picoeukaryotes and 89 of nanoeukaryotes (samples from May-

2010 to July-2012 and from 4 additional dates were discarded due to suboptimal sequencing); 

(2) the picoeukaryotic OTU-table had 120 samples. To enable sample comparisons, both 155	  

tables were randomly subsampled to the lowest number of reads per sample using the rrarefy 

function in Vegan (Oksanen et al. 2008). The pico-nano-eukaryotic table was subsampled to 

5,898 reads per sample (14,771 OTUs), while the picoeukaryotic table was subsampled to 

7,553 reads per sample (13,040 OTUs). The sequence data are publicly available at the 

European Nucleotide Archive with accession numbers XXXX. 160	  
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Recurrence analyses and community dynamics 

We developed a Recurrence Index (RI) to identify taxa presenting temporal recurrence 165	  

or predictable dynamics. To calculate the RI, we first applied the ACF (Auto-Correlation 

Function) comparing taxa (OTUs or taxonomic Classes) relative abundances at different time 

lags. Then, we summed the absolute ACF values for each taxon along the complete temporal 

series (RF). Afterwards, we compared the RF values against a null distribution obtained after 

randomizing 1,000 times the taxa abundances and calculating the absolute sums of the 170	  

randomized ACF values. Subsequently, we calculated the mean of the null model (RFrandom) 

for each taxon plus its 97% confidence intervals (CI). The RI was calculated as: 

RI=RF/RFrandom. Based on empirical tests, a given taxon was considered recurrent if a) its RI 

was above a given threshold, here 1.20 for picoeukaryotes, and 1.15 for nanoeukaryotes, and 

if b) its RF was significantly higher than RFrandom (that is, outside the CI and within the upper 175	  

1.5% probability). The code used to calculate RI is publicly available (Giner et al. 2017) and 

ready-to-use in R through EcolUtils (Salazar 2015). Detected recurrent picoeukaryotic taxa 

were classified to reflect how long was their presistance in the temporal-series according to 

their changes in abundance. For this, we identified for each taxon the number of months with 

abundances above the 10-year mean. Taxa displaying >30 months above this mean (i.e. at 180	  

least 3 times per year, on average) were considered ‘long’-persistent, while those displaying 

less than 30 months were considered ‘short’-persistent. 

To investigate recurrence in whole community dynamics, we computed the mean β-

diversity (Bray-Curtis dissimilarities) for all pairs of samples taken n months apart (n ranging 

from 1 to 119 months for picoeukaryotes). In order to determine whether the observed β-185	  

diversity could be generated by random community dynamics, we calculated the Raup-Crick 

metric (Chase et al. 2011) using Bray-Curtis dissimilarities [hereafter RCbray] for the 
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picoeukaryotes, following Stegen et al. (2013). RCbray compares the measured β-diversity 

against the β-diversity that would be obtained under random community assembly. For each 

pair of communities, the randomization was run 999 times. Only OTUs with >500 reads were 190	  

included in this analysis. RCbray values > +0.95 or < -0.95 are interpreted as significant 

departures from a stochastic community assembly, pointing to deterministic assembly forces, 

such as environmental selection. On the contrary, RCbray values between -0.95 and +0.95 

point to stochastic community assembly (Chase et al. 2011).  

 195	  

Community turnover and response of single OTUs to environmental variables 

Non-metric multidimensional scaling (NMDS) was based on Bray-Curtis dissimilarity 

matrices. In NMDS, differences between predefined groups were tested with ANOSIM 

[ANalysis Of SIMilarity, (Clarke 1993)] performing 1,000 permutations. To determine the 

proportion of variation in community composition explained by environmental variables we 200	  

used PERMANOVA. We also analysed the correlation between the matrix of environmental 

variables and that of community differentiation using Partial Mantel tests (Legendre & 

Legendre 1998) as well as by fitting environmental variables onto the ordination space of the 

NMDS (envfit function in Vegan). Finally, we performed an IndVal analysis [INDicator 

VALues, (Dufrene & Legendre 1997)] to identify OTUs associated to a specific season. 205	  

OTUs with statistically significant (p<0.05) IndVal values >0.3 were considered season-

specific, following Logares et al. (2013). All analyses were performed using functions 

implemented in the packages Vegan (Oksanen et al. 2008), pvclust (Suzuki & Shimodaira 

