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Abstract (150 non-technical)

There are considerable gaps in our understanding of the relationship between human

brain activity measured at different temporal and spatial scales by intracranial

electroencephalography and fMRI. By comparing individual features and summary

descriptions of intracranial EEG activity we determined which best predict fMRI

changes in the sensorimotor cortex in two brain states: at rest and during motor

performance. We also then examine the specificity of this relationship to spatial

colocalisation of the two signals.

We acquired electrocorticography and fMRI simultaneously (ECoG-fMRI) in the

sensorimotor cortex of 3 patients with epilepsy. During motor activity, high gamma

power was the only frequency band where the electrophysiological response was co-

localised with fMRI measures across all subjects. The best model of fMRI changes

was its principal components, a parsimonious description of the entire ECoG

spectrogram. This model performed much better than a model based on the classical

frequency bands both during task and rest periods or models derived on a summary

of cross spectral changes (e.g. ‘root mean squared EEG frequency’ ). This suggests

that the region specific fMRI signal is reflected in spatially and spectrally distributed

EEG activity.
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INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) has emerged as the pre-eminent

neuroimaging modality for studying functional segregation - and increasingly

integration (1) – reflecting its capacity to map distributed hemodynamic (blood

oxygen level dependent or ‘BOLD’ signal) changes at the scale of millimetres over

the entire human brain. Although BOLD signal changes are considered a marker of

underlying neuronal activity, the neuronal basis of the fMRI signal remains the

subject of intense investigation. This is, largely because of its importance for

understanding, modelling and inferring underlying brain processes (2, 3). Animal

studies have shown that BOLD signal changes are most closely related to local field

potentials in the high gamma-band range (4) and reflect input and intra-cortical

processing (3). However, there are discrepancies regarding which frequency band

(3-5) or combination of frequency bands (6-8) is the best correlate of the BOLD

signal, which could be task, species or brain system dependent (9). There is further

uncertainty about how BOLD responses relate to electrophysiological activity

occurring at different frequencies, with both BOLD decreases and increases (relative

to a task or state baseline) reported (10, 11). Previous studies have largely focused

on particular frequencies or classical EEG frequency bands to predict BOLD

changes, however, state-related EEG changes are often cross-spectral (12, 13).

There have been reports of BOLD changes being well represented by cross-spectral

metrics of overall EEG signal change such as the ‘root mean square frequency’ (13),

however, these models have not been tested in data with a wide spectral range or in

different states such as during rest.

Furthermore, the spatial aspect of this relationship is relatively neglected. For

example, fluctuations in oscillatory activity, which may be related to information

transfer and network control (14, 15), recorded in one location, could index synaptic

and metabolic changes in a remote region. Additionally, the spatial extent of

electrophysiological activity (e.g. motor activity and motor inhibition) is likely to be

distributed over several cortical areas (10, 16).

Intracranial EEG recordings are performed for localisation purpose in some medically

refractory patients with focal epilepsy who are candidates for epilepsy surgery;

intracerebral depth electrodes that penetrate the brain (so-called ‘depth EEG’ or

‘stereo-EEG’: SEEG), provide exquisitely localised data, while subdural grid

electrodes placed on the cortex (ECoG) capture activity over larger cortical regions.

Importantly, these recordings do not attenuate high-frequency activity, unlike scalp

EEG which suffers from inherent spatial-temporal filtering and muscle artefacts.

While spatial sampling is limited by clinical considerations, icEEG has greater
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sensitivity and spatial specificity in relation to electrophysiological activity, compared

to its scalp-based counterparts (17, 18). Finally, there is also more limited evidence

of coupling between BOLD and electrophysiology in the resting state (19-21).

In this study, we used simultaneous ECoG-fMRI acquired in three patients with

epilepsy during invasive pre-surgical investigations. ECoG coverage of the

sensorimotor cortex provided a unique opportunity to explore the coupling between

electrophysiology and fMRI, with exquisite spatial precision and greater spectral

range than available from scalp recordings, while accounting for spontaneous activity

and variability both during task and rest conditions. Using these data, we were able

to characterise the relationship between EEG activity and fMRI signal changes within

the sensorimotor cortex during a motor task and contrast it with the equivalent

coupling in the resting state. We aimed to determine: 1) the best model of BOLD

changes in particular comparing frequency specific and cross-spectral EEG models

of fMRI; 2) if the best model was state dependant and 3) characterise the sensitivity

of this relationship to the colocalisation between the EEG and fMRI signals.

