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Summary

Cell-to-cell transcriptional variability in otherwise homogeneous cell populations plays a cru-
cial role in tissue function and development. Single-cell RNA sequencing can characterise
this variability in a transcriptome-wide manner. However, technical variation and the con-
founding between variability and mean expression estimates hinders meaningful comparison
of expression variability between cell populations. To address this problem, we introduce a
novel analysis approach that extends the BASiCS statistical framework to derive a residual
measure of variability that is not confounded by mean expression. Moreover, we introduce
a new and robust procedure for quantifying technical noise in experiments where technical
spike-in molecules are not available. We illustrate how our method provides biological in-
sight into the dynamics of cell-to-cell expression variability, highlighting a synchronisation
of the translational machinery in immune cells upon activation. Additionally, our approach
identifies new patterns of variability across CD4+ T cell differentiation.
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Introduction

Heterogeneity in gene expression within a population of single cells can arise from a va-
riety of factors. Structural differences in gene expression within a cell population can
reflect the presence of sub-populations of functionally different cell types (Zeisel et al.,
2015; Paul et al., 2015). Alternatively, in a seemingly homogeneous population of cells,
so-called unstructured expression heterogeneity can be linked to intrinsic or extrinsic noise
(Elowitz et al., 2002). Changes in physiological cell states (such as cell cycle, metabolism,
abundance of transcriptional/translational machinery and growth rate) represents extrin-
sic noise, which has been found to influence expression variability within cell populations
(Keren et al., 2015; Buettner et al., 2015; Zeng et al., 2017). Intrinsic noise can be linked
to epigenetic diversity (Smallwood et al., 2014), chromatin rearrangements (Buenrostro
et al., 2015), as well as the genomic content of single genes, such as the presence of
TATA-box motifs and the abundance of nucleosomes around the transcriptional start site
(Hornung et al., 2012).

Single-cell RNA sequencing (scRNAseq) generates transcriptional profiles of single cells,
allowing the study of cell-to-cell heterogeneity on a transcriptome-wide (Grün et al., 2014)
and single gene level (Goolam et al., 2016). Consequently, this technique can be used
to study unstructured cell-to-cell variation in gene expression within and between homo-
geneous cell populations (i.e. where no distinct cell sub-types are present). Increasing
evidence suggests that this heterogeneity plays an important role in normal development
(Chang et al., 2008) and that control of expression noise is important for tissue function
(Bahar Halpern et al., 2015). For instance, molecular noise was shown to increase before
cells commit to lineages during differentiation (Mojtahedi et al., 2016), while the opposite
is observed once an irreversible cell state is reached (Richard et al., 2016). A similar pat-
tern occurs during gastrulation, where expression noise is high in the uncommitted inner
cell mass compared to the committed epiblast and where an increase in heterogeneity is
observed when cells exit the pluripotent state and form the uncommitted epiblast (Mo-
hammed et al., 2017).

Motivated by scRNAseq, recent studies have extended traditional differential expression
analyses to explore more general patterns that characterise differences between cell popu-
lations (e.g. Korthauer et al., 2016). In particular, BASiCS (Vallejos et al., 2015, 2016)
introduced a probabilistic tool to assess differences in cell-to-cell heterogeneity between two
or more cell populations. To meaningfully assess these changes, BASiCS separates biologi-
cal noise from technical variability — a characteristic feature of scRNAseq datasets (Bren-
necke et al., 2013) — by borrowing information from synthetic RNA spike-in molecules.
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The differential test implemented in BASiCS has led to, for example, novel insights in the
context of immune activation and ageing (Martinez-Jimenez et al., 2017). However, a
major challenge remains unresolved. Biological noise is negatively correlated with protein
abundance (Bar-Even et al., 2006; Newman et al., 2006; Taniguchi et al., 2010) or mean
RNA expression (Brennecke et al., 2013; Antolović et al., 2017). Therefore, changes in
variability between two populations of single cells are confounded by changes in mean ex-
pression.

This article extends the statistical model implemented in BASiCS by deriving a residual
measure of cell-to-cell transcriptional variability that is not confounded by mean expression.
In addition, we address experimental designs where spike-in sequences are not available by
exploiting concepts from measurement error models.