2006), and Labdsv (Roberts 2016) within the R Statistical environment (R-Development-

Core-Team 2008). 210	  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237743doi: bioRxiv preprint 

https://doi.org/10.1101/237743
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   10	  

Correlations between individual OTUs and environmental variables were done using 

extended local similarity analysis [eLSA] (Ruan et al. 2006; Xia et al. 2011). The analysis 

was based on the subsampled picoeukaryotic OTU-table together with the environmental 

variables. OTUs that were not present in at least 10 out of 120 months were excluded from 215	  

the analysis, resulting in a dataset with 1,065 OTUs and 9 environmental variables. ELSA 

was run with default normalization (a z-score transformation using the median and median 

absolute deviation) and p-value estimations under a mixed model that performs a random 

permutation test of a co-occurrence only if the theoretical p-values for the comparison are 

<0.05. Missing data were interpolated linearly from adjacent months, and we did not allow 220	  

any time delay.   

Only the picoeukaryotic OTU table was used in rarity analyses. OTUs with 

abundances per sample that were always < 0.1% were considered permanently rare (Logares 

et al. 2015). To exclude the possibility that rare OTUs were aberrant variants of abundant 

ones, we only analysed rare OTUs that had a similarity <97% with any abundant counterpart. 225	  

We considered as temporally abundant those OTUs with a mean abundance >0.1% along 10 

years. Conditional Rare Taxa (opportunistic) were detected following the protocol described 

in Shade et al. (2014). 
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RESULTS 230	  

 

Quantifying recurrent patterns in different taxa 

 The recurrence index (RI) that we developed allowed to identify and quantify 

predictability in different taxonomic groups and OTUs. Overall, microbial eukaryotes present 

in the BBMO were very diverse and included more than 63 taxonomic groups at the class 235	  

level, most of them found both in the pico- and nanoeukaryotic fractions, but with different 

relative abundances in the two fractions (Fig. S1). Picoeukaryotes were dominated by 

different alveolates (MALV-I, Dinoflagellata, MALV-II) and Mamiellophyceae (Fig. 1a), 

with the presence of many other groups at lower relative abundances, whereas 

nanoeukaryotes were dominated by Dinoflagellata and Diatomea (Fig. 2a). An inspection of 240	  

the actual dynamics of the recurrent groups (RI >1.20 for picoeukaryotes, RI>1.15 for 

nanoeukaryotes) showed ACF values following cycles of 1-year periodicity, pointing to 

seasonality (see e.g. Mamiellophyceae in Fig. 1b). In picoeukaryotes, 13 of the 58 taxonomic 

groups tested exhibited a recurrent seasonal behaviour, and these accounted for 39.4% of the 

picoeukaryotic reads (Fig. 1a, Table S1). Two of the groups, MALV-III and 245	  

Mamiellophyceae, exhibited a ‘strong-seasonal’ signal (RI>2.0), whereas the remaining 11 

groups, including Dinoflagellata and some environmental clades, were ‘moderately-seasonal’ 

(1.2<RI<2.0). The remaining groups did not display recurrence. For the nanoeukaryotes, 13 

groups exhibited seasonal behaviour (representing 8.2% of the nanoeukaryotic reads), and 

only MALV-III exhibited a ‘strong-seasonal’ signal (Fig. 2a, Table S2). 250	  

 We then explored the seasonal behaviour of individual OTUs, as seasonality at the 

taxonomic group level does not necessarily imply that all composing OTUs are also seasonal 

and, more interestingly, there can be seasonal OTUs in non-seasonal groups. We focused on 

the OTUs that were present in at least 10 samples for picoeukaryotes (1,898 OTUs 
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representing ~90% of reads) and in at least 7 samples for nanoeukaryotes (2,266 OTUs 255	  

representing ~91.5% of reads). Only 251 picoeukaryotic OTUs (representing 39.4% of the 

abundance) were seasonal. As expected, seasonal groups generally contained a majority of 

seasonal OTUs (Fig. 1c). Exceptions were low abundance groups (e.g. MALV-V, RAD-B) 

and the Dinoflagellata, which had a RI just above the cut-off (RI=1.23). We also identified 

recurrent OTUs in groups that did not show seasonality. In particular, Acantharia, 260	  

Bolidomonas, Cryptomonadales, Dictyochophyceae, MAST-1, and MAST-10 had more reads 

(i.e. abundance) belonging to recurrent OTUs than to non-recurrent. Similar patterns were 

found in nanoeukaryotes (Fig. 2b), where 423 OTUs (accounting for 36.9% of the abundance) 

were seasonal. 