RESULTS

Frequency-specific ECoG-fMRI correlation during a motor task vs. resting state

We sought to characterise the coupling between the fMRI signal in the hand

sensorimotor region and spatially distributed ECoG activity as a function of frequency

for two brain states: rest and motor task. This was achieved by calculating the

correlation over time between the fMRI signal averaged over the task-activated hand

sensorimotor region and the fluctuations in ECoG power as a function of frequency

and ECoG electrode contact location, after convolution with a hemodynamic

response function (HRF) (22) (fig. 1):

Figure 1. Analysis overview
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The process of comparing fMRI to ECoG data is shown with ECoG data from the

post-central ECoG (contact #22, subject #1) transformed into time-frequency space

before being convolved with the HRF. This yields a spectrally specific model of the

fMRI changes (e.g. black line at the bottom) for correlation (or model comparison)

with the fMRI signal in the hand sensorimotor region (red line at bottom; average

from task activated region, p<0.05 FWE corrected). This was the fMRI region used

throughout due to the strong evidence that it is commonly active both during rest and

task (23). The correlation between ECoG power at 19Hz and fMRI signal during the

task is shown to be strong and negative. This correlation analysis was repeated for

each frequency during the task and rest to establish spectral specificity (see fig 2a-c)

and then for each electrode contact to establish spatial specificity (see fig. 3 and 4).

First, we identified the electrode exhibiting the strongest correlation for each subject.

The strongest correlation was always found at an electrode located either directly

above hand primary motor cortex or immediately posterior to the central sulcus (fig.

2a-c). Note that due to the spatial relationship between the ECoG grid at the surface

and the cortical folding, broadly, this contact was always overlying motor cortex.

During the motor task, the maximum positive correlation as a function of frequency

was found in the high gamma band for all three subjects (91Hz for subject #1 and

69Hz for subjects #2 and #3, fig. 2a-c respectively, black) and the strongest negative

correlation was found in the beta band (17Hz for subject #1, 15Hz for subject #2 and

29Hz for subject #3). In the resting state, the profile of the coupling – as a function of

frequency – was similar but the correlation was weaker and more variable between

subjects (fig. 2a-c, red). The most distinctive feature of the coupling profile during rest

was a significant negative correlation in the low beta range (<20Hz).
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a.

b.
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c.

Figure 2. Frequency-specific sensorimotor cortex correlations between ECoG

and fMRI during task and rest

For each subject 1-3 (figures a-c) the fMRI signal from the fMRI task defined hand

motor area was correlated with the co-localised ECoG data from a single electrode

contact. The location of the electrode contact used is highlighted by a yellow circle on

a reconstruction of the individuals cortical surface and ECoG contact locations a

photo is also provided where available (subjects #1 and #3). Stars indicate significant

correlation p<0.001 which corresponds to p<0.05 corrected for multiple comparisons,

circles non-significant correlation values. Black represents the correlation during the

task and red points correlation during rest.
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Figure 3. Spatial pattern of correlations between ECoG and fMRI during finger

tapping

In a-c the correlation for each subject was mapped spatially over the cortex for the

significant positive peak in correlation (gamma frequency range, see figures 2a-c)

and negative peak in correlation (beta frequency range, see figures 2d-f).

The dotted line represents the position of the central sulcus and the numbers

correspond to the electrodes numbering system (see table 2); * indicates significant

correlation p<0.001 uncorrected.

Second, we investigated the coupling’s spatial dimension, by mapping the fMRI-

ECoG correlation across the ECoG grid. During the task (fig. 3) a region of very

strong positive correlation at high gamma band frequencies was revealed at three

post-central contacts located within 5mm of the task-activated region (fig. 3a-c). In

the beta range a strong negative correlation was seen over a much wider area of

cortex including cortex that was more distant from the task-activated region in the

pre- and post-central cortex (fig. 3d-f). During rest, the main feature was a significant

(but weaker than during the task) negative correlation at frequencies in the alpha-

beta range in all three subjects (fig. 4). During the motor task in the beta band the

region of negative correlation extended over a wide cortical area, extending beyond

the primary motor cortex.
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Figure 4. Spatial pattern of correlations between ECoG and fMRI during rest

In a-c the correlation for each subject was mapped spatially over the cortex for the

significant negative peak in correlation (beta frequency range). Note positive

correlations in the gamma range were not in general significant at rest and so were

not spatially mapped.

