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Abstract

Objective: Epilepsy in children is often accompanied by cognitive impairment
(CI), causing significant quality of life effects for child and family. Early identifi-
cation of subjects likely to develop CI could help inform strategies for clinicians.
This paper proposes identifying characteristics correlated to CI in preschool chil-
dren based on electroencephalogram (EEG) network analysis.
Methods: A multi-part processing chain analyzed networks from routinely ac-
quired EEG of n = 51 children with early-onset epilepsy (0-5 y.o). Combi-
nations of connectivity metrics (e.g. phase-slope index (PSI)) with network
filtering techniques (e.g. cluster-span threshold (CST)) identified significant
correlations between network properties and intelligence z-scores (Kendall’s τ ,
p < 0.05). Predictive properties were investigated via 5-fold cross-validated
classification for normal, mild/moderate and severe impairment classes.
Results: Phase-dependant connectivity metrics demonstrated higher sensitiv-
ity to measures associated with CI, while wider frequencies were present in CST
filtering. Classification using CST was approximately 70.5% accurate, improv-
ing random classification by 55% and reducing classification penalties by half
compared to naive classification.
Conclusions: Cognitive impairment in epileptic preschool children can be re-
vealed and predicted by EEG network analysis.
Significance: This study outlines identifying markers for predicting CI in preschool
children based on EEG network properties, and illustrates its potential for clin-
ical application.
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Highlights

• EEG network analysis correlates with cognitive impairment in preschool
children with epilepsy.

• Network sensitivity to impairment improves with dense networks and
phase-based connectivity measures.

• Classification reveals network features’ predictive potential for clinical im-
pairment identification.

1

1. Introduction2

Epilepsy is more than epileptic seizures. It is a complex disease causing3

devastating effects on the quality of life for patients (Chang and Lowenstein,4

2003). In the case of children with early-onset epilepsy (CWEOE; children with5

epilepsy onset < 5 years of age), the disease often co-occurs (up to 80%) with6

cognitive impairment (CI) which frequently and severely affect the quality of7

life for both the children and their families (Yoong, 2015). Preschool children8

with epilepsy also may be at increased risk of CI at ages where it is difficult and9

resource intensive to assess CI clinically for potential early intervention (Yoong,10

2015). Therefore, there is a need to understand the causes of impairment in11

CWEOE and to find reliable, affordable and non-invasive markers that would12

help to decide therapeutic interventions beyond the current standard techniques.13

The pathophysiology behind impairment (including autism and other learn-14

ing difficulties) in CWEOE remains uncertain, particularly for preschool chil-15

dren (Yoong, 2015). Timely identification of CI is critical because early-life in-16

terventions are likely to be more effective (Bailey, 2001). Better understanding17

the risk factors and related markers to CI could provide the basis for novel in-18

terventions in CWEOE and improved public health strategies for primary and19

secondary prevention, concepts supported by recent calls to action (England20

et al., 2012).21

Electroencephalography (EEG) is a non-invasive, portable and affordable22

tool for assessing brain activity routinely used in the assessment of children with23

suspected epilepsy. It uses electrodes on the scalp to measure the electrical field24

generated by neurons in the brain. EEG has also been an ideal candidate to25

help in the identification, understanding and monitoring of diverse brain con-26

ditions (Stam, 2014). In particular, spectral measures from the EEG, such as27

the power spectrum density (PSD), are often the basis for investigations, rang-28

ing from memory performance (Klimesch, 1999) to brain-computer interfaces29

(Nicolas-Alonso and Gomez-Gil, 2012). Throughout early-life and child devel-30

opment, however, these spectral profiles vary rapidly with the maturing brain31

(Matsuura et al., 1985; Marshall et al., 2002; Amador et al., 1989; Gasser et al.,32

1988). Network connectivity analysis helps mitigate these variations by offering33
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alternative metrics for understanding diverse brain conditions through the lens34

of well-established graph network connectivity properties (Stam and Reijneveld,35