Using our method, we identify a synchronisation of the translation machinery in CD4+ T
cells upon early immune activation as well as an increased variability in the expression of
genes related to CD4+ T cell immunological function. Furthermore, we detect evidence
of early cell fate commitment of CD4+ T cells during malaria infection characterized by a
decrease in Tbx21 expression heterogeneity and a rapid collapse of global transcriptional
variability after infection. These results lead to new insights into transcriptional dynamics
during immune activation and differentiation and propose an earlier time point of cell fate
commitment than previously anticipated.

Results

Addressing the mean confounding effect for differential variability

testing

Unlike bulk RNA sequencing, scRNAseq provides information about cell-to-cell expression
heterogeneity within a population of cells. Past works have used a variety of measures to
quantify this heterogeneity. Among others, this includes the coefficient of variation (CV,
Brennecke et al., 2013) and entropy measures (Richard et al., 2016). As in Vallejos et al.
(2015, 2016), we focus on over-dispersion as a proxy for transcriptional heterogeneity. This
is defined by the excess of variability that is observed with respect to what would be pre-
dicted by Poisson sampling noise, after accounting for technical variation.

The aforementioned measures of variability can be used to identify genes whose transcrip-
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tional heterogeneity differs between groups of cells (defined by experimental conditions or
cell types). However, the strong relationship that is typically observed between mean and
variability estimates (e.g. Brennecke et al., 2013) can hinder the interpretation of these
results.

A simple solution to avoid this confounding is to restrict the assessment of differential
variability to those genes with equal mean expression across populations (see Fig. 1A,
also Martinez-Jimenez et al., 2017). However, this is sub-optimal, particularly when a
large number of genes are differentially expressed between the populations. For example,
reactive genes that change in mean expression upon changing conditions (e.g. transcription
factors) are excluded from differential variability testing. An alternative approach is to di-
rectly adjust variability measures to remove this confounding. For example, Kolodziejczyk
et al. (2015) computed the distance between the squared CV to a rolling median along
expression levels — referred to as the DM method. However, the DM method does not
allow statistical testing of differences at a gene level and does not take into account tech-
nical variation.

Our method solves this problem by extending the statistical model implemented in BASiCS
(Vallejos et al., 2015, 2016). We define a measure of residual over-dispersion — which is
not correlated with mean expression — to meaningfully assess changes in transcriptional
heterogeneity when genes exhibit shifts in mean expression (see Fig. 1B). We infer a
regression trend between gene-specific mean (—i) and over-dispersion parameters (‹i), by
introducing a joint informative prior for these parameters (see Methods). A gene-specific
residual over-dispersion parameter ›i describes departures from this trend (see Fig. 1C).
Positive values of ›i indicate that a gene exhibits more variation than expected relative to
genes with similar expression levels. Similarly, negative values of ›i suggest less variation
than expected. Importantly, as shown in Fig. 1D, these residual over-dispersion parame-
ters are not confounded by mean expression. Thus, ›i can be used to meaningfully assess
changes in transcriptional heterogeneity, regardless of mean expression differences.

4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237214doi: bioRxiv preprint 

https://doi.org/10.1101/237214
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Avoiding the mean confounding effect when quantifying expression variability
in scRNAseq data.
(A)-(B) Illustration of changes in expression variability for a single gene between two cell popula-
tions without (A) and with (B) changes in mean expression.
(C)-(D) BASiCS parameters were estimated using the dataset introduced by Antolović et al.
(2017). Genes that are not expressed in at least 2 cells are indicated by purple points. The
red line shows the regression trend between over-dispersion and mean expression. Residual over-
dispersion is indicated for one gene by a red arrow.
(C) BASiCS’s estimates of gene-specific over-dispersion ‹i are confounded by mean expression
estimates —i in the context of scRNAseq datasets.
(D) After performing the regression between ‹i and —i , residual over-dispersion estimates do not
correlate with mean expression.
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The informative prior stabilizes parameter estimation