Seasonal taxa exhibited different strategies based on how long was their persistence in 265	  

the system (that is, ‘long’ and ‘short’ persistents; examples in Fig. S2). Nine out of the 13 

seasonal picoeukaryotic groups (altogether accounting for 99.5% of the seasonal abundance) 

displayed long-persistence, while the remaining 4 groups (0.5% of the abundance) displayed 

short-persistence (Table S1). Persistence was also analysed for the 251 seasonal OTUs. About 

31.5% (79 OTUs) showed long-persistence, belonging to groups that also displayed the same 270	  

behaviour; these OTUs featured high relative abundances. The remaining seasonal OTUs had 

short-persistence. Furthermore, among the 89 rare OTUs that appeared in at least 10 samples, 

we detected nine that were ‘moderately-seasonal’ and displayed short-persistence.  

 

Community seasonality  275	  

To identify seasonality in community turnover, we calculated mean Bray-Curtis 

dissimilarities between samples separated by different time lags. Communities separated 12 

months and their multiples (24, 36 and so on) showed the highest similarity, while those 
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separated by 6 months and their multiples showed the highest dissimilarity for both pico- and 

nanoeukaryotes (Fig. 3). Thus, the investigated community displayed yearly seasonal patterns. 280	  

Furthermore, community differentiation did not increase with time, as Bray-Curtis distances 

between samples separated by 1 year were very similar to those from samples separated by 

several years. Despite the observed dissimilarity cycling, community differentiation remained 

high during the 10 years, with averaged Bray-Curtis values ranging between 0.7 and 0.9.  

Further analysis of whole community turnover unveiled two main recurrent structuring 285	  

patterns throughout the 10 years. First, picoeukaryotes and nanoeukaryotes formed different 

groups characterized by their different cell sizes (Fig. S3). Second, samples from both 

assemblages formed two clearly marked groups corresponding to winter and summer months 

(ANOSIM test: Rpico=0.717; Rnano=0.713, p<0.001; Table S3). In contrast, spring and autumn 

communities did not form defined groups. In addition, winter communities were more similar 290	  

among themselves when compared to other intra-seasonal variability (Fig. S4). For 

picoeukaryotes, we detected 173 season-specific OTUs, most of them associated to the winter 

and summer states (56 and 59 OTUs respectively, Table S4). 

 The seasonal patterns at the whole community level shown above were driven by the 

most abundant OTUs, which have a stronger weight in Bray-Curtis dissimilarities. Therefore, 295	  

it was relevant to investigate whether the rare biosphere exhibited any seasonality. Within 

picoeukaryotes, 3,095 OTUs were considered permanently rare. Similar to what we found for 

the entire community, we observed two main rare community states associated to winter and 

summer months (Fig. S5a) with spring and autumn communities being transient states. We 

also found that the averaged Bray-Curtis values were most similar between rare communities 300	  

separated by 1 year (and their multiples), and most different when separated by half a year 

(Fig. S5b). Bray-Curtis values considering rare taxa were higher than the ones for the entire 
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community (ranging from 0.9 to almost 1), indicating that despite clear evidence of 

seasonality, the rare sub-community was very different from year to year. 

 305	  

Environmental factors and species turnover 

 The BBMO site featured annual cyclic fluctuations of environmental conditions: the 

days were longer in early summer, water temperature was maximal two months later, and 

inorganic nutrients, particularly nitrate, nitrite and silicate, peaked in winter (Fig. S6). 

