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Abstract

Objective: Cognitive impairment (CI) is common in children with epilepsy
and can have devastating effects on their quality of life and that of their family.
Early identification of CI is a priority to improve outcomes, but the current
gold standard of detection with psychometric assessment is resource intensive
and not always available. This paper proposes a novel technique of network
analysis using routine clinical electroencephalography (EEG) to help identify
CI in children with early-onset epilepsy (CWEOE) (0-5 y.o.).
Methods: We analyzed functional networks from routinely acquired EEGs of 51
newly diagnosed CWEOE from a prospective population-based study. Combi-
nations of connectivity metrics (e.g. phase-slope index (PSI)) with sub-network
analysis (e.g. cluster-span threshold (CST)) identified significant correlations
between network properties and cognition scores via rank correlation analy-
sis with Kendall’s τ . Predictive properties were investigated using a 5-fold
cross-validated K -Nearest Neighbor classification model with normal cognition,
mild/moderate CI and severe CI classes.
Results: Phase-dependent connectivity metrics had higher sensitivity to cogni-
tion scores, with sub-networks identifying significant functional network changes
over a broad range of spectral frequencies. Approximately 70.5% of all children
were appropriately classified as normal cognition, mild/moderate CI or severe
CI using CST network features. CST classification predicted CI classes 55%
better than chance, and reduced misclassification penalties by half.
Conclusions: CI in CWEOE can be detected with sensitivity at 85% (with re-
spect to identifying either mild/moderate or severe CI) and specificity of 84%,
by EEG network analysis.
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Significance: This study outlines a data-driven methodology for identifying
candidate biomarkers of CI in CWEOE from network features. Following addi-
tional replication, the proposed method and its use of routinely acquired EEG
forms an attractive proposition for supporting clinical assessment of CI.

Keywords: Network analysis, signal processing, EEG graph networks,
paediatric epilepsy, developmental impairment

Highlights

• EEG network analysis correlates with CI in preschool children
with epilepsy

• Classification reveals network features’ predictive potential for CI
identification

• Sensitivity to CI improves with dense networks and phase-based
connectivity measures

1

1. Introduction2

Epilepsy is a complex disease that can have devastating effects on quality of3

life [1]. Cognitive impairment (CI), which frequently and severely affects quality4

of life of children and their families, coexists in more than half of children with5

epilepsy [2, 3, 4, 5]. Timely identification of CI, particularly in children with6

early-onset epilepsy (CWEOE; epilepsy onset< 5 years of age) is critical because7

early-life interventions are likely to be more effective, it is the period in which8

childhood epilepsy is most common, and the most severe forms occur during this9

time [6, 7, 8]. An estimated 40% of CWEOE have CI [5]. The urgent need for10

emphasis on early recognition, novel interventions and improved public health11

strategies for primary and secondary prevention for CI in epilepsy is highlighted12

in calls to action by august bodies including the International League Against13

Epilepsy, The Institute of Medicine, and the World Health Organization [9, 10].14

Therefore, there is a need to understand the causes of CI and find reliable,15

affordable and non-invasive markers beyond current standard approaches.16

Identification of CI is especially difficult in CWEOE because the gold stan-17

dard of diagnosis by psychological assessments may not be readily available [11],18

it is resource intensive, and can be clinically challenging (e.g. introducing po-19

tential bias from repeated testing) [11]. Thus, reliable, affordable and rapid20

CI screening techniques in clinical care are sought after. Such techniques would21

help focus further medical investigations and resources onto a smaller subgroup,22

producing efficiency gains and cost savings. Graph network analysis of standard23

routine clinical EEG recordings is one such potential technique.24

Analysis of functional EEG networks offers a data-driven methodology for25

understanding diverse brain conditions through the lens of network (connec-26
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Figure 1: Flowchart of data processing chain for an individual child. ICOH = Imaginary part
of coherency, PSI = Phase-slope index, WPLI = Weighted phase-lag index, MST = Minimum
Spanning Tree, CST = Cluster-Span Threshold

tivity) properties [12, 13]. Functional networks examined as graphs are well-27

established, and provide advantages in understanding changes in connectivity28

across the brain, e.g. through exploiting properties like small-world topology,29

connected hubs and modularity [13]. Insights into epilepsy, including the sever-30

ity of cognitive disturbances, outcomes of epilepsy surgery, and disease duration31

have been found to correlate with the extent of changes in these functional net-32

works [14]. Recent work has also found network abnormalities can appear in33

both ictal and interictal states [14]. This supports that network can be distin-34

guished in resting-state EEG [14]. Therefore, functional graph analysis is well35

positioned as a potential tool to reveal insights into CI in CWEOE.36

The aim of this study was to identify a reliable EEG network marker which37

could help effectively screen for CI in CWEOE. Our hypothesis was two-fold.38

First, informative network abnormalities could be revealed in CWEOE using39

graph network analysis on routine clinical EEGs. Second, identified abnormali-40

ties could be integrated into a simple machine learning paradigm to demonstrate41

predictive capabilities with respect to CI. We aimed to utilize a data-driven,42

quantitative approach to identify potential network markers. Then, we could43

integrate their information into a simple classification pipeline, which could be44

readily implemented to support clinical decisions regarding CI. By investigating45

only routine EEG recordings, we hoped to demonstrate that minimal potential46

cost and effort would be required to adopt our proposed technique in a clinical47

setting.48

2. Methods49

The data processing pipeline for each child is summarized in Figure 1.50
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2.1. Dataset51