To study the effect of the joint informative prior described above, we applied our method
to a variety of scRNAseq datasets. Each dataset is unique in its composition, covering a
range of different cell types and experimental protocols (see Supplementary Note S3
and Table S1). Qualitatively, the trend between the mean —i and the over-dispersion
‹i varies substantially across datasets, justifying the choice of a flexible semi-parametric
approach for capturing this trend (see Methods and Fig. S1). Moreover, in line with
Love et al. (2014), the introduction of a joint prior specification for (—i ; ‹i)

′ regularises
parameter estimation by shrinking the posterior estimates for —i and ‹i towards the es-
timated trend. The strength of this shrinkage is also dataset-specific and has the most
impact for lowly-expressed genes where measurement error is greatest. Nevertheless, in all
cases, we observe that residual over-dispersion parameters ›i are not confounded by mean
expression, nor by the percentage of zero counts per gene (see Fig. S1).

Subsequently, we ask whether or not the shrinkage described above improves posterior
inference. We assess estimation performance across different sample sizes by comparing
posterior medians estimated by the regression and the non-regression models against a
pseudo ground truth (Fig. 2, Fig. S2 and Supplementary Note S5.1). The latter is
derived through a sub-sampling strategy in which empirical estimates obtained on the basis
of a large sample size are used as a proxy for the true values of —i , ‹i and ›i . This is based
on a subset of the data described in Zeisel et al. (2015), containing 939 CA1 pyramidal
neurons. Subsequently, we use random sub-sampling to generate datasets containing n
cells (50 ≤ n ≤ 500) and calculate the associated posterior estimates. While the shrinkage
effect does not alter posterior inference for mean expression parameters —i (Fig. 2A), a
more prominent effect is observed for over-dispersion parameters ‹i (Fig. 2B). The latter
is emphasized when the data are less informative, such as for low sample sizes, where it
is more likely to observe zero total counts (across all cells) for lowly expressed genes. In
those cases, shrinkage towards the trend avoids artificially low estimates for ‹i . Overall, in
terms of the residual over-dispersion parameters ›i , the property yields statistically unbiased
estimates (Fig. 2C). However, a small over-estimation of ›i can be observed for lowly
expressed genes when the sample size is small (this bias is four times smaller than the
default threshold for differential variability testing, Ψ0 > 0:41).
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Figure 2: Parameter estimation for varying cell population size.
The regression (orange) and non-regression (blue) model was used to estimate model parameters
for lowly (lower panels), medium (mid panels) and highly (upper panels) expressed genes across
populations of 50-500 cells. Parameters estimated on the full population of 939 cells were used
as pseudo ground truth (pgt). Median log2 fold changes (—i and ‹i ) and median distances (›i )
between the estimates and the pgt were computed. The median value across 10 replicates is plot-
ted with error bars indicating the range across all repetitions (see Supplementary Note S5.1).
(A) Distribution of log2 fold changes in mean expression —i estimates. Default threshold for dif-
ferential mean expression testing: | log2(—

(A)
i =—

(B)
i )| > fi0; fi0 = 0:58.

(B) Distribution of log2 fold changes in over-dispersion ‹i estimates. Default threshold for differ-
ential over-dispersion testing: | log2(‹

(A)
i =‹

(B)
i )| > !0; !0 = 0:58.

(C) Distribution of absolute distances for residual over-dispersion ›i estimates. Default threshold
for differential mean expression testing: |›(A)i − ›(B)i | > Ψ0; Ψ0 = 0:41.
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Inferring technical variability without spike-in genes

Another critical aspect to take into account when inferring transcriptional variability based
on scRNAseq datasets is technical variation (Brennecke et al., 2013). BASiCS (and its
extension described above) achieves this by exploiting a set of synthetic RNA spike-in
molecules (e.g. the set of 92 ERCC molecules developed by Jiang et al., 2011) as a gold
standard to aid normalisation and to quantify technical artefacts. However, while the ad-
dition of spike-in genes prior to sequencing is theoretically appealing (Lun et al., 2017),
several practical limitations can preclude their utility in practice (Vallejos et al., 2017).