Selected environmental variables were fitted to the NMDS separately for picoeukaryotes and 310	  

nanoeukaryotes (Fig. 4). In both cases, day length and temperature were the variables better 

correlated with community turnover (envfit; day length: r2=0.62, temperature: r2=0.56, 

p<0.001; Table S5). When controlled by each other in partial mantel tests, both variables still 

presented a moderate significant correlation with community composition (r=0.44 

temperature, r=0.40 day length, p=0.001). The remaining environmental variables presented 315	  

weaker or non-significant correlations with community composition (Table S5). Additional 

analyses indicated that a large part of community variance (76.8% in PERMANOVA) was 

not explained by any of the measured environmental variables. Day length and temperature, 

together, explained only 16% of community variance (p<0.001) in PERMANOVA analysis, a 

value that increased to 26% when running the analysis only with the OTUs that showed 320	  

recurrence. Even though environmental variables explained a minor part of community 

turnover, results from the RCbray analyses indicated that 93.4% of the measured β-diversity 

differed from what it would be observed under random community assembly, thus suggesting 

environmental selection. Specifically, 86% of the β-diversity comparisons presented RCbray > 

+0.95, and 7.4% RCbray < -0.95. Furthermore, by using eLSA analyses we detected 2,375 325	  

OTUs that were positively or negatively correlated with the analysed environmental variables 
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(Table S6); these OTUs tended to be abundant. Specifically, 4% of the OTUs, representing 

~47% of the total abundance, were positively or negatively correlated with temperature or day 

length.  

 330	  

Diversity patterns  

 Most individual samples (~80%) were close to richness saturation (details not shown). 

We also found richness saturation when constructing rarefaction curves based on the entire 

dataset of pico- and nanoeukaryotes (Fig. S7a), indicating that we recovered most of their 

diversity present in the BBMO throughout the 10 years. In accumulation curves, richness 335	  

increased rapidly until approximately the 60th month of sampling, and subsequent samples 

contributed little to new OTUs (Fig. S7b). Alpha diversity presented clear temporal trends. 

For both size fractions, averaged richness and Shannon indices were highest during the 

autumn and winter months and significantly lower during spring (Fig. 5, p<0.05 Wilcoxon 

test). No statistical differences were found between pico- and nanoeukaryotes when 340	  

comparing all samples together, nor when we compared each of the seasons separately 

(Wilcoxon tests, p>0.05).   
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DISCUSSION 

Predictable patterns in microbial long-term seasonal dynamics have previously been 345	  

reported (Fuhrman et al. 2015; Bunse & Pinhassi 2017). Yet, previous studies have provided 

limited information on the proportions of the community that display predictable vs. 

unpredictable dynamics; see e.g. Winder and Cloern (2010). Here, using data from one of the 

longest protistan time-series analysed to date, we quantified repeatability in species and group 

seasonal dynamics along 10 years using a newly developed Recurrence Index (RI). We found 350	  

that the microbial eukaryotic plankton includes species showing predictable as well as 

unpredictable temporal patterns. 

 

Quantifying community seasonality and predictability 

Until now, one of the limitations in studies of microbial seasonality was the lack of 355	  

routines to quantify recurrence patterns in different taxa. Our recurrence index (RI) allowed 

us to quantify the recurrence of all taxonomic groups and OTUs in the analysed temporal 

series. We found seasonality in only 13.2% and 18.7% of the pico- and nanoeukaryotic OTUs 

respectively (yet accounting for 39.4% and 36.9% of the abundance). Using the RI, we also 

identified seasonality at taxonomic group levels. In particular, Mamiellophyceae and MALV-360	  

III featured strong seasonality. As expected, most OTUs within these groups were also 

seasonal, indicating that this was a conserved trait in most species of the group. The strong 

seasonality of Mamiellophyceae was already suggested, as species of this group seem to have 

a preference for low temperatures (Foulon et al. 2008), whereas the strong seasonality of 

MALV-III is intriguing, given that virtually nothing is known for this group. The opposite 365	  

scenario, seasonal OTUs within non-seasonal groups, was also found and was explained by 

contrasting dynamics in different OTUs within a group, MALV-II being a good example. In 

most cases, seasonal groups and OTUs displayed one peak of abundance per year, despite our 
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RI can detect other patterns of abundance dynamics (i.e two peaks of abundance per year, one 

peak every two years and so on). In a study using Chlorophyll-a as a proxy of abundance in 370	  

125 time series studies, Winder and Cloern (2010) found that having one annual abundance 

peak is the most common pattern among phytoplankton (detected in ~48% of the analysed 

time series). 