Comparison of frequency specific and cross-spectral EEG models of fMRI

We aimed to determine the best EEG-based model of fMRI fluctuations, at rest and

during the task. We compared a family of models for comparison, grouped as follows:

firstly, single- versus multiple-predictor models to determine if the fMRI could be best

modelled by a single EEG feature or was best modelled by a more complex

representation. Secondly we compared models based on classical EEG frequency

bands and compared them to cross-spectral EEG measures.

The individual classical frequency band-based fMRI predictors were beta, and high

gamma power based on previous observations (7). Two multiple-predictor models

were designed to summarise the entire spectrogram: first, a previously used model

comprising of the power in each of the classical frequency bands (delta, theta, alpha,

beta, low gamma and high gamma) (6); second, cross-spectral variation obtained by

principal component analysis of spectrogram (the components explaining 90% of the

EEG variance were used in the model, resulting in 10-18 regressors). All of these
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EEG predictors were convolved by the haemodynamic response function. Five cross-

spectral summary metrics were designed to embody alternative aspects of the EEG

spectrogram as a single predictor of BOLD chnages. These consist of three spectral

first order moments (‘means’): the root mean squared frequency (so-called ‘Kilner

heuristic’) (‘qRMSF’) (13), a modified version of the latter that amplifies the influence of

the dominant frequency (‘qMSF’’), the spectrogram centre of mass (ICofM); and two

spectral second order moments: about its mean, and about 40Hz (I40Hz) based on

the point of inflection for the correlation between fMRI signal and EEG in figure 2.).

See the Appendix for definitions and the Supplementary Material section for

simulations illustrating the cross-spectral single predictor characteristics.

Table 1 Model evaluation

Model evidence is shown for each model and subject relative to a ‘null model’

containing only nuisance regressors (6 realignment parameters and a high pass

cosine filter). A value of 3 is considered strong evidence (equivalent to p<0.05), we

considered the results to be significant across individuals when the sum was >9 and

each subject individually had a positive model evidence. These values are shown in

bold.

#1 #2 #3 sum

qmsf' 1 0-100 48.3 15.4 1.5 65.2

qrmsf 1 0-100 15.2 -0.4 3.3 18.1

CofM 1 0-100 -1.5 -7.2 12.5 3.8

ICofM 1 0-100 1.0 -3.6 -10.6 -13.2

I40Hz 1 0-100 1.6 -20.2 -11.1 -29.6

PCA 10-18 0-100 35.1 23.2 18.3 76.5

beta 1 13-31 10.8 16.1 12.7 39.6

gammah 1 53-99 39.0 26.9 12.7 78.6

6-band 6 0-100 -46.4 -49.0 -57.8 -153.2

qmsf' 1 0-100 -5.8 -5.8 40.7 29.1

qrmsf 1 0-100 -5.7 0.6 19.8 14.7

CofM 1 0-100 -5.1 -6.6 -4.7 -16.4

ICofM 1 0-100 -7.8 -14.9 -6.5 -29.2

I40Hz 1 0-100 -7.7 -19.1 19.1 -7.7

PCA 10-18 0-100 1.2 7.9 81.6 90.6

beta 1 13-31 -5.9 6.2 55.3 55.6

gammah 1 53-99 -7.3 4.0 -15.0 -18.3

6-band 6 0-100 -180.0 -73.6 -101.6 -355.1

multiple predictor model

cross spectral model

Rest

Motor task

Model # Predictors

Frequency

Range
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These comparisons were performed for the ECoG channel showing the highest

correlation in the previous analysis (which in all subjects was within 5mm of the task

fMRI activation) and across all ECoG grid channels (figure 5) using empirical

Bayesian model comparison (24).

Motor task

First, we wanted to determine the best EEG-derived predictor of BOLD in the primary

sensorimotor hand area during the motor (finger-tap) task, for the ECoG channel

near (<5mm Euclidian distance) to the fMRI activation in the primary sensorimotor

cortex. We compared the log of the ratio of model evidences of each model to a

model containing only nuisance effects (24) High gamma power was the best single-

predictor electrophysiological measure that best predicted fMRI changes during the

motor task. The PCA model performed similarly well, despite its increased complexity

(which is strongly penalised by the model comparison method used) and was

therefore both the best cross-spectral and multiple-predictor model.