Given this, we extend BASiCS so that it can handle datasets without spike-in genes by
exploiting principles of measurement error models where — in the absence of gold stan-
dard features — technical variation is quantified through replication (Carroll, 1998). This
is based on experimental designs where cells from a population are randomly allocated to
multiple independent experimental replicates (here referred to as batches). In such an ex-
perimental designs, the no-spikes implementation of BASiCS assumes that biological effects
are shared across batches and that technical variation will be reflected by spurious differ-
ences. As shown in Fig. S3E-F, posterior inference under the no-spikes BASiCS model
closely matches the original implementation for datasets where spike-ins and batches are
available. Technical details about the no-spikes implementation of BASiCS are discussed
in Supplementary Note S4.
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Expression variability dynamics during immune activation and

differentiation

Here, we illustrate how our method assesses changes in expression variability using CD4+

T cells as model system. For all datasets, pre-processing steps are described in Supple-
mentary Note S3.

Testing variability changes in immune response gene expression

To identify gene expression changes during early T cell activation, we compared CD4+ T
cells before (naive) and after (active) 3h of stimulation (Martinez-Jimenez et al., 2017).
Previously, Martinez-Jimenez et al. (2017) observed that activated CD4+ T cells synchro-
nise their expression upon activation, solely focusing on genes with no changes in mean
expression. This represents only ∼2,000 out of the full set of ∼10,000 expressed genes. In
contrast, testing changes in variability through residual over-dispersion allows us to include
the large set of genes that are up-regulated upon immune activation. Importantly, these
include immune-response genes and critical drivers for CD4+ T cell functionality.

Our model classifies genes into four categories based on their expression dynamics: down-
regulated upon activation with (i) lower and (ii) higher variability, and up-regulated with
(iii) lower and (iv) higher variability (Fig. 3A and Supplementary Note S5.2).

Genes with up-regulated expression upon activation and decreased expression variability en-
code components of the MAP-kinase signaling pathways (e.g. Mapkapk3, Map3k8, Ksr1),
RNA polymerase subunits (e.g. Polr2l), and ribosomal biogenesis and translation machinery
components (e.g. Pes1) (Fig. 3B). These transcription factor-inducing signalling cascade
and protein-building processes are required for naive T cells to rapidly enter a program of
proliferation and effector molecule synthesis (Voll et al., 2000; Navarro and Cantrell, 2014).
Therefore, rapid, uniform up-regulation of these transcripts would assist such processes.
This observation also confirms previous findings that the translational machinery is tightly
regulated during early immune activation (Martinez-Jimenez et al., 2017).

In contrast, immune-related genes with up-regulated expression and increased expression
variability include the death-inducing and inhibitory transmembrane ligands Fas ligand
(Fasl) and PD-L1 (Cd274), the regulatory transcription factor Smad3 (Smad3), and the
TCR-induced transcription factor, Oct2 (Pou2f2). Additionally, we detect a heterogeneous
up-regulation in the mRNA expression of the autocrine/paracrine growth factor IL-2 (Il2)
upon immune activation (Fig. 3C). This is in line with previous reports of binary IL-2
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expression within a population of activated T cells (Bucy et al., 1994), which has been
suggested to be necessary for a scalable antigen response (Fuhrmann et al., 2016). Het-
erogeneity in expression of these genes suggests that, despite their uniform up-regulation
of biosynthetic machinery, the T cells in this early activation culture represent a mixed
population with varying degrees of activation and/or regulatory potential.

In summary, our approach allows us to extend the finding by Martinez-Jimenez et al. (2017),
dissecting immune-response genes into two functional sets: (i) homogeneous up-regulation
of translational machinery and (ii) heterogeneous up-regulation of immunoregulatory genes.
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Figure 3: Changes in expression variability during early immune activation in CD4+ T
cells.
Differential testing was performed between naive and activated murine CD4+ T cells testing a log2
fold change in mean expression > 1 and an absolute distance between residual over-dispersion
Ψ0 > 0:41 while controlling the expected false discovery rate at 10% (see Supplementary Note
S5.2).
(A) For each gene, the distance in residual over-dispersion estimates (Active - Naive) is plotted
versus the log2 fold change in mean expression (Active/Naive). Genes with statistically significant
changes in mean expression and variability are coloured based on their regulation (up/down-
regulated, more/less variability).
(B) Denoised expression across the naive (purple) and active (green) CD4+ T cell population is
visualized for representative genes that increase in mean expression and decrease in expression
variability upon immune activation. Each dot represents a single cell.
(C) Distribution of denoised expression counts for sample genes that increase in mean expression
as well as expression variability. Each dot represents a single cell.
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Expression dynamics during in vivo CD4+ T cell differentiation