Our results demonstrated that pico- and nanoeukaryotic communities displayed yearly 

seasonality throughout the 10 years. Furthermore, as shown by the Raup-Crick analyses, we 375	  

found that β-diversity was significantly different from chance, indicating that community 

dynamics were not driven by ecological drift (Chase et al. 2011; Stegen et al. 2013). 

Interestingly, there was no temporal trend in community dissimilarity, as the difference 

between communities did not increase with time along the 10 years. This suggests seasonal 

recurrence of at least some abundant taxa and absence of mass effects [that is, massive 380	  

immigration] (Lindström & Langenheder 2012). A somewhat contrasting result was found by 

Chow et al. (2013) in surface marine prokaryotic communities sampled monthly during 10 

years, as dissimilarity increased slightly during the first fourth years. In our study, averaged 

Bray-Curtis dissimilarity values between any pair of samples was ~0.8, while in Chow et al. 

(2013) was ~0.6, indicating that seasonal communities are far from identical during their 385	  

turnover, and that there is not a unique community state to return, leaving room for multiple 

community configurations that likely reflect historical processes or ecological drift (Chase 

2003). 

Overall, the repeatability in community turnover points to a certain degree of 

resilience and predictability in the system (Fuhrman et al. 2015), although not all species may 390	  

show these patterns. We found that the majority of OTUs did not present recurrence patterns 

or predictability (or it could not be detected due to the low signal), but the few that did were 
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particularly abundant. This suggests that the community includes certain amounts of 

functional redundancy (Allison & Martiny 2008) by which different but ecologically similar 

OTUs become dominant in different years. Nevertheless, the link between richness and 395	  

ecosystem function is still unclear. There is evidence indicating that changes in microbial 

richness affects ecosystem processes (Allison & Martiny 2008; Peter et al. 2011), thus 

pointing towards limited functional redundancy, as well as evidence supporting redundancy 

(Lyons & Dobbs 2012). Further studies are needed to determine the role of ecological 

redundancy in microbial plankton dynamics. 400	  

 Seasonal taxa presented different persistence times, which could point to different 

strategies according on the time spanned between samplings. Short-persistents might reflect a 

faster growth under the presence of specific resources and a faster decrease perhaps due to a 

high predation, competitive pressure or viral mortality. On the other hand, long-persistents 

could reflect relatively slow growth (and slow use of resources) accompanied with relatively 405	  

low predation or competition pressures, thus maintaining taxa in the system for relatively 

longer periods. Long-persistents may also have their growth rate tightly associated to some 

environmental variables (e.g. temperature), with their abundance reflecting environmental 

variability. We have also found that 1.6% of the OTUs were Conditionally Rare Taxa (CRT), 

a magnitude coinciding with that observed by Shade and Gilbert (2015) for prokaryotes. We 410	  

considered these OTUs opportunistic, with an increase in abundance triggered by 

environmental cues. Finally, 23.7% of the OTUs were permanently rare, and only 9 of them 

showed seasonality, similarly to what was observed in marine bacterioplankton (Alonso-Saez 

et al. 2015). The permanently rare sub-community mirrored the recurrent annual pattern 

found in the whole community, showing that processes driving community turnover act on 415	  

abundant as well as on rare species. Yet, the overall dissimilarity values among samples from 

the rare sub-community were higher than the values observed for the whole community, 
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implying a larger stochasticity in the rare sub-community dynamics. However, detection 

limits for rare taxa may have inflated β-diversity estimates (Leray & Knowlton 2017). 

Interestingly, the latter supports the idea that communities include rare species which are 420	  

metabolically active, as suggested by their seasonality, but never become abundant as they are 

adapted to a low abundance life (Logares et al. 2015) or subjected to high mortality pressures. 