The details on study recruitment and assessments are reported elsewhere52

[15]. In summary, newly diagnosed CWEOE of mixed epilepsy types and aetiolo-53

gies were recruited as part of a prospective population-based study of neurode-54

velopment in CWEOE. Parents gave approval for use of the standard, resting-55

state, awake 10-20 EEG their child had as part of their routine clinical care. If a56

child had multiple EEGs, only the first EEG was used to avoid biasing results to-57

ward children with multiple recordings. Additionally, it allowed similar selection58

of resting-state recordings across all children, e.g. awake resting-state. As such,59

no EEG recordings of sleep were analysed in this work. All analyses were blinded60

to any treatment or seizure frequency information. Participants underwent cog-61

nitive assessment with age-appropriate standardized tools, e.g. Bayley Scales62

of Infant and Toddler Development- Third Edition (Bayley-III) and Wechsler63

Preschool and Primary Scale of Intelligence-Third Edition (WPPSI-III). Chil-64

dren who scored within ±1 standard deviation (SD) of the normative mean65

were defined as normal, −1 to −2 SD as having mild/moderate CI, and < −266

SD as having severe CI. The cognition scores from Bayley-III and WPPSI-III67

tests were converted into a normalized standard score measure. Clinical details68

were collected by members of the research team using a standardized proforma69

by direct interview of care-givers, medical records and, where possible, patients70

themselves when they attended for clinical and/or research study assessment.71

Table 1 provides the demographic and clinical features for the CWEOE72

which were included in this study. Given the broad anti-epileptic drug (AED)73

therapies and aetiologies present in Table 1, potential interactions from AED74

load or specific aetiology were examined with respect to the designated CI classes75

(e.g. normal, mild/moderate, severe CI). Using a non-parametric version of the76

two-way ANOVA (Friedman’s test [16]) on data from Table 1, we revealed no77

significant interactions between any AED load or specific aetiology with respect78

to any CI classes. This in turn suggests that the results identified via network79

analysis are likely driven mainly by cognitive phenomena, as opposed to epileptic80

syndrome or AED load effects.81

A retrospective analysis was done on 32-channel, unipolar montage with82

average reference captured routine EEGs. EEGs were recorded at 20 scalp83

electrodes (FP1, FP2, FPz, F3, F4, F7, F8, Fz, C3, C4, Cz, P3, P4, Pz, T3,84

T4, T5, T6, 01, 02), eight auxiliary electrodes (AUX1-8), two grounding (A1,85

A2) and two ocular electrodes(PG1, PG2).86

2.2. Pre-processing87

EEG recordings were pre-processed in MATLAB using the Fieldtrip tool-88

box [17]. The EEG had a sampling rate of approximately 511 Hz. Recordings89

were re-referenced to a common average reference (CAR), and bandpass fil-90

tered between 0.5-45 Hz in Fieldtrip. The resting-state data was split into non-91

overlapping, two second long sub-trials; long enough to pick up any resting-state92

network activity, while still fitting at least one full period of the lowest included93

frequency.94
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Normal (n = 31) Mild/Moderate CI (n = 7) Severe CI (n = 13)
Age in months (SD) 36.18 (19.87)† 26.76 (17.06) 20.37 (18.56)†
Male:Female Ratio 20:11 6:1 6:7
Ethnicity

Asian 2 (6%) – 1 (8%)
Black – 1 (14%) –
White (U.K./European) 29 (94%) 6 (86%) 12 (92%)

Antiepileptic Drugs
None 3 (10%) 1 (14%) –
Monotherapy 26 (84%) 6 (86%) 9 (69%)
Polytherapy 2 (06%) – 4 (31%)

Focal Seizures 12 (39%) 3 (43%) 4 (31%)
Generalized Seizures 18 (58%) 2 (28.%) 9 (69%)
Generalized and Focal 1 (3%) 2 (28.5%) –
Epilepsy aetiology

Cryptogenic 3 (10%) 1 (14%) 5 (38%)
Idiopathic 24 (77%) 4 (57%) 1 (8%)
Symptomatic 3 (10%) 2 (29%) 7 (54%)
Unknown 1 (3%) – –

Cognitive z-score (SD) -0.05 (0.66) -1.41 (0.20) -2.9 (0.27)

Table 1: Demographic and clinical feature information of patients, grouped by CI classes of
normal, mild/moderate CI, and severe CI. Significant differences between groups with respect
to age are indicated by a † (Kruskal-Wallis with post-hoc Mann-Whitney U; H = 6.4697,
p < 0.05, with mean ranks of 30, 23.7143, and 17.6923 for Normal, Mild/Moderate CI and
Severe CI respectively.)

Prior to data processing, seizure activity in the EEGs were confirmed by95

clinicians. Whole trials which contained seizure activity were excluded from96

the analysis, rather than excluding only sections of trials with evident seizure97

activity. This helped guarantee that all network trials were derived from a98

minimum of two continuous seconds of seizure-free EEG. The small time window99

helped to balance removing large amounts of useful EEG data, while retaining100

enough data to characterize the frequencies present.101

Standard EEG artefacts were rejected using a 2-step approach with manual102

and automatic rejection. Manual artefact rejection first removed clear outliers103

in both trial and channel data based upon high variance values (var > 106).104

Muscle, jump and ocular artefacts were then automatically identified using strict105

rejection criteria relative to the Fieldtrip default suggested values [17] (Field-106

trip release range R2015-R2016b, z-value rejection level r = 0.4). All trials107

containing EEG artefacts were excluded from analysis. For subjects, we aver-108

aged across all trials at each frequency band, to help reduce potential bias and109

variance resulting from our selection of a shorter analysis window.110

A narrow band (2-Hz wide) approach was used in analysis of clean EEG111

data, similar to work done by Miskovic et al. [18]. Segmenting the frequency112

range into these narrow bands (e.g. 1-3 Hz, 3-5 Hz,...) provided a data-driven113

approach to interrogate networks across subjects. The a priori nature of the in-114

vestigation avoided attempts at equivocating the (likely heterogeneous) impact115

of epilepsy, development, medication etc. on each child’s spectral EEG compo-116

sition. While such narrow bands may eschew some physiological interpretations117
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by not adhering to classical frequency bands, the narrow bands promoted iden-118

tification of mainly robust, common network abnormalities across the heteroge-119

neous CWEOE population. If significant network abnormalities were identified120

in these narrow frequency bands (after correction for multiple comparisons, age121

and spurious correlations) then the identified results were likely a strong effect.122