In contrast to the quick transcriptional switch that occurs within hours of naive T cell
activation, transcriptional changes during cellular differentiation processes are more subtle
and were found to be coupled with changes in variability prior to cell fate decisions (Richard
et al., 2016; Mojtahedi et al., 2016). Here, we apply our method to study changes in ex-
pression variability during CD4+ T cell differentiation after malaria infection. In particular,
we focus on samples collected 2, 4 and 7 days post-malaria infection, for which more than
50 cells are available (Lönnberg et al., 2017).

To study global changes in over-dispersion along the differentiation time course, we com-
pare posterior estimates for the gene-specific parameter ‹i , focusing on the 126 genes for
which mean expression does not change (see Fig. 4A and Supplementary Note S5.3).
This analysis suggests that the expression of these genes is most tightly regulated at day
4, when cells are in a highly proliferative state. Moreover, between day 4 and day 7, the
cell population becomes more heterogeneous. This is in line with the emergence of differ-
entiated Th1 and Tfh cells that was observed by Lönnberg et al. (2017).

We next exploit the residual over-dispersion parameters to identify genes with a statisti-
cally significant change in variability (irrespective of changes in mean expression) between
consecutive time points (see Supplementary Note S5.3). Separating these genes by
whether their variability increases or decreases between time points revealed four different
patterns (Fig. 4B). These include genes whose variability systematically increases (or
decreases) as well as patterns where variability is highest (or lowest) at day 4.

In particular, we detect statistically significant changes in expression variability for a set of
immune-related genes between day 2 and day 4 post-infection (Fig. 4C). For example,
expression of Cxcr5 which encodes the chemokine receptor that directs Tfh cells to the B
cell follicles (Crotty, 2014), strongly increases in variability on day 4. This finding agrees
with results from Lönnberg et al. (2017), where Tfh differentiation was observed to be
transcriptionally detectable at day 4 within a subset of activated cells. A similar behaviour
was observed for Tyk2 and Tigit, which encodes a receptor that is expressed by a subset
of Tfh cells and was found to promote Tfh function (Godefroy et al., 2015). In contrast,
expression of the Treg-associated gene Ikzf4, Ly6c1, which is expressed by effector T cells
and, intriguingly, Tbx21, encoding the Th1 lineage-defining transcription factor Tbet be-
come less variable between day 2 and day 4 during CD4+ T cell differentiation.

Comparing changes in mean expression and expression variability of Cxcr5 and Tbx21

12

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2017. ; https://doi.org/10.1101/237214doi: bioRxiv preprint 

https://doi.org/10.1101/237214
http://creativecommons.org/licenses/by-nd/4.0/


transcripts across all time points shows that these lineage-defining genes exhibit opposite
behaviours (Fig. 4D). While expression of both genes is up-regulated between days 2 and
4 in the lead-up to lineage commitment, Cxcr5 increases and Tbx21 decreases in variability.
The fact that variability of Tbx21 (Tbet) expression was highest on day 2 suggests that
Tbet is up-regulated very early in differentiation, similar to in vitro Th1 induction (Szabo
et al., 2000). Moreover, this suggests that Th1 fate decisions (for at least a subset of cells)
may be made even earlier than the differentiation bifurcation point identified on day 4 by
the original study (Lönnberg et al., 2017).
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Figure 4: Dynamics of expression variability throughout CD4+ T cell differentiation.
Analysis was performed on CD4+ T cells 2 days, 4 days and 7 days after Plasmodium infection.
Changes in residual over-dispersion were tested using a threshold of Ψ0 > 0:41, EFDR=0.1 (see
Supplementary Note S5.3)
(A) Distribution of over-dispersion parameter estimates ‹i for genes that don’t change in mean
expression across the differentiation time course (log2 fold change in mean expression > 0,
EFDR=0.1).
(B) Residual over-dispersion parameter estimates ›i for genes with statistically significant change
in expression variability between time points. Gene set size is indicated for each plot.
(C) Denoised, log10-transformed expression across cell populations at day 2 (yellow) and day
4 (red) post infection is visualized for representative genes that increase in variability during
differentiation. Each dot represents a single cell.
(D) Distribution of denoised, log10-transformed expression counts for representative genes that
decrease in expression variability during differentiation. Each dot represents a single cell.
(E) Residual over-dispersion estimates ›i are plotted against mean expression —i for Tbx21 (blue)
and Cxcr5 (red) measured at day 2, day 4 and day 7 post-infection. Statistically significant
changes in mean expression (DE) and variability (DV) are indicated for each comparison.
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Discussion