 

Community and OTU response to environmental variation  

Similar to bacterioplankton (Fuhrman et al. 2015; Bunse & Pinhassi 2017), we 425	  

hypothesized that environmental selection would be a major force driving protist community 

seasonality. However, the measured environmental factors explained a minor fraction of 

community variability along the 10 years, which agrees with a previous study of protists 

showing that environmental fluctuations were explaining ~30% of community seasonality 

(Genitsaris et al. 2015). A possible explanation is that environmental selection has different 430	  

effects on microbial eukaryotic and prokaryotic plankton (Logares et al. 2017), thus affecting 

their dynamics. Nevertheless, the studied system oscillated between two main community 

configurations that corresponded to winter and summer months, pointing to some degree of 

environmental selection. Interestingly, we found that a small fraction of pico-eukaryotic 

OTUs (~4%), yet representing ~47% of the total abundance, correlated positively or 435	  

negatively with temperature and day length; temperature is an important factor structuring 

marine bacterioplankton communities across space (Sunagawa et al. 2015) and time 

(Fuhrman et al. 2006; Chow et al. 2013). Thus, we found evidence of environmental selection 

associated to variables that contrast between summer and winter, but such selection seems to 

be experienced by only a subset of the taxa in the community. Overall, differential or limited 440	  

responses of OTUs to environmental variation may explain the low correlation between 

whole community and environmental variation, as contrasting OTU dynamics may cancel out 
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or generate noise in whole-community analyses. Furthermore, the presence of two community 

states suggests that environmental selection intensity may change throughout the year, being 

stronger in summer and winter, and weaker in spring and autumn, thus allowing for 445	  

ecological drift (Chase 2003) in the latter seasons. This is consistent with the larger number of 

OTUs exclusively associated to summer and winter months as compared to those associated 

to autumn and spring. In addition, the fact that winter communities were the most similar 

along the 10 years indicate a stronger environmental selection during this period compared to 

summer. Besides, autumn and spring may be intrinsically more variable seasons, with 450	  

episodic rains and less constant temperatures/irradiances, representing year-specific 

environmental selection regimes. In particular, spring and autumn communities appeared as 

transitional states. The existence of two main states and two transitional states has previously 

been reported for Atlantic Ocean bacterioplankton (Ward et al. 2017), while the analysis of 

protist dynamics during two and a half years in the English Channel revealed three seasonal 455	  

states corresponding to summer, autumn-winter, and spring (Genitsaris et al. 2015). Overall, 

the existence of recurrent states associated to different seasons suggests that environmental 

selection drives, to certain extent, community dynamics. Finally, ecological interactions can 

also have a role in community turnover, yet it has been suggested that they affect dynamics in 

periods ranging from days to weeks (Bunse & Pinhassi 2017).   460	  

 

In summary, by applying our recurrence index to data from one of the longest 

microbial time series to date, we show that microbial plankton communities include both taxa 

with predictable as well as unpredictable dynamics. Our quantifications indicate that 13.2% 

and 18.6% of the pico- and nanoeukaryotic OTUs representing 39.4% and 36.9% of the 465	  

abundance respectively were seasonal or predictable. Thus, most taxa in our system had 

unpredictable temporal dynamics or we could not detect it. To our knowledge, this is the first 
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time that both behaviours are reported to coexist in microbial plankton communities and 

quantified at the OTU level. Future studies need to determine whether the latter amount of 

seasonal predictability is typical of microbial communities in other temperate zones.  470	  
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Figure legends 

Figure 1. Taxonomic groups constituting the picoeukaryotic community in the BBMO and 

indications of their seasonality. (a) Average relative abundances of groups accounting for 

>0.2% of the reads. The bars are colored according to whether the group as a whole exhibits 

seasonality. (b) Selected autocorrelation function (ACF) plots showing ‘strong seasonality’ 645	  

(Mamiellophyceae), ‘moderate seasonality’ (Dinoflagellata) and ‘no seasonality’ (MALV-I), 

together with their RI value. (c) Seasonal and non-seasonal signals for the main groups. The 

figure shows the number of OTUs (dots) and their percentage to all reads (bars) for each 

taxonomic group. Only OTUs present in >10 samples were considered. 

Figure 2. Taxonomic groups constituting the nanoeukaryotic community in the BBMO and 650	  

indications of their seasonality.  (a) Average relative abundances of groups accounting for 

>0.2% of the reads. The bars are colored according to whether the group as a whole exhibits 

seasonality. (b) Seasonal and non-seasonal signal for the main groups. The figure shows the 

number of OTUs (dots) and their percentage to all reads (bars) for each taxonomic group. 