2007). This paper proposes to analyze EEG brain activity in CWEOE using36

connectivity network metrics directly to identify and explore potential markers37

related to CI.38

Markers derived from EEG networks may relay relevant information about39

the cause of CI, with networks representing functional characterization profiles40

of these children. The severity of cognitive disturbances, in addition to outcomes41

of epilepsy surgery and disease duration, correlates with the extent of changes42

in functional networks (Stam, 2014). Network abnormalities appear in both43

ictal and interictal states (Stam, 2014), a phenomenon found not only in EEG44

but fMRI data as well (Vlooswijk et al., 2011). However, the majority of these45

studies have only focused on the evaluation of networks in adults (Stam, 2014).46

Our hypothesis is that similar background abnormalities on routine screening47

EEGs can be revealed in CWEOE, using advanced signal processing methods48

and that the extracted information may be predictive of cognitive impairment.49

2. Methods50

The data processing pipeline for each child is summarized in Figure 1.51

2.1. Dataset52

A retrospective analysis of a preschool cohort (< 5 years) was used for this53

study. The cohort studied was prospectively recruited from National Health54

Service (NHS) hospitals in Fife and Lothian as part of the NEUROPROFILES55

study (Hunter et al., 2015). All children recruited into NEUROPROFILES had56

face-to-face assessment by a trained psychologist (MH) using the Bayley-III (0-57

2.5 years) or WPPSI-III (2.5-5 years) instruments appropriate for participant58

age, followed soon by routine clinical EEG recordings. Of 64 children available,59

13 were excluded from the study due to corrupted EEG data and inconsistent or60

incompatible EEG acquisition parameters, resulting in a dataset of n = 51 chil-61

dren. If multiple EEG recordings existed, only the first recording was selected for62

each child to avoid weighting results toward children with more recordings and63

to select from the same awake resting-state data across all children. From the64

baseline EEG used in assessment of the children with potential newly-diagnosed65

epilepsy, the standard 10-20 EEG data set-up and the reported clinical measures66

of cognitive development (e.g. Bayley-III and WPPSI-III) scores were used for67

analysis (Hunter et al., 2015). The cognitive measures were converted into a68

normalized z-score measure of intelligence, henceforth referred to as the metric69

z-int. Seizure activity was removed in pre-processing, and analysis was blinded70

to any treatment or seizure frequency information.71

2.2. Pre-processing72

Raw EEG was pre-processed in Matlab using the Fieldtrip toolbox (Oosten-73

veld et al., 2011). Resting-state EEG data was split into 2 second long sub-trials,74
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and bandpass filtered between 0.5-45 Hz. Artefacts were rejected using manual75

and automatic rejection. Manual artefact rejection removed clear outliers in76

both trial and channel data based upon high variance values (var > 106). Mus-77

cle, jump and ocular artefacts were automatically rejected using strict rejection78

criteria based on Fieldtrip suggested values (z-value rejection level r = 0.4).79

Classical frequency bands of interest used in adult EEG studies, e.g. delta/theta/etc.,80

may not inherently correspond on a 1-to-1 basis to EEG of children (Marshall81

et al., 2002; Miskovic et al., 2015; Orekhova et al., 2006). Thus analysis of82

clean EEG data was calculated using a ’narrow band’ approach, with 2-Hz wide83

band for frequencies of interest (e.g. 1-31 Hz). This method is similar to work84

by Miskovic et al. (Miskovic et al., 2015), and avoids possible age-related bias85

within grouping frequencies.86

Data reduction can reduce redundant computational expenses and improve87

interpretation of results in studies. Averaging baseline data across all trials88