In recent years, the importance of modulating cell-to-cell transcriptional variation within cell
populations for tissue function maintenance and development has become apparent (Ba-
har Halpern et al., 2015; Mojtahedi et al., 2016; Goolam et al., 2016). Here, we present
a computational approach to robustly test changes in expression variability between cell
populations using scRNAseq data. This extends the BASiCS framework by addressing
experimental designs where spike-in sequences are not available and by incorporating an
additional set of residual over-dispersion parameters ›i , which allow statistical testing of
changes in variability that are not confounded by mean expression (Brennecke et al., 2013;
Antolović et al., 2017). The latter is achieved by introducing a joint prior specification
for the mean expression and over-dispersion parameters. We observe that this formulation
stabilises posterior inference, particularly for small sample sizes. Furthermore, we show
that our method successfully captures a mean versus over-dispersion trend across a variety
of scRNAseq datasets.

Our method uncovers new insights into the extent and nature of variable gene expression in
CD4+ T cell activation and differentiation. Firstly, we observe that during acute activation
of naive T cells, the biosynthetic machinery is homogeneously up-regulated, while specific
immune related genes become more heterogeneously up-regulated. In particular, increased
variability in expression of the apoptosis-inducing Fas ligand (Strasser et al., 2009) and
the inhibitory ligand PD-L1 (Chikuma, 2016) suggests a mechanism by which newly acti-
vated cells might suppress re-activation of effector cells, thereby dynamically modulating
the population response to activation. Likewise, more variable expression of Smad3, which
translates inhibitory TGF˛ signals into transcriptional changes (Delisle et al., 2013), may
indicate increased diversity in cellular responses to this signal. Increased variability in
Pou2f2 (Oct2) expression after activation suggests heterogeneous activities of the NF-»B
and/or NFAT signalling cascades that control its expression (Mueller et al., 2013). More-
over, we detect up-regulated and more variable Il2 expression, suggesting heterogeneous
IL-2 protein expression known to enable T cell population responses (Fuhrmann et al.,
2016). This emphasizes the importance of variability detection in scRNAseq data.

Finally, we studied changes in gene expression variability during CD4+ T cell differentiation
towards a Th1 and Tfh cell state over a 7 day time course after in vivo malaria infection
(Lönnberg et al., 2017). Our analysis provided several novel insights into this differentiation
system. Firstly, we observe a tighter regulation in gene expression among genes that do
not change in mean expression during differentiation at day 4, the bifurcation point where
Th1 and Tfh differentiation separates. This decrease in variability on day 4 is potentially
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due to induction of a strong pan-lineage proliferation program. However, we observe that
not all genes follow this trend and uncover four different patterns of variability changes.
Secondly, we observe that several Tfh and Th1 lineage-associated genes change in expres-
sion variability between days 2 and 4. Importantly, we noted a decrease in variability for
one key Th1 regulator, Tbx21 (encoding Tbet), which suggests that a subpopulation of
cells had already committed to Th1 differentiation. Therefore, differentiation fate decisions
may arise as early as day 2 in this system as reflected by high gene expression variability
and in accordance with early commitment to Th1 and Tfh fates during viral infection (Choi
et al., 2011). The diversity in differentiation state within this population of T cells can
drive our differential variability results. Alternative analyses such as pseudotime inference
used in Lönnberg et al. (2017) suggest that these differential variability results reflect a
continuous differentiation process.