2.3. Network Coupling Analysis123

The processed data was analyzed using functional EEG graph analysis, based124

on ‘functional links’ connecting any pair of EEG channels i and j, derived from125

the cross-spectrum of the data. Appendix A provides the detailed, formal def-126

initions for the cross-spectrum and the network analysis methods described127

below. A summary of these definitions are included here for clarity. In brief,128

this study selected several measures of dependencies in EEG recordings, cre-129

ated graph networks based on these measures and characterized the created130

networks to identify candidate biomarkers for classification and identification of131

CI in CWEOE.132

This study investigates three connectivity analysis methods building from133

the cross-spectrum viz: (1) the imaginary part of coherency (ICOH) [19], (2)134

phase-slope index (PSI) [20], and (3) weighted phase-lag index [21, 22].135

ICOH is a standard measure in functional network analysis [19]. ICOH is136

well documented, and has been shown to provide direct measures of true brain137

interactions from EEG while eliminating self-interaction and volume conduction138

effects [19]. A weakness of ICOH, however, is its dependence on phase-delays,139

resulting in identifying functional connections only at specific phase differences140

between signals, while completely failing for others [21, 22, 23].141

The PSI [20] was selected as a complementary alternative to ICOH for anal-142

ysis. In practice, the PSI examines causal relations (temporal order) between143

two sources for signals of interest, e.g. si and sj [20]. PSI exploits the phase144

differences between the sources to identify the ‘driving’ versus ‘receiving’ re-145

lationship between the sources [20]. Their average phase-slope differences are146

used to identify functional links [20]. Importantly, unlike ICOH, the PSI is147

equally sensitive to all phase differences from cross-spectral data [20]. However,148

the PSI equally weights contributions from all phase differences, meaning even149

small phasic perturbations are equal to the (defining) large perturbations.150

Therefore the weighted phase-lag index (WPLI) was included as a third com-151

parative measurement for analysis [21, 22]. The standard phase-lag index (PLI)152

[21] is a robust measure derived from the asymmetry of instantaneous phase153

differences between two signals, resulting in a measure which is less sensitive to154

volume conduction effects and independent of signal amplitudes [21]. The PLI155

ranges between 0 and 1, where PLI of zero indicates no coupling (or coupling156

with a specific phase difference; see [21] for details), while a PLI of 1 indicates157

perfect phase locking [21]. The PLI’s sensitivity to noise, however, is hindered158

as small perturbations can turn phase lags into leads and vice versa [22].159

A weighted version of the PLI was introduced (weighted PLI; WPLI) [22]160

to counter this effect. The WPLI adds proportional weighting based on the161
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imaginary component of the cross-spectrum [22]. The proportional weighting162

alleviates the noise sensitivity in PLI. The WPLI, like the PSI, helps capture163

potential phase-sensitive connections present in EEG networks from another164

perspective.165

2.4. Adjacency Matrices and Sub-Networks166

The estimated functional connectivity between channel pairs i and j com-167

prising the weighted functional network of a subject can be represented by an168

adjacency matrix. The functional connections found for the ICOH, PSI, and169

WPLI measures were therefore represented via adjacency matrices in the analy-170

sis below. A set of adjacency matrices for a representative normal and impaired171

cognition child in the range of 5-9 Hz are included in Apppendix B, Figures B.5172

and B.6, respectively.173

Methodological choices associated with constructing and comparing graphs174

from the adjacency matrix can introduce bias in the network analysis (see [24,175

25, 26] for details). Therefore, we used two methods for defining unbiased sub-176

networks of the functional EEG for comparison and analysis: the Minimum177

Spanning Tree (MST) [24] and the Cluster-Span Threshold (CST) [27].178

The MST is an acyclic, sub-network graph which connects all nodes (elec-179

trodes) of a graph while minimizing link weights (connectivity strength) based180

on applying Kruskal’s algorithm on the weighted network [24, 28]. In brief, the181

algorithm orders the link weights in a descending manner (i.e. from strongest182

connection to weakest), constructing the MST by starting with the largest link183

weight and adding the next largest link weight until all nodes, N, are connected184

in an acyclic sub-network with a fixed density of M = N − 1 [24]. After con-185

struction of the sub-network, all weights are assigned a value of one [24]. In this186

manner, the MST is able to efficiently capture a majority of essential properties187

underlying a complex network in an unbiased sub-network [24].188

Exploiting the properties of the MST is a standard technique common in189

recent publications exploring brain networks [24]. However, since the MST190

naturally leads to sparse networks in the data due to its acyclic nature, and that191

in some occasions more dense networks may be preferable, there is potentially192

real brain network information lost in the MST based EEG graph analysis [29].193

By contrast, the CST creates a similar sub-network, but balances the pro-194

portion of cyclic ‘clustering’ (connected) and acyclic ‘spanning’ (unconnected)195

structures within a graph (for details see [27]). This balance thus retains nat-196

urally occurring ’loops’ which can reflect dense networks without potential in-197

formation loss [29] while still producing an unbiased sub-network for analysis.198

Figure 2 illustrates a topographical example of EEG channels connected via199

MST and CST networks for a randomly selected child. Differences in sparsity200

between the acyclic MST and the cyclic CST sub-networks can readily be seen201

in Figure 2. Both the MST and CST are binary sub-networks, which have addi-202

tional advantages over weighted networks, e.g. the adjacency matrix [24, 27, 29].203

For each combination of sub-networks and connectivity definitions above204

(e.g. MST-ICOH, CST-ICOH, MST-PSI, etc.) four network metrics were in-205

vestigated for correlation to the cognition standard score measures. To help206
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MST CST

ICOH

PSI

WPLI

Figure 2: Illustrative examples of the MST and CST sub-network graphs of ICOH, PSI and
WPLI for a randomly selected child. EEG channels are displayed as nodes, with functional
connections displayed for each combination of sub-network and connectivity measure.