Only OTUs present in >7 samples were considered. [* represents groups that have more than 655	  

100 OTUs]. 

Figure 3. Inter-annual recurrence of communities of picoeukaryotes (a) and nanoeukaryotes 

(b), shown by the average Bray-Curtis dissimilarities of all pairs of communities separated by 

a given number of months (from 1 to 119 in a) and from 1 to 74 in b)). 

Figure 4. NMDS analysis of protist communities in monthly samples taken during 10 years in 660	  

the BBMO showing the environmental vectors that better fit the plot after an Envfit test for 

the picoeukaryotes (a), and the nanoeukaryotes (b). 

Figure 5. Monthly variation of alpha diversity present in BBMO protist communities. 
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Boxplots display the monthly variability during 10 years of the richness (a, b) and Shannon 

indices (c, d) for the picoeukaryotes (a, c) and nanoeukaryotes (b, d). 665	  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237743doi: bioRxiv preprint 

https://doi.org/10.1101/237743
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

5

10

15

20

25

MALV
−I

Dino
fla

ge
llat

a

MALV
−II

Mam
iell

op
hy

ce
ae

Cilio
ph

ora

Cryp
tom

on
ad

ale
s

MAST−3

Diat
om

ea

Pico
zo

a

Aca
nth

ari
a

MALV
−II

I

Cerc
oz

oa

MAST−4

La
by

rin
thu

lom
yce

tes

Chry
so

ph
yce

ae

Kata
ble

ph
ari

da
e

Te
lon

em
a

MAST−7

Pela
go

ph
yce

ae

Chlo
ror

en
dro

ph
yce

ae

Dicty
oc

ho
ph

yce
ae

Cho
an

om
on

ad
a

MAST−1

Chlo
rar

ac
hn

iop
hy

ta

Cen
tro

he
lida

Ich
thy

os
po

rea

MOCH−2

MAST−1
2

Pras
ino

ph
yce

ae

MALV
−V

MAST−9

Bas
alF

un
gi

Bolid
om

on
as

MAST−8

Bico
so

ec
ida

MAST−2

MAST−1
1

R
el

at
ive

 a
bu

nd
an

ce
 (%

)

0 20 40 60 80 100

−0.2

0.2

1.0

Time lag

AC
F

Mamiellophyceae
       RI  = 2.2

0 20 40 60 80 100

Dinoflagellata
       RI  = 1.2

0 20 40 60 80 100

 MALV-I
RI  = 1.02

Time lag Time lag

0.8
0.6
0.4

b a 

Seasonal
Non-Seasonal

  100
  90
  80
  70
  60
  50
  40
  30
  20
  10

0
10
20
30
40
50
60
70
80
90

100

M
AL

V−
I

D
in

of
la

ge
lla

ta
M

AL
V−

II
M

am
ie

llo
ph

yc
ea

e
C

ilio
ph

or
a

C
ry

pt
om

on
ad

al
es

M
AS

T−
3

D
ia

to
m

ea
Pi

co
zo

a
Ac

an
th

ar
ia

M
AL

V−
III

C
er

co
zo

a
M

AS
T−

4
La

by
rin

th
ul

om
yc

et
es

C
hr

ys
op

hy
ce

ae
Ka

ta
bl

ep
ha

rid
ae

Te
lo

ne
m

a
M

AS
T−

7
Pe

la
go

ph
yc

ea
e

C
hl

or
od

en
dr

op
hy

ce
ae

D
ic

ty
oc

ho
ph

yc
ea

e
C

ho
an

om
on

ad
a

M
AS

T−
1

C
hl

or
ar

ac
hn

io
ph

yt
a

C
en

tro
he

lid
a

Ic
ht

hy
os

po
re

a
M

O
C

H
−2

M
AS

T−
12

Pr
as

in
op

hy
ce

ae
M

AL
V−

V
M

AS
T−

9
Ba

sa
l F

un
gi

Bo
lid

om
on

as
M

AS
T−

8
Bi

co
so

ec
id

a
M

AS
T−

2
M

ar
in

e 
O

pi
st

ho
ko

nt
s

M
AS

T−
11

M
O

C
H

−5
G

ra
ci

lip
od

id
a

Po
ly

cy
st

in
ea

Pe
ro

no
sp

or
om

yc
et

es

N
um

 O
TU

s 
an

d 
%

 o
f r

ea
ds

* * *

c 

Fig. 1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237743doi: bioRxiv preprint 

https://doi.org/10.1101/237743
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