In sum, our model provides an important new tool for understanding the role of hetero-
geneity in gene expression during cell fate decisions. With the increasing use of scRNAseq
to study this phenomenon, our and other related tools will become increasingly important.
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Methods

The BASiCS framework

The proposed statistical model builds upon BASiCS (Vallejos et al., 2015, 2016) — an
integrated Bayesian framework that infers technical noise in scRNAseq datasets and simul-
taneously performs data normalisation as well as selected supervised downstream analyses.
BASiCS uses a hierarchical Poisson formulation to disentangle technical and biological
sources of over-dispersion, corresponding to the excess of variability that is observed with
respect to Poisson sampling noise. For this purpose, BASiCS uses a vertical integration
approach that borrows information from synthetic spike-in RNA molecules (such as the set
of 92 ERCC molecules developed by the External RNA Control Consortium, Jiang et al.,
2011).

BASiCS summarizes the underlying distribution of gene expression across cells through two
sets of gene-specific parameters. Firstly, mean expression parameters —i capture average
expression for each gene across all cells, matching what would be observed at a bulk
level. Additionally, a second set of parameters ‹i quantifies the biological over-dispersion
that is observed for each gene after accounting for technical noise. Comparisons of these
gene-specific parameters across populations can be used to identify statistically significant
changes in gene expression at the mean and the variability level (Fig.1). However, the well
known confounding effect between mean and variability that typically arises in scRNAseq
datasets (Brennecke et al., 2013) can preclude a meaningful interpretation of these results.

Modelling the confounding between mean and

over-dispersion with BASiCS

Here, we extend BASiCS to account for the confounding effect described above. For this
purpose, we estimate the relationship between mean and over-dispersion parameters by
introducing the following joint prior distribution for (—i ; ‹i)

′:

—i ∼ log-normal
“

0; s2—
”
; ‹i |—i ∼ log-t”

“
f(—i); ff2

”
: (1)

The latter is equivalent to the following non-linear regression model:

log(‹i) = f(—i) + ›i ; ›i ∼ t”(0; ff2); (2)

where f(—i) represents the over-dispersion (on the log-scale) that is predicted by the global
trend (across all genes) expressed at a given mean expression —i . Therefore, ›i can be in-
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terpreted as a gene-specific residual over-dispersion parameter, capturing departures from
the overall trend. If a gene exhibits a positive value for ›i , this indicates more variation than
expected for genes with similar expression level. Similarly, negative values of ›i suggest
less variation than expected.

A similar approach was introduced by DESeq2 (Love et al., 2014) in the context of bulk
RNA sequencing. Whereas DESeq2 assumes normally distributed errors when estimating
this trend, here we opt for a t distribution as it leads to inference that is more robust to the
presence of outlier genes. Moreover, the parametric trend assumed by DESeq2 is replaced
by a more flexible semi-parametric approach. This is defined by

f (—i) = ¸0 + log(—i)¸1 +
LX
l=1

gl(log(—i))˛l ; (3)

where g1(·); : : : ; gL(·) represent a set of Gaussian radial basis function (GRBF) kernels and
¸0; ¸1; ˛1; : : : ; ˛L are regression coefficients. As in Kapourani and Sanguinetti (2016),
these are defined as:

gl(log(—i)) = exp

8<:−1

2

 
log(—i)−ml

hl

!2
9=; ; l = 1; : : : ; L; (4)

where ml and hl represent location and scale hyper-parameters for GRBF kernels.

In (3), the linear term captures the (typically negative) global correlation between —i and
‹i . Its addition also stabilises inference of GRBFs around mean expression values where
only a handful of genes are observed.