We note that the multiple-predictor model based on classical frequency bands

performed poorly compared to the other models, in particular compared to the PCA

model. This suggests that averaging within classical frequency bands destroyed

significant predictive information.

Second, we examined the spatial distribution of model performance. The spatial

maps of the log evidence for the best performing models in each category qMSF’, high

beta- or gamma-band and PCA are shown in figure 5. The high gamma band and

qMSF’ models are good predictors only for contacts that are highly co-localised,

whereas the PCA model performs well from nearly all electrode contacts including in

distal (hierarchically higher) brain areas. The beta band predictor was also a good

model of BOLD changes over a wide region of cortex. This is consistent with the

wider region of cortical inhibition during ipsilateral finger tapping. Taken together, our

results strongly suggest that there is an electrographic representation of the task over

a much wider region of cortex than that which shows strong fMRI changes – and that

this representation is distributed in a spatially-structured way over frequencies.
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Figure 5. Spatial performance of different BOLD predictor models

In each plot the model evidence for a particular model and subject is plotted across

the cortical grid. This was performed for the task (left hand side 4x3 panels) and rest

(right hand side 4x3 panel). Each row represents a different model, dark red means

strong evidence for the model and blue colours that the model is less predictive than

the null (noise only) model.

Resting state

At rest, the pattern was more variable between subjects and model evidence lower

across the board (Table 1). The PCA model performed best, and was the only metric

to be better than the null model in all subjects. The best cross-spectral model single

predictor model was the qMSF’ and the best individual frequency band model was beta

band power. In patient #1 although the PCA model was the best, model evidence

was low. This may be due to the ‘irritative zone’ (generating interictal epileptic activity

between seizures) overlapping with the primary sensorimotor region and disrupting

normal ongoing resting-state activity. In the remaining subjects, there was strong

evidence for the beta-band and PCA models explaining the BOLD signal fluctuations

from the fMRI defined sensorimotor cortex. The spatial distribution of model

performance at rest (see figure 5) showed that a PCA model performed well over the

primary sensorimotor cortex in all subjects, as did beta frequency band power. In
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contrast to the task data, high-gamma power was not a good BOLD predictor most

likely due to its relative absence in this state.

DISCUSSION

We investigated the coupling between sensorimotor BOLD and electrophysiological

signal variations in humans by mapping the correlation between the average fMRI

signal from the hand sensorimotor region and frequency-specific ECoG signals. To

do this, we used unique recordings of simultaneous electrophysiological signals on

the surface of the human brain (ECoG) and whole-brain fMRI. In particular, the

capability to record high-gamma activity over the motor cortex and fMRI together in

humans – enabled us to study the coupling between electrophysiological and

hemodynamic fMRI signals as a function of brain state and localization. The

intracranial EEG signal has been shown to be of high fidelity and able to record high

frequency activity (25).

Local coupling

In summary, we found task-related BOLD to reflect mainly high gamma-frequency

power fluctuations in the local vicinity of fMRI activated region. In contrast, at rest,

beta power in spatially distributed contacts best predicted (inversely) BOLD signal

changes. The best BOLD predictor based on a single cross-spectral metric was qMSF’

which models fMRI changes as shifts in the mean of the square of the spectral power

such as those that can result from power fluctuations at specific frequencies (see the

Appendix for details of the cross-spectral metrics behaviour). This is consistent with

the notion of at least partially independent neuronal sources of EEG changes at

specific frequencies (26). There were distinct peaks in the alpha-beta range with

higher correlation (Fig 2), suggesting that there was a relationship between specific

oscillatory activity and fMRI signal changes. In contrast at high gamma frequencies

there was a high correlation across a broad frequency range. We found the PCA-

derived model to perform best across task and rest, and when considering the

electrophysiological activity recorded over the entire ECoG grid. This model retains

variance either from power changes at a given frequency or frequency shifts of any

nature – it is simply a parsimonious description of the entire spectrogram. Taken

together this may explain the PCA models large performance advantage over a

model containing classical frequency band which have previously been suggested to

be optimal (6).

Spatial coupling aspects
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We found task-related BOLD to reflect mainly high gamma-frequency broad band

power fluctuations in the vicinity of the BOLD response while beta band activity over

a much larger cortical area was inversely correlated with the fMRI activity.