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2018. ; https://doi.org/10.1101/237172doi: bioRxiv preprint 

https://doi.org/10.1101/237172
http://creativecommons.org/licenses/by-nc-nd/4.0/


reduce potential selection bias, network metrics for analysis were agreed upon a207

priori. Metrics were chosen to account for distinct network properties (e.g. the208

shape of the network, the critical connection points in the network etc.) with209

(relatively) little inter-correlation. Due to the natural exclusion/inclusion of cy-210

cles, the network metrics differ for the MST and CST, respectively. However, all211

metrics across sub-networks were selected to be comparable regarding network212

properties. Pictorial examples of the selected network metrics, alongside short213

definitions, are outlined in Figure 3.214

2.5. Statistical Analysis215

Statistical analysis was done using Matlab 2015a. Correlation between in-216

dividual network metrics and the cognition standard score was measured using217

Kendall’s tau (τ) [30]. Kendall’s τ calculates the difference between concor-218

dant and discordant pairs[30, 31], and is ideal for describing ordinal or ranking219

properties, like the normalized cognition standard score. Its design is also rela-220

tively robust to false positive correlations from data outliers [30, 31], providing221

additional mitigation to spurious correlations in the results. Furthermore, as222

Kendall’s τ is a non-parametric hypothesis test it did not rely on any underly-223

ing assumptions about the distribution of the data. Therefore our correlation224

analysis was robust to any potential ceiling, floor or skewed distribution effects225

present in the reported cognition standard score measures.226

Correlation trends are reported both as uncorrected p < 0.05 values, and227

with multiple comparison (Bonferroni) corrections, similar in style to previous228

literature [32]. For each frequency bin (2-Hz wide) and network, we compared229

and corrected for the 4 separate graph measures using the Bonferroni technique230

(i.e. we set p = 0.05/4 = 0.0125 as the threshold for significance). Dependency231

was assumed across the small 2-Hz frequency bins, similar in principle to [32],232

and as such we do not include the frequency bins in the Bonferroni correction.233

Correlations which are found to be potentially significant under this assumption234

are indicated by the † symbol for Bonferroni corrections.235

2.6. Classification236

A multi-class classification scheme was devised using the Weka toolbox [33,237

34]. Class labels of normal, mild/moderate CI, and severe CI were applied.238

Primary feature selection included all correlations identified by the statistical239

analysis, thereby allowing potential interpretation of the retained network fea-240

tures. Then, a second feature selection phase using nested 5-fold cross-validation241

selected prominent features via bi-directional subspace evaluation [35]. Within242

this nested cross-validation, features identified as important in > 70% of the243

folds were selected for use in classification.244

Due to natural skew of the data (towards normalcy), and the context of245

the classification problem (e.g. misclassifying different classes has various im-246

plications), a cost-sensitive classifier was developed [36]. In order to properly247

develop such a classifier, an appropriate cost matrix needed to be identified.248
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3/9 = 1/3
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1

1

3

2

22

2 2

7

MST CST
Diameter: The longest 'shortest 

path' from any two nodes

Max Degree: The node with 

the largest number of connecting 

edges

Leaf Fraction: The fraction of 

the total nodes with degree = 1

Betweenness Centrality: 
Measures 'centrality' of nodes with 

respect to various shortest paths

Betweenness Centrality: 
Measures 'centrality' of nodes with 

respect to various shortest paths

Variance Degree: The 

variance of all degree values in a 

graph

Average Degree: The 

average degree of all graph nodes

Clustering Coe cient: 
Formed 'clustering' triangles out of 

all possible triangle clusters (max)

Figure 3: Illustration of all graph analysis metrics for the Minimum Spanning Tree (MST)
and Cluster-Span Threshold (CST) networks using simple example graphs. Nodes (dots)
represent EEG channel electrodes. Edges (lines) represent functional interactions between
EEG channels identified by a connectivity measure, e.g. ICOH/PSI/WPLI.
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Multi-class Classification Cost Matrix
CI-Predicted Class

Normal Mild/Mod. Severe

CI-True
Class

Normal 0 2.5 2.5
Mild/Mod. 5 0 1

Severe 5 1 0

Table 2: Weighted cost matrix for misclassification of cognitive impairment (CI) for normal
(±1 SD), mild/moderate (−1 to −2 SD) and severe (< −2 SD) classes. Rows represent true
class labels, with columns as the predicted classification labels.

Using guidelines outlined in literature [36], the cost matrix in Table 2 was de-249

veloped, with predicted classes on the rows and real classes on the columns.250

251

The defined matrix satisfies several key concerns in multi-class cost-matrix252

development [36]. The weights on misclassification were carefully selected to253

reflect probable clinical concerns in classification with guidance from paediatric254

neurologists (RC, JS). The cost for incorrectly classifying an impaired child255

as normal was twice as heavy compared to misclassifying a normal child into256

either impaired group, which was still significantly more punishing than cor-257

rectly identifying impairment and only misclassifying between mild/moderate258

or severe impairments. These weighted values prioritized correctly including as259

many ‘true positive’ CWEOE with CI, i.e. increasing sensitivity, followed by a260

secondary prioritization upon being able to discern the level of CI. These bound-261

aries provide a more clinically relevant classification context in the analysis.262

Using the selected features and developed cost-sensitive matrix, a nested263

5-fold cross-validation trained a simple K -Nearest Neighbour (KNN) classifier,264

with N = 3 neighbours and Euclidean distance to minimize the above costs.265

By demonstrating our proof-of-concept results with a simple classifier first, e.g.266