for each child, at each individual narrow band achieved this aim, while still89

providing an overall picture of the network.90

2.3. Network Analysis91

Processed data was analyzed via EEG graph analysis (for a review see Stam92

2005 (Stam, 2005) and further reading (Stam and Reijneveld, 2007; Bullmore93

and Sporns, 2009; Cabral et al., 2014)). By directly examining the abstracted94

network metrics in small narrow bands, connectivity properties across ages95

can be compared directly as opposed to comparing shifting spectral frequen-96

cies. Graphs of the EEG functional network were constructed from the cross-97

spectrum of all EEG electrode pairs. This study investigates three connectivity98

analysis methods. First is the imaginary part of coherency (ICOH), used as99

a standard measure(Nolte et al., 2004). ICOH is well documented, providing100

direct measures of true brain interactions from EEG while eliminating self-101

interaction and volume conduction effects (Nolte et al., 2004). A weakness of102

ICOH, however, is its dependence on phase-delays, leading to optimal perfor-103

mance for specific phase differences and complete failure for others (Stam et al.,104

2007; Vinck et al., 2011; Haufe et al., 2013).105

The phase-slope index (PSI) was also investigated (Nolte et al., 2008). The106

PSI examines causal relations between two sources for a signal of interest through107

exploiting phase differences which identify ‘driving’ versus ‘receiving’ sources108

and determining their average phase-slope (Nolte et al., 2008). Importantly,109

the PSI is equally sensitive to all phase differences from cross-spectral data110

(Nolte et al., 2008), but also allows for equal contributions from each.111

The weighted phase-lag index (WPLI) was also included for analysis (Stam112

et al., 2007; Vinck et al., 2011). The original phase-lag index (PLI) (Stam et al.,113

2007) is a robust measure derived from the asymmetry of instantaneous phase114

differences between two signals, resulting in a measure less sensitive to volume115

conduction effects and independent of signal amplitudes (Stam et al., 2007).116

The weighted version of the PLI reduces sensitivity to uncorrelated noise and117

small pertubations which may affect the standard PLI by adding proportional118

weighting based on the imaginary component of the cross-spectrum (Vinck et al.,119
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2011). Both the PSI and WPLI help capture potential phase-sensitive connec-120

tions present in EEG networks from related, but different, perspectives.121

Two network filtering methods were used for each connectivity analysis tech-122

nique: the Minimum Spanning Tree (MST) (Tewarie et al., 2015) and the123

Cluster-Span Threshold (CST) (Smith et al., 2015). The MST is an acyclic124

sub-network graph connecting all nodes (electrodes) of a graph while minimiz-125

ing link weights (connectivity strength) (Tewarie et al., 2015). The MST is a126

standard network filtering technique common in graph analysis, with the draw-127

back of excluding naturally occurring dense networks in the data due to its128

acyclic nature, thereby potentially losing information in EEG graph analysis129

(Smith et al., 2017).130

In contrast, the CST is a network filtering technique which balances the pro-131

portion of cyclic ‘clustering’ (connected) and acyclic ‘spanning’ (unconnected)132

structures within a graph (Smith et al., 2015). This balance thus retains natu-133

rally occurring ’loops’ which can reflect dense networks without potential infor-134

mation loss (Smith et al., 2017).135

For each combination of filtering/connectivity analysis above (e.g. MST-136

ICOH, CST-ICOH, MST-PSI, etc.) four network metrics were investigated for137

correlation to the z-int. Investigators pre-emptively selected network metrics138

prior to analysis, while blinded to the cognition status and clinical history of139

the subjects, to help reduce potential selection bias. The metrics were chosen140

to account for different network properties (e.g. the shape of the network,141

the critical connection points in the network etc.) with (relatively) little inter-142

correlation. Network metrics differ for MST and CST filtering due to the natural143

exclusion/inclusion of cycles, respectively. However, metrics across filters were144

selected to be comparable regarding network properties. Pictorial examples of145

the selected network metrics, alongside their short definitions, are outlined in146