At rest, beta power in spatially distributed contacts (inversely) predicted BOLD signal

changes but there was not the same focal positively collocated gamma activity. The

beta-band activity was prevalent during rest and during contralateral hand

movements, inversely correlating with fMRI over a wide area of sensorimotor cortex.

This confirms it as general feature when attending to, or suppressing movement (27).

In contrast gamma activity was highly localised in motor regions and only present

during motor activity. It is possible that the relatively low power of the gamma activity

made it more difficult to measure in the context of greater noise levels in ECoG

recordings during fMRI although we have previously performed evaluation of this

data(28).

Novelty of our electrophysiological BOLD predictors

Some of our findings confirm previous reports: for example, gamma-band activity

was strongly coupled to BOLD (4,5,29), but only during the task. Strong positive

correlations in the gamma-band were found in conjunction with an inverse

relationship at lower to mid frequency bands consistent with the idea that fMRI signal

increases reflect shifts in EEG power from low to high frequencies (13). These

findings (fig. 2a-c) are consistent with studies in the auditory cortex using non-

simultaneous fMRI (pre-operative) and ECoG in two patients with epilepsy (5).

In the resting state, the coupling was reduced, although it had a similar form to the

frequency dependence seen during the task (fig 2). Beta-band power was the most

predictive frequency specific predictor of BOLD changes during rest (and was

inversely correlated) potentially indexing the relative level of cortical inhibition,

consistent with a scalp EEG-fMRI study (7).

The best cross-spectral metric was qMSF’ which allowed for fMRI changes both from

shifts in power from low to high frequencies and increased power within a frequency

in the absence of other changes at specific frequencies (see supplementary material

for details of the cross-spectral metrics). This might be expected given that different

neuronal populations are thought to be responsible for generating these signals (26).

We also evaluated multiple predictor models based on classical frequency bands and

a cross-spectral model using PCA of the entire spectrogram. When considering all

brain states and whether or not the ECoG channel was close to the fMRI region, we

found the BOLD responses were best predicted by the PCA multi-spectral model.

Because the PCA model is substantially more complex, it must explain far more
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BOLD variance than any other model to retain the greatest model evidence on

marginal likelihood, given that our model comparison heavily penalises model

complexity. Crucially, and in contrast to previous studies in the non-human primate

visual cortex (6), our data does not support the multiple predictor model based on the

classical frequency-bands as the best predictor of BOLD. This may be explained by

the fact that our model comparison properly penalised model complexity – but could

also be due to differences between brain regions and species.

Previous studies have found some variability in the neurophysiological features that

best explain BOLD fMRI changes from both single spectral EEG frequencies, cross-

spectral models (8), or models containing several frequency bands (6). Crucially we

have demonstrated that the results of these analyses are sensitive both to the

subject’s state and to the spatial relationship between the two modalities.

Our results suggest that focal fMRI changes are accompanied by widespread EEG

changes. The EEG changes predicting fMRI were not limited to specific frequencies

or a close co-localisation; therefore a cross-spectral PCA model is likely to be

effective when looking at different brain regions that exhibit activity at different

frequencies. From the reverse perspective this suggests that fMRI changes can be

linked to a plethora of EEG changes, and cannot be in general interpreted as relating

to a single specific EEG feature. The exception to this rule was found during activity

of primary cortex, where there was a close correspondence between high gamma

power and fMRI, consistent with previous studies (3-5, 29). This is entirely consistent

with predictive modelling of resting state connectivity in EEG and fMRI, where EEG

connectivity in all frequency bands could predict fMRI to a greater extent than fMRI

could predict EEG based connectivity (30).

The ability of ECoG-fMRI to demonstrate the link between fMRI fluctuations and

(oscillatory) neural activity should help refine biophysical models, particularly in

accounting for emerging properties of neuronal populations (e.g. ref (31)) and for

subsequent application in pathology (32). More generally, the characterisation of the

coupling shown here, in different brain states, represents vital information for the

interpretation of fMRI responses in terms of the underlying processing (1). For

example, it can be crucial for informing and validating efforts to model the underlying

distributed brain responses such as the effective connectivity between neuronal

populations (1). There is increasing evidence of cortical layer specific spectral

features of the EEG signal (26). This would provide a biophysical explanation of the

potential independent contributions to BOLD changes (7). The strong predictive
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performance of the PCA model suggests that there are widespread cortical EEG

changes that reflect focal BOLD signal changes and this complexity, if characterised

could provide important new information, and avoid the misinterpretation of

neurophysiological and fMRI comparisons.