KNN, we aimed to highlight that network response found from our analysis267

pipeline was likely robust. A repeated ‘bagging’ (Boostrap Aggregation [37])268

approach was used to reduce variance in the classifier at a rate of 100 iter-269

ations/fold. Results were evaluated upon their overall classification accuracy270

and total penalty costs (e.g. sum of all mistakes based on the cost matrix).271

Random classification and naive classification (e.g. only choosing a single272

class for all subjects) were included for comparison. In this study, random clas-273

sification refers to classification of any ’true’ class label to a randomly selected274

’predicted’ class label. Based on the distribution of subjects into the classes, a275

‘chance’ level for each class is used to assign the ’predicted’ label at random.276

Naive classification (e.g. single-class classification), assumes that all subjects277

belong to only one class. Classification accuracy and misclassification penalties278

are then calculated based on the presumed (single) class assignment. This study279

looked at naive classification for each class label, and have reported comparisons280

to each possible naive classification.281
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3. Results282

Of 64 children enrolled into the parent study, 13 were excluded from the283

current study due to corrupted EEG data and inconsistent or incompatible EEG284

acquisition parameters. There were data available for analysis on 51 children285

(32:19 male-to-female ratio, mean age and SD of 30.85 ± 20.08 months). On286

average approximately 455 ± 325 two second trials were used for each child in287

the analysis, totalling 15.16± 11.87 minutes of resting-state EEG data for each288

child. Thirty-one children had normal cognition, 7 had mild/moderate CI, and289

13 had severe CI.290

3.1. Correlation Analysis291

Each combination of functional link analysis (ICOH/PSI/WPLI) and sub-292

network selection (MST/CST) techniques uncovered likely correlations between293

at least one network metric (outlined in Figure 3) and the cognition standard294

score measures. A summary of the significant correlations between the MST295

metrics and the standard scores are shown in Table 3. All MST correlations296

were in the medium to high frequency range, 9 − 31 Hz, with no significant297

results in lower frequencies. Activity above approximately 9 Hz is outside of the298

expected range for the delta, theta and alpha bands in young children [38, 39].299

Sets of contiguous frequency bands with significant correlations were found in300

the ICOH and PSI connectivity measures, and are reported together as a single301

frequency range. Overlapping correlations retained at significant levels after302

partial correlation correcting for age are also reported for the MST using a303

modified Kendall’s τ .304

Similarly, significant correlations between the CST metrics and the cogni-305

tion standard scores are shown in Table 4. Several significant CST metrics exist306

in the lower frequency range (< 9 Hz), indicating a potential sensitivity of the307

CST to lower frequencies. No sets of continuous frequency bands were discov-308

ered, but several sets were trending towards this phenomenon within ICOH.309

Multiple overlapping correlations remaining after partial correlation correction310

for age from the modified τ in the CST at lower frequencies indicate additional311

sensitivity.312

Both the MST and CST demonstrate high sensitivity in the phase-dependent313

measures (PSI, WPLI) compared to the standard ICOH.314

3.2. KNN Classification315

Based upon CST’s sensitivity, a preliminary classification scheme assessed316

the potential predictive qualities of the CST network metrics in identifying CI317

classes. The relative quality of the classifications are examined using classifica-318

tion accuracy and total ‘cost’ (i.e. penalty for misidentification) [36].319

The subset of CST metrics for classification, identified from significant cor-320

relations and chosen via cross-validated feature selection, included five network321

metrics across the three connectivity measures. For ICOH, the identified subset322

selected was the betweenness centrality at ranges 11-13 and 19-21 Hz along-323

side the clustering coefficient at a range of 15-17 Hz. The subset also included324
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MST analysis of cognition standard score measures
Network Type Network Measurement Frequency Range(s) (Hz) Correlation (τ̄ ± SD)

ICOH Diameter – –
ICOH Maximum Degree – –
ICOH Leaf Fraction – –
ICOH Betweenness Centrality 13-17 Hz −0.231± 0.001
PSI Diameter 9-19 Hz 0.239± 0.032†∗

PSI Maximum Degree 11-13 Hz −0.232± 0.000∗

PSI Maximum Degree 15-17 Hz −0.258± 0.000†∗

PSI Maximum Degree 21-23 Hz −0.219± 0.000
PSI Leaf Fraction 11-13 Hz −0.201± 0.000
PSI Leaf Fraction 15-19 Hz −0.246± 0.003
PSI Betweenness Centrality 9-13 Hz −0.218± 0.012∗

PSI Betweenness Centrality 17-19 Hz −0.259± 0.000†∗

WPLI Diameter – –
WPLI Maximum Degree 29-31 Hz −0.310± 0.000†∗

WPLI Leaf Fraction – –
WPLI Betweenness Centrality 23-25 Hz 0.223± 0.000

Table 3: Summary of Kendall’s τ correlation trends between various graph metrics and the
cognition standard scores using the Minimum Spanning Tree (MST). For all values |τ | was
between 0.201 and 0.310; mean = 0.239± 0.0278 and uncorrected p < 0.05. Significant values
across contiguous narrow-band frequencies have been grouped together for ease of interpreta-
tion.
† Significant with Bonferroni correction at the level of frequencies.
∗ Significant after partial correlation correction to age of subjects, via modified τ with uncor-
rected p < 0.05.

the PSI average degree at 13-15 Hz and the WPLI variance degree from 1-3325

Hz. These results indicate specifically which network metrics, from a machine-326

learning perspective, contributed the most information for building an accurate327

classification model. As such, the classifier was trained specifically, and only,328

using these 5 key metrics. An illustrative example of these 5 selected network329

metrics (e.g. features) are shown in Figure 4 as scatter plots. When training330

the classifier, these network features are used to identify the underlying patterns331

not readily observed, and are incorporated into guiding the machine learning332

algorithm.333

It bears repeating that Kendall’s τ is a non-parametric significance test,334

which means it does not rely on an underlying assumption of a specific type of335

distribution in the data. Therefore, Kendall’s τ correlation was robust to the336

apparent flooring effect seen in the severe CI class, as it utilizes concordant and337

discordant pairs. Therefore our choice of features from the statistical analysis338

remains unaffected.339

The resulting confusion matrix from the 5-fold cross-validated, cost-sensitive340

classification analysis is seen in Table 5, with key summary341

The overall classification accuracy was defined as the number of true label342

classes correctly predicted by the classifier, e.g. the true positive diagonal of343