Figure 2.147

2.4. Statistical Analysis148

Statistical analysis was done using Matlab 2015a. Correlation between in-149

dividual network metrics and the z-int was measured using Kendall’s tau (τ)150

(Gilpin, 1993). Kendall’s τ calculates the difference between concordant and151

discordant pairs(Gilpin, 1993; Shong, 2010), and is ideal for describing ordinal152

or ranking properties, like the normalized z-int. Its design is also relatively ro-153

bust to false positive correlations from data outliers (Gilpin, 1993; Shong, 2010),154

providing additional mitigation to spurious correlations in the results.155

Correlation trends in this work are reported as the uncorrected p < 0.05%156

values, with the condition that correlations considered potentially significant157

under the assumption of family dependencies across frequency bins are to be158

noted by the † symbol for Bonferroni corrections, similar in style to previous159

literature (Fraga González et al., 2016). For completeness, a full list of all160

uncorrected τ and corresponding p-values in this study are also included in the161

supporting information in a spreadsheet format.162

5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2017. ; https://doi.org/10.1101/237172doi: bioRxiv preprint 

https://doi.org/10.1101/237172
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.5. Classification163

A multi-class classification scheme was devised using the Weka toolbox (Hall164

et al., 2009; Frank et al., 2016). Class labels of normal, mild/moderate, and se-165

vere cognitive impairment were chosen for z-int within ±1 standard deviation166

(S.D.), between −1 to −2 S.D. and over −2 S.D. from the norm, respectively.167

Primary feature selection included all correlations identified by the statistical168

analysis, to help retain interpretation of resulting network features. Then,169

a second feature selection phase using nested 5-fold cross-validation selected170

prominent features via bi-directional subspace evaluation (Khalid et al., 2014).171

Within this nested cross-validation, features identified as important in > 70%172

of the folds were selected for use in classification.173

Due to the natural skew of the data (towards normalcy), and the context174

of the classification problem (e.g. misclassifying different classes has various175

implications), a cost-sensitive classifier was developed (Zhou and Liu, 2010). In176

order to properly develop such a classifier, an appropriate cost matrix needed177

to be identified. Using guidelines outlined in literature (Zhou and Liu, 2010),178

the cost matrix in Table 1 was developed, with predicted classes on the rows179

and real classes on the columns.180

The defined matrix satisfies several key concerns in multi-class cost-matrix181

development (Zhou and Liu, 2010). The weights on misclassification were care-182

fully selected to reflect probable clinical concerns in classification with guidance183

from a paediatric neurologist. The cost for incorrectly classifying an impaired184

child as normal is twice as heavy compared to misclassifying a normal child185

into either impaired group, which is still significantly more punishing than cor-186

rectly identifying impairment and only misclassifying between mild/moderate187

or severe impairments. These weighted values prioritize correctly including as188

many ‘true positive’ children with CI, i.e. increasing sensitivity, followed by a189

secondary prioritization upon being able to discern the level of CI. These bound-190

aries provide a more clinically relevant classification context in the analysis.191

Using the selected features and developed cost-sensitive matrix, a nested192

5-fold cross-validation trained a simple K -Nearest Neighbour (KNN ) classifier,193

with N = 3 neighbours and Euclidean distance to minimize the above costs. A194

repeated ‘bagging’ (Boostrap Aggregation (Shao, 1996)) approach was used to195

reduce variance in the classifier at a rate of 100 iterations/fold. Results were196

evaluated upon their overall classification accuracy and total penalty costs (e.g.197

sum of all mistakes based on the cost matrix). Random classification and naive198

classification (e.g. only choosing a single class for all subjects) was included for199

comparison.200

3. Results201

3.1. Correlation Analysis202

Each combination of network analysis (ICOH/PSI/WPLI) and filtering (MST/CST)203

techniques uncovered likely correlations between at least one network metric204
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(outlined in Figure 2) and the z-int representing CI. A summary of the signifi-205

cant correlations between the MST metrics and z-int scores are shown in Table206

2. All MST correlations were in the medium to high frequency range, 9−31 Hz,207

with no significant results in lower frequencies. Activity above approximately208

9 Hz is outside of the expected range for the delta, theta and alpha bands