Epilepsy and ECoG-fMRI: feature for study and potential confound

The patients studied suffer from epilepsy so that inferring behaviour in the healthy

population requires some caution. However, electrode placement strategies are

designed to test contrasting localisation hypotheses (devised following the results of

non-invasive tests) and frequently include electrodes placed within or over regions

presumed to be unaffected to map eloquent cortex. Intracranial EEG recordings in

patients with epilepsy represent a unique opportunity to access a wide range of brain

regions for study under conditions involving relatively normal physiology (e.g. ref (5)).

The ECoG is exquisitely sensitive to local epileptic electrophysiological features,

which should enable the effects of epilepsy to be accurately modelled and removed

from studies aiming to make inferences about ‘normal’ brain function. This also

provides an opportunity to map and understand fMRI changes associated with

epileptiform events, including high frequency oscillations (33,34) with unprecedented

sensitivity, because we have demonstrated the ability to utilise high frequency ECoG

data obtained with simultaneous fMRI.
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Methods

Three patients with refractory focal epilepsy were studied following a comprehensive

safety assessment, approval from our local ethics committee (Joint UCL/UCLH), and

written informed consent from the participants. Each patient underwent a tailored

ECoG implantation (Table 2) based on the hypothesis generated from -long-term

scalp video-EEG recording and other clinical data.

A carefully devised experimental protocol was followed to ensure patient safety,

based on testing of the exact experimental configuration used for scanning and a

large margin of safety to account for possible differences between in-vitro

experiments and in-vivo studies (35-37). Following completion of the clinical ECoG

recordings, cables connecting the electrodes to the amplifiers were replaced by

customized 90 cm cables for simultaneous ECoG-fMRI recording, bundled, rerouted

to the vertex of the head, re-bandaged and laid out precisely along the scanners

central z-axis (37). All implanted electrodes were recorded from when amplifier

capacity allowed, otherwise, targeted electrodes were selected (Table 2).

Data acquisition

We performed MRI with a 1.5T Siemens TIM Avanto scanner (Siemens, Erlangen,

Germany) with a head transmit-receive coil, low SAR scans (≤0.4W/Kg head 

average), exact electrode cable placement along the scanner and RF coils’ Z-axis

running towards the head end of the(37). The following scans were performed 1)

localiser, 2) FLASH T1-volume, TR / TE / flip angle = 150 ms / 4.49 ms / 25°, 3) 10

minute gradient echo EPI (TR 3 s/TE 40 ms/flip angle 90°, 38 × 2.5 mm slices, 0.5

mm gap, 3 × 3mm in-plane resolution) in the resting state where the patients were

instructed to lie still with their eyes closed 4) 10 minute gradient echo EPI where a

visually cued opposing finger-to-thumb task was performed for 300 s with the same

EPI parameters as above with 30 s blocks of left vs. right hand. In all subjects

ECoG signals were recorded using an MR-compatible amplifier system (128

channels) (Brain Products, Munich, Germany) during fMRI acquisitions. The EEG

recording system sampling at 5000 Hz was synchronized to the scanner's 20 kHz

gradient clock to allow direct correlation over time. The system was located at the

head end of the scanner and ECG was recorded using a 16 bipolar channel ExG MR

compatible system located at the patient’s feet. Carbon fibre leads were used for the

ECG recording in addition to spatial separation to prevent potential interactions

between the intracranial electrodes and leads with the ECG; both were recorded

using Brain Recorder (Brain Products, Gilching, Germany). Recordings sampled at

5000Hz with subsequent filtering and down sampling to 250Hz.
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Table 2: Subject and ECoG recording information.

In red are the electrodes recording the seizure onset zone (we did not record those

from patient #3 during simultaneous ECoG-fMRI); in light blue are electrodes from
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which we recorded ECoG-fMRI in white (in addition to red electrode in patient #3) are

electrodes from which we did not record ECoG-fMRI.

Data processing

Scanning-related artefacts on EEG were removed using the Brain Analyser V1.3

(Brain Products, Munich, Germany) implementation of the template subtraction and

filtering algorithm (38) and data was referenced to the average.

All EPI images were realigned to the first image and spatially smoothed (FWHM

8mm). The presence of significant fMRI changes correlated with the effect of interest

(see below) was assessed voxel by voxel over the whole field of view using SPM

software (www.fil.ion.ucl.ac.uk/spm) in Matlab (www.mathworks.com).