Table 5. Presently, approximately 36 of the 51 children’s cognitive class (e.g.344

normal, mild/moderate CI, severe CI) were correctly predicted, giving a total345

accuracy of the classifier at 70.6%. Using Table 2, an overall ‘cost-penalty’ value346
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CST analysis of cognition standard score measures
Network Type Network Measurement Frequency Range(s) (Hz) Correlation (τ̄ ± SD)

ICOH Clustering Coefficient 15-17 Hz −0.290± 0.000†∗

ICOH Average Degree – –
ICOH Variance of Degree 13-15 Hz −0.200± 0.000
ICOH Variance of Degree 21-23 Hz −0.203± 0.000
ICOH Betweenness Centrality 11-13 Hz −0.273± 0.000†∗

ICOH Betweenness Centrality 15-17 Hz −0.241± 0.000
ICOH Betweenness Centrality 19-21 Hz −0.203± 0.000
PSI Clustering Coefficient – –
PSI Average Degree 13-15 Hz −0.210± 0.000
PSI Variance of Degree 15-17 Hz −0.277± 0.000†∗

PSI Variance of Degree 21-23 Hz −0.217± 0.000
PSI Betweenness Centrality 5-7 Hz 0.204± 0.000∗

PSI Betweenness Centrality 15-17 Hz −0.248± 0.000
WPLI Clustering Coefficient 1-3 Hz −0.236± 0.000∗

WPLI Clustering Coefficient 17-19 Hz 0.287± 0.000†∗

WPLI Average Degree – –
WPLI Variance of Degree 1-3 Hz −0.236± 0.000∗

WPLI Betweenness Centrality – –

Table 4: Summary of Kendall’s τ correlation trends between various graph metrics and the
cognition standard scores using the Cluster-Span Threshold (CST).For all values |τ | was be-
tween 0.201 and 0.290; mean = 0.237 ± 0.033, and uncorrected p < 0.05. Significant values
across contiguous narrow-band frequencies have been grouped together for ease of interpreta-
tion.
† Significant with Bonferroni correction at the level of frequencies.
∗ Significant after partial correlation correction to age of subjects, via modified τ with uncor-
rected p < 0.05.

Confusion Matrix from Classification Results
CI-Predicted Class

Normal Mild/Mod. Severe

CI-True
Class

Normal 26 2 3
Mild/Mod. 2 3 2

Severe 1 5 7

Table 5: Resulting confusion matrix from the 5-fold cross-validated, cost-sensitive classifica-
tion scheme for all n = 51 children based on costs in Table 2. Rows represent true class labels,
with columns as the predicted labels from the classification. Bold values along the diagonal
show true positive classification results, where actual and predicted cognitive classes were ac-
curately identified. Italicized values indicate children predicted to have CI, i.e. mild/moderate
or severe class, by the classification scheme.
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Figure 4: Scatter plot displaying the distribution of children for each of the 5 features used in
training the KNN classification. Each panel displays network values on the y-axis, with the
normalized cognition standard score (z-score) on the x-axis. Children classified into normal,
mild/moderate CI and severe CI classes are displayed in red, green and blue respectively.
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Classification Scheme
Network Analysis Random Naive Class Naive Value

Total Accuracy 70.6% (36/51) 45.4%(≈23/51) Normal Cognition 60.8% (31/51)
Mild/Moderate CI 13.7% (7/51)
Severe CI 25.5% (13/51)

Total Cost Penalty 38 pts ≈65 pts Normal Cognition 100 pts
Mild/Moderate CI 90.5 pts
Severe CI 84.5 pts

Table 6: Summary table of overall classification accuracies and total cost penalty for the pro-
posed network analysis, random classification, and naive (single class) classification. Naive
classification is split to show overall classification accuracy and cost penalties if all children
were assigned as normal cognition, mild/moderate CI or severe CI classes. Total accuracy in-
cludes the approximate number of children with true positive predictions, out of total number
of children evaluated.

was calculated at 38 points, based on the children who were misclassified, i.e.347

their cognitive class was not correctly predicted.348

The expected random classification accuracy is based on the distribution349

of individuals belonging to each class, i.e. 31, 7 and 13 children for the nor-350

mal, mild/moderate and severe classes respectively. Random accuracy would351

be expected at 45.4%, with cost-penalty varying depending on misclassification352

distributions. Using the average misclassification penalty and the percentage of353

misidentified children (approximately 28 of the 51 subjects), the cost-penalty354

would be at least 65 points.355

Naive, or one-class classification assumes all subjects belong to a single class356

only. For example, if all children were considered to only belong to the ‘normal’357

cognition class (i.e. naively classified as normal), then exactly 31 of the 51358

children (those whose true class is ‘normal’-the first row of Table 5) would be359

correctly identified, giving a naive classification accuracy of 60.8%. Repeating360

this naive classification scheme for mild/moderate and severe classes provides361

naive classification accuracies of 13.7% (7/51), and 25.5% (13/51) respectively.362