Implementation

Posterior inference is implemented through an Adaptive Metropolis within Gibbs sampler
(Roberts and Rosenthal, 2009). The log-t prior in (1) is represented through a scale
mixture of log-normal distributions as in Vallejos and Steel (2015). Moreover, the regression
coefficients ˛ = (¸0; ¸1; ˛1; : : : ; ˛L)′ are inferred by noting that (3) can be rewritten as a
linear regression model using

f (—i) = X˛; (5)

where X is a design matrix whose columns are a function of —i (defined by the inter-
cept, linear term and GRBFs in (3)). Finally, the Bayesian model is completed using a
normal-inverse gamma prior on (˛; ff2). More details about this implementation, including
an explicit formula for X are described in Supplementary Note S1.
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Choice of hyper-parameters

In (3), the number of GRBFs and their associated hyper-parameters ml ; hl are fixed a pri-
ori. As in Kapourani and Sanguinetti (2016), the location hyper-parameters ml are chosen
to be evenly spaced across the range of mean expression values. Additionally, we set the
scale hyper-parameters as hl = c × ∆m, where c is a fixed proportionality constant and
∆m is the distance between consecutive values of ml . More details about these choices
are provided in Supplementary Note S2. Default values for L and c are set as 10 and
1.2, respectively.

In principle, the degrees of freedom parameter ” could be estimated within a Bayesian
framework. Nonetheless, this is problematic (see Fernandez and Steel, 1999) and we
observed that fixing this parameter a priori led to more stable results. Simulations across a
range of values for this parameter showed that ” = 5 provides a good compromise between
shrinkage and flexibility (see Supplementary Note S2). We therefore set ” = 5 as a
default choice. While default values were set a priori, the model’s implementation also
allows flexible adjustment of L, c and ” by the user.

Assessing changes in residual over-dispersion

We use a probabilistic approach to identify changes in gene expression between groups of
cells. Let ‹Ai and ‹Bi be the over-dispersion parameters associated to gene i in groups A
and B. Following (2), the log2 fold change in over-dispersion between these groups can
be decomposed as:

log2

 
‹Ai
‹Bi

!
= log2(e)×

264f A(—Ai )− f B(—Bi )| {z }
Mean contribution

+ ›Ai − ›Bi| {z }
Residual change

375 ; (6)

where the first term captures the over-dispersion change that can be attributed to dif-
ferences between —Ai and —Bi . The second term in (6) represents the change in residual
over-dispersion that is not confounded by mean expression. Based on this observation,
statistically significant differences in residual over-dispersion will be identified for those
genes where the tail posterior probability of observing a large difference between ›Ai and
›Bi exceeds a certain threshold, i.e.

P(| ›Ai − ›Bi |>  0 | Data) > ¸R; (7)
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where  0 > 0 defines a minimum tolerance threshold. As a default choice, we assume
 0 = log2(1:5)= log2(e) ≈ 0:41 which translates into a 50% increase in over-dispersion.
In the limiting case when  0 = 0, the probability in (7) is equal to 1 regardless of the
information contained in the data. Therefore, as in Bochkina and Richardson (2007), our
decision rule is based on the maximum of the posterior probabilities associated to the
one-sided hypotheses ›A − ›Bi > 0 and ›A − ›Bi < 0, i.e.

2×max{ıi ; 1− ıi} − 1 > ¸R; with ıi = P(›Ai − ›Bi > 0 | Data) (8)

In both cases, the posterior probability threshold ¸R is chosen to control the expected false
discovery rate (EFDR) (Newton et al., 2004). The default value for EFDR is set to 10%.
As a default and to support interpretability of the results, we exclude genes that are not
expressed in at least 2 cells per condition from differential variability testing.

Data preparation

We employed a range of different datasets to test the proposed methodology. These
datasets were selected to cover different experimental techniques (with and without unique
molecular identifiers, UMI) and to encompass a variety of cell populations: CD4+ T cells
(Martinez-Jimenez et al., 2017), microglia cells and CA1 pyramidal neurons (Zeisel et al.,
2015), cells from the differentiating Dictyostelium (Antolović et al., 2017) and an exper-
imental control to study technical noise (Grün et al., 2014). In all cases, the analysis is
based on raw data obtained from publicly available links. The gene and cell filter quality
control criteria applied to each dataset are described in Supplementary Note ?? and
key features of each dataset can be found in Table S1.

Software availability

Software (R) is freely available at github.com/catavallejos/BASiCS/tree/Devel and will be
released as part of Bioconductor 3.7.

R scripts for data preparation and analysis are available at
github.com/MarioniLab/RegressionBASiCS2017.
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