For the five-minute finger tap task, a standard block design was used in a general

linear model – with motion modelled as the six realignment parameters and a voxel-

wise statistical threshold of p<0.05 family wise error corrected for multiple

comparisons across voxels was applied to the ensuing SPM of t statistics.

The position of each electrode contact was determined on a CT scan (obtained for

clinical purposes) co-registered to the space of the EPI data. The distance from each

electrode contact to a cluster of fMRI activation was calculated as the minimum

Cartesian distance over all voxels in the cluster.

Spectral analyses were performed for each electrode contact on the gradient artefact

corrected ECoG data using a Morlet wavelet transform (39) as implemented in SPM8

(www.fil.ion.ucl.ac.uk/spm) with a wavelet factor value of 7, to obtain time-frequency

data for each electrode at frequencies 1,3,5.. 99 Hz, giving time-frequency

spectrograms at 2Hz spectral sampling.

The primary hand sensorimotor region was defined as the fMRI task activated region.

The realigned (but not spatially smoothed) data from this region was extracted and

averaged before having first order drifts in fMRI signal removed. The time-frequency

signals described above at frequencies 1, 3, 5… 99Hz were convolved with the

standard ‘canonical’ HRF in SPM before being re-sampled at the time corresponding

to the start of each scan. Local correlations were calculated between each ECoG-

frequency model and the measured fMRI response from the hand sensorimotor

region. This was performed for data obtained both during the task and periods of rest

(as described above). A significance threshold of p<0.001 was used, corresponding

to a level of p<0.05 Bonferroni corrected for multiple comparisons across

frequencies. This represents a very conservative threshold because the EEG has

significant correlations over frequencies (whereas Bonferroni correction assumes

independence between each frequency). Given that the data is also spatially smooth
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(spatially non-independent) (40) and the initial threshold is very conservative we did

not correct further for multiple comparisons across electrode contacts.

For the model comparison for each channel EEG, the time-frequency data described

above was 1) averaged based on frequency-bands (delta: 1, 3 Hz; theta: 5, 7 Hz;

alpha: 9, 11 Hz; beta: 13, 15, …31; gamma Low: 33, 35, …51 Hz; gamma high: 53,

55 …99Hz ) before being convolved with the canonical hemodynamic response

function (HRF) and re-sampled at the start of each scan volume (3s temporal

resolution).

Models were built with individual spectral band regressors (single predictors) and the

power in all of the six chosen frequency-bands (multiple predictor model). Motion was

modelled as the 6 realignment parameters and slow temporal drifts were modelled

using a cosine filter or order 1.

We calculated each of the family of cross-spectral single predictor models described

in the Appendix and compared them to the models based on classical frequency

bands described above. Finally, we used created a multiple predictor cross-spectral

model using a parsimonious data driven model of the complete spectrogram by

performing a Principal Component Analysis (PCA) and taking the components that

described >90% of the variance. Typically this yielded the most complex model with

10-18 repressors giving an indication of the rich spectral information content of the

intracranial EEG data.

Model comparison

Bayesian model comparison (as implemented in spm_PEB.m, spm8 (24)) was used

to compare the different EEG-derived models ability to predict the BOLD signal

changes. The model evidence (log evidence) for each of the EEG-derived models

described above was calculated and the relative evidence compared to the null

model (containing motion and slow temporal drifts). In this context a value of 3 is

equivalent to a 5/100, and 20 to 1/1000 of the model being better by chance (i.e.

equivalent to a p-value of 0.05 and 0.001 respectively in classical statistics). It should

be noted that the models are penalised for complexity and therefore the evidence

scores the model that explains the most variance given the complexity; therefore

allowing for a conservative comparison of models with increased complexity.
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Appendix

Cross-spectral single predictors of BOLD: introduction and theory

In this section we set out to derive and test a family of metrics inspired by the

previously proposed heuristic of Kilner et al (13); these can be categorised as first

and second moment measures of the ECoG spectrum.

The Kilner heuristic attempts to capture the basic assumption that BOLD reflects the

position of the ‘root mean squared EEG frequency’ (RMSF):
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Where f are the frequencies, nf the spectrum’s upper bound and ෨ܲ is the spectral

power of the EEG time series normalised by the total spectral power (at each time

point).