Similarly, the total cost-penalty for each naive classification would be 100, 90.5363

and 84.5 points respectively, using the same procedure and the penalty costs364

from Table 2.365

Overall, the results indicate gains in classification accuracy and a reduced366

total penalty as compared to both random and naive classification. This is367

summarized in Table 6.368

4. Discussion369

The main finding of this study is the development of novel methods towards370

identifying a potential computational biomarker for CI in CWEOE. The auto-371

mated and quantitative nature of the processing chain, ability to appropriately372

predict CI classes, and its use of routinely acquired EEG data make the pro-373

posed methods an attractive proposition for clinical applications. Our results374

indicate a substantial pool of potential characteristics might be identified using375

the proposed methods with several network analysis and filtering combinations.376
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The breadth of these combinations emphasizes the general suitability of EEG377

networks in identifying possible CI markers in CWEOE.378

Flexibility in sensitivity and robustness of particular networks to features379

of interest is an advantage of this analysis. For instance, the sensitivity of380

phase-dependent connectivity measures, e.g. PSI and WPLI, was more preva-381

lent compared to standard ICOH. This is not surprising as phase-oriented mea-382

sures were developed to improve upon phase ambiguities in traditional ICOH383

measurements [20, 23]. In addition, the sensitivity of PSI in picking up signifi-384

cant correlations can be attributed in part to its equal treatment of small phase385

differences in leading and lagging signals [20]. Such small phase differences con-386

tribute equally in PSI, while counting for proportionally less in the WPLI by387

definition [22, 21]. By construction, the WPLI results are substantially more388

robust to noise and small perturbations in phase, through proportionally reflect-389

ing phase differences in network connections with appropriate weights, providing390

results for only large phase differences. Together these measures reflect trade-off391

choices between sensitivity and robustness for network analysis.392

Of interest for paediatric populations is the CST’s capability to identify low393

frequency correlations in phase-dependent coherency measures. Both the PSI394

and WPLI demonstrate sensitivity to lower frequencies, not present in the ICOH395

or MST in general. This is critical considering that in preschool children lower396

frequencies typically contain the bands of interest present in adult EEGs, e.g.397

the delta/theta/alpha bands [38, 39]. During development these bands shift to398

higher frequencies [40], reflecting a large scale reorganization of the endogenous399

brain electric fields and suggesting a transition to more functionally integrated400

and coordinated neuronal activity [18]. The (low) chance of all such significant401

findings being spurious is of less detriment than the potential loss of impact402

for disregarding the findings if at least one of them is true. The sensitivity to403

detect network disruptions already present in these critical bands in CWEOE404

provide high value in adjusting potential therapeutic and treatment strategies405

for clinicians.406

The identified subset of metrics for classification provide additional informa-407

tion. All of the features in the subset reflected distribution measures of hub-like408

network structures in the brain, relating to the balance between heterogene-409

ity and centrality within the network. The implicated metrics, other than the410

variance degree, corresponded to measures identifying local, centralized ‘criti-411

cal’ nodes in a network. Their negative correlation to the cognition standard412

scores imply that children with more locally centralized brain networks, and413

consequently with less well distributed hub-like structures, are more likely to414

have corresponding cognitive impairment. This is reasonable, since if there ex-415

ists a small set of central, critical hubs responsible for communication across the416

brain, disruption of these critical points (e.g. due to seizure activity) would have417

severely negative effects on communication connections. This is also supported418

by the negative correlation in the variance degree metric in the WPLI. The vari-419

ance degree can be interpreted as a measure of a network’s heterogeneity [41].420

As such, the negative variance degree in the low (1-3 Hz) frequency range may421

reflect stunted cognitive development, as normal maturation is associated with422
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reduced activation in low frequencies [42, 38, 43, 39, 44], implying a decrease423

in local connectivity and heterogeneity of the networks. This compliments the424

above conclusions, suggesting a sensitivity in the likely well-centralized networks425

to significant disruptions by epilepsy. The disrupted networks may then be re-426

flected by the continued heterogeneity and local connectivity of low frequency427

structures in impaired children.428

Being able to predict the likely extent of CI using the identified markers could429

provide an advantageous tool for clinicians. Specifically, being able to pair spe-430

cific network features to an effective prediction of CI would allow clinicians to431

retain the interpretability of the chosen network features while providing a tool432

to quickly and objectively separate similar cases. To this end, the cost-sensitive,433

simple KNN classifier explored in this work illustrates an early step towards434

this aim. Evaluating the network-based classifier results show the analysis was435

successful at two levels. First, the proposed classifier was able to generally436

identify cognitively normal children from impaired children, when grouping the437

mild/moderate CI and severe CI classes. This is seen in the first column of438

Table 5 where only three impaired children are misidentified as ‘normal cogni-439

tion’, giving a sensitivity of 85%. In other words, 17 of the 20 actual impaired440

children were correctly identified as belonging to either the mild/moderate or441

severe CI classes, demonstrating that the proposed network analysis and clas-442

sifier was largely successful with respect to predicting children with some form443

of impaired cognition, based on using the standard score definition. Similarly,444

only five normal children were misidentified as generally impaired (i.e. classified445

to either the mild/moderate or severe CI classes; top row of Table 5), giving a446

specificity of approximately 84% (26/31) for appropriately identifying children447

in the range of normal cognition. In addition, the network coupled classifier448

was able to separate out cases of mild/moderate impairment from severe im-449

pairment decently, with > 50% of impaired children correctly predicted. Thus,450

the proposed classifier and associated methods provide considerable sensitivity451

(85%) and specificity (84%) for clinicians in determining potential CI, while still452

remaining relatively accurate in separating CI according to severity.453

Statistical analysis in this manuscript was utilized as a first-pass means to454

reduce the potential feature space for classification. Through identifying po-455

tentially significant networks of interest, the number of features to test in the456

classification step was substantially reduced. Through the statistical filter, we457

were able to select pertinent features from a relevant and manageable feature458

space. Future endeavours could refine such features, based on different choices459

for the statistical analysis. Using a more rigid/flexible analysis could lead to460

further culling/relaxation of the feature space and provide an adjustable frame-461

work for examining network property changes in CWEOE. Other future work462

could include alternative narrow-band frequency binning and less strict auto-463

mated rejection methods. Significant correlations across sets of consecutive (and464

nearly consecutive) frequency bands indicate likely targets for potential follow-465

up studies. Further development of a more complex classification scheme could466

help improve the second tier discrimination of the proposed classifier, at the467

level of discerning between the cognitive impairment types (e.g. mild/moderate468
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CI from severe CI). A thorough investigation into incorporating and comparing469

additional classifiers is also a potential avenue for expansion of this research.470