1

2

3

4

5

Dino
fla

ge
llat

a

Diat
om

ea

MALV
−I

MALV
−II

Cryp
tom

on
ad

ale
s

Mam
iell

op
hy

ce
ae

Cilio
ph

ora

MALV
−II
I

Aca
nth

ari
a

Cerc
oz

oa

Chlo
ror

en
dro

ph
yce

ae

Te
lon

em
a

Ulvo
ph

yce
ae

Pico
zo

a

MA
ST
−1

MA
ST
−3

La
by

rin
thu

lom
yce

tes

Cho
an

om
on

ad
a

Dicty
oc

ho
ph

yce
ae

Chry
so

ph
yce

ae

Pras
ino

ph
yce

ae

Rho
do

ph
yta

Bas
alF

un
gi

Ich
thy

os
po

rea

MA
ST
−7

MALV
−V

Cen
tro

he
lida

R
el

at
ive

 a
bu

nd
an

ce
 (%

) 10

30

50

−100
−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

D
in

of
la

ge
lla

ta
D

ia
to

m
ea

M
AL
V−

I
M

AL
V−

II
C

ry
pt

om
on

ad
al

es
M

am
ie

llo
ph

yc
ea

e
C

ilio
ph

or
a

M
AL
V−

III
Ac

an
th

ar
ia

C
er

co
zo

a
C

hl
or

or
en

dr
op

hy
ce

ae
Te

lo
ne

m
a

U
lvo

ph
yc

ea
e

Pi
co

zo
a

M
AS

T−
1

M
AS

T−
3

La
by

rin
th

ul
om

yc
et

es
C

ho
an

om
on

ad
a

D
ic

ty
oc

ho
ph

yc
ea

e
C

hr
ys

op
hy

ce
ae

Pr
as

in
op

hy
ce

ae
R

ho
do

ph
yt

a
Ba

sa
lF

un
gi

Ic
ht

hy
os

po
re

a
M
AS

T−
7

M
AL
V−

V
C

en
tro

he
lid

a

N
um

 O
TU

s 
an

d 
%

 o
f r

ea
ds

Seasonal Non-Seasonal

* * * *

*

a 

b 

Fig. 2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237743doi: bioRxiv preprint 

https://doi.org/10.1101/237743
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.6

0.7

0.8

0.9

1.0

0 12 24 36 48 60 72 84 96 108 120

Time lag (months)

Av
er

ag
e 

Br
ay

-C
ur

tis
 d

iss
im

iar
lity

0.6

0.7

0.8

0.9

1.0

0 12 24 36 48 60 72

Fig. 3

a b

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237743doi: bioRxiv preprint 

https://doi.org/10.1101/237743
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 4

−0.4 −0.2 0.0 0.2 0.4

−0.4

−0.2

0.0

0.2

0.4

MDS1

M
D
S2

Day length

Temp
Secchi

Salinity

Chla
PO4 NH4

NO2

NO3 Si

Winter
Spring
Summer
Autumn

a

−0.4 −0.2 0.0 0.2 0.4

−0.6

−0.4

−0.2

0.0

0.2

0.4

MDS1

M
DS

2 Day length

Temp

Secchi

Salinity

Chla

PO4
NH4NO2

NO3

Si

Winter
Spring
Summer
Autumn

b

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237743doi: bioRxiv preprint 

https://doi.org/10.1101/237743
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

200

400

600

800

1000

1200

1400

R
ic

hn
es

s 
(N

um
 o

f O
TU

s)

0

200

400

600

800

1000

1200

1400

1

2

3

4

5

6

7

Sh
an

no
n 

In
de

x 
(H

’)

JA
N

FE
B

M
AR AP

R
M

AY JU
N

JU
L

AU
G

SE
P

O
C

T
N

O
V

D
EC

1

2

3

4

5

6

7

JA
N

FE
B

M
AR AP

R
M

AY JU
N

JU
L

AU
G

SE
P

O
C

T
N

O
V

D
EC

a b

dc

Fig. 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237743doi: bioRxiv preprint 

https://doi.org/10.1101/237743
http://creativecommons.org/licenses/by-nc-nd/4.0/