This metric was found to be a reasonable explanatory of the BOLD response in a

combined scalp EEG-fMRI study (8) albeit over a lower frequency range (1-30Hz).

Due to this normalisation by the total power at each time point an isolated change in

power at a given frequency, if independent of other spectral changes, will either

cause a positive or negative change in the qRMSF metric depending on its frequency

relative to the spectral centre of mass. Observations regarding the importance of

both synaptic and spiking activity (34), and our experience of intracranial EEG data

led us to hypothesise that the behaviour of this metric might not account for these

plausible spectral changes.

We therefore developed a family of related metrics that embody a range of possible

BOLD-spectrum behaviours. Firstly, we modified the first moment equation A1 to

increase the influence of the dominant frequency as follows:

),(ˆ)(
1

2 tfPftq
fn

f
FMS 



  (A3)

where P̂ is the power at each time point normalised by the mean power at each

frequency (across all time windows) and the total power in each spectrum (at each

time window).
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In addition, we calculated the first moment of the frequency (spectral mean) and two

second moments, firstly about the spectral mean, and secondly about 40Hz (based

on our observations of BOLD correlations to individual frequencies fig. 2a-c).
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Supplementary Material

Simulation of ‘heuristic’ measures: methods

To better characterise and illustrate the behaviour of the metrics in the Appendix we

performed simulations of different patterns of spectral fluctuations. Discrete spectra

were created with 1024 points within a range of 1-129Hz. The power at each

frequency was determined by the addition of a 1/f distribution and two Gaussian

peaks were added to this spectrum at a ‘low’ 10 Hz and ‘high’ 60 Hz frequency with

full width at half maximum of 4Hz. In order to simulate dynamic processes, we first

increased the amplitude of the power at these frequencies up to a 100% of the power

at that frequency in the 1/f spectrum (see figure S1). Secondly, each peak was

shifted in frequency upwards in steps of ~0.1Hz from 0-8Hz. The expected BOLD

response was then determined using the range of ‘heuristic’ measures derived in the

Appendix.

Results

The simulated spectra containing changes in peak amplitude are illustrated in figure

S1. The simulated spectra containing changes in peak frequency are illustrated in

figure S2. The corresponding predicted BOLD changes generated by the different

‘heuristic’ measures are shown in figure S3. For changes in peak amplitude (and

therefore power) at a given frequency (top row of fig. S3), the qRMSF model predicts

BOLD increases associated with increased power at high frequencies, and

decreases with increased low frequency power. This is in contrast the qMSF’, which
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predicts BOLD increases with either increased low or high frequency power, although

the predicted BOLD increase is greater at higher frequencies. The CofM metric is

similar to the qRMSF metric in its behaviour, with the distinction that the ICofM predicts

an equal change in BOLD for the same percentage change at 10Hz or 60Hz. The

I40Hz metric predicts BOLD increases with increased power at 10 or 60Hz, with a

greater effect at 10Hz than 60Hz. For the heuristic metric qRMSF (13) frequency shifts

in peaks at low and high frequencies predict a BOLD increase, with a greater effect

at lower frequencies. The qMSF’ metric similarly shows a BOLD increase for a shift to

higher frequencies of either a low or high frequency peak with a greater effect at high

frequency.

Figure S1 Simulated spectra varying peak amplitude

Spectra were simulated as a 1/f spectrum with two peaks at 10 and 60 Hz. In each

spectra the amplitude was altered (a). The variability in the total power for each

simulated spectrum is shown (b). The average spectrum is calculated (c). The effect

of normalising by the total power is shown in (d) and normalising by the average

power at each frequency (e).
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Figure S2 Simulated spectra varying peak frequency

Spectra were simulated as a 1/f spectrum with two peaks at 10 and 60 Hz. In each

spectra the peak frequency was altered (a). The variability in the total power for each

simulated spectrum is shown (b). The average spectrum is calculated (c). The effect

of normalising by the total power is shown in (d) and normalising by the average

power at each frequency (e).

Figure S3 Simulated BOLD changes predict by different cross-spectral metrics
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The predicted responses by each of the cross spectral predictors defined in appendix

1 to the simulated spectral changes are shown. The top row shows the predicted

BOLD response to changes in peak amplitude (spectra in fig. S1) for each metric and

the bottom row the BOLD response predicted to changes in peak frequency (spectra

in fig. S2).
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