The NEUROPROFILE cohort was advantageous in that formal neuropsy-471

chological testing was coupled with EEG recordings, making it ideal for this472

investigation. However, there are study limitations. Although this novel study473

used routine clinical EEGs used in the diagnosis of incidence cases of CWEOE,474

the three classes of normal, mild/moderate and severe impairment were unbal-475

anced; this occurred naturally. The majority of the sample was taken from a476

population-based cohort, and mitigating potential influences from imbalanced477

data was taken into account as much as possible when conducting the research,478

e.g. through cost-sensitive analysis. Imbalanced data is not uncommon, but479

the unbalanced distribution of CI in the current study reflects findings in a true480

population-based cohort [45]. Furthermore, trialling this methodology in older481

children with epilepsy may be an avenue for future studies, to provide further482

insights as to the relationship between aetiology and CI, as well as provide483

additional replications of the proposed techniques.484

5. Limitations485

Within the studied cohort of CWEOE, the epilepsy type and aetiologies were486

heterogenous. Thus we are unable to determine if the model and methods used487

have greater or lesser predictive value in specific subsets. Testing in a larger,488

more homogeneous sample would provide clarification.489

A gender disparity was noted within the normal cognition and mild/moderate490

CI groups. Although this study reflects a true population, further studies are491

needed to investigate this phenomena.492

Note that the spectral components in the very low frequency narrow band493

(e.g.1-3 Hz) may not be fully reliable due to the small epoch length, i.e. two494

seconds. Information gained from the very low frequency band needs to be495

interpreted with some care, as spurious connections are more likely to be present.496

Again, however, the large number of trial epochs averaged for each child helped497

mitigate these potential spurious connections.498

We recognize a limitation in our assumption of dependency between the499

frequency bins. While there is likely a strong local family dependency between500

the narrow bins, the endpoints on our frequency spectrum may not have as501

strong of a relation. Therefore, significance at these level should be considered502

carefully as they are more likely to be a false positive. However, the robust503

nature of τ and our choice of features from a machine-learning perspective help504

to moderate potential impacts from this assumption on our results.505

The use of a data-driven, narrow band approach in our analysis had a trade-506

off of not using patient-specific frequency ranges for each child. Future studies507

could be done to investigate how individualized frequencies, e.g. using individ-508

ual alpha frequencies (IAF), could be aligned, interpreted and correlated when509

assessing network abnormalities in the CWEOE population.510

19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2018. ; https://doi.org/10.1101/237172doi: bioRxiv preprint 

https://doi.org/10.1101/237172
http://creativecommons.org/licenses/by-nc-nd/4.0/


6. Conclusions511

This study introduced a novel processing chain based on network analysis for512

identifying markers of CI in CWEOE for the first time. Results from the study513

demonstrate these network markers in identifying critical structures of CWEOE514

with CI and illustrate their potential predictive abilities using preliminary clas-515

sification techniques. Replication of the identified methods using other datasets,516

with alternative narrow-band frequency binning, less strict automated rejection517

methods, and including correlations with brain MRI abnormalities may bolster518

the generalizability and applicability of the proposed techniques.519
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Appendix A. Network Coupling Definitions785

Appendix A outlines the key network definitions and details for the presented786

analysis. For in-depth reviews see [46, 13], and for further reading [12, 47, 48].787

Cross-spectrum788

Functional EEG connections are established through measures of interde-
pendency between signals si and sj [48] for any pair of EEG channels i and
j. A common measurement for examining this interdependency is the cross-
spectrum function Sij(f) [49, 19, 48]. Formally, let xi(f) and xj(f) be the
complex Fourier transforms of the time series signals si and sj for any pair (i, j)
of EEG channels. Then the cross-spectrum can be calculated as

Sij(f) ≡ 〈xi(f)x†j(f)〉 (A.1)

where † indicates the complex conjugation, and 〈〉 refers to the expectation value789

(also written as E{}) [19].790

Imaginary Part of Coherency (ICOH)791

Coherency is defined as the normalized cross-spectrum[19]:

Cij(f) ≡ Sij(f)

(Sii(f)Sjj(f))1/2
(A.2)

Therefore, the imaginary part of coherency is defined as [19]

ICohij(f) ≡ Im{Cij(f)} (A.3)

where Im{} refers to taking the imaginary part of the complex coherency mea-792

sure.793

Phase-Slope Index (PSI)794

The PSI is defined as:

Ψij(f) = Im{
∑
f∈F

C†ij(f)Cij(f + δf)} (A.4)

where Cij(f) is as defined in equation A.2, † indicates the complex conjugation,795

δf is the frequency resolution, and f ∈ F is the set of frequencies over which796

the phase-slope is calculated (see [20] for details).797

Phase-Lag Index798

The PLI is defined as: [21, 22]

Θij ≡ |E{sign(Im{Cij(f)})}| (A.5)

where E{} is the expectation, sign is the positive or negative sign, and Im{Cij(f)}799

is the same as ICOH (see equation A.3).800
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Weighted Phase-Lag Index (WPLI)801

The weighted PLI (WPLI) is defined as: [22]

Φij(f) ≡ |E{|Im{X}|sign(Im{X})}|
E{|Im{X}|

(A.6)

where X = Im{Cij(f)} = ICohij(f).802
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Appendix B. Supplementary Figures803
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Figure B.5: Adjacency matrices for a representative ‘normal cognition’ child calculated by
ICOH, PSI and WPLI between the 5-9 Hz frequency range.
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Figure B.6: Adjacency matrices for a representative ‘impaired cognition’ child calculated by
ICOH, PSI and WPLI between the 5-9 Hz frequency range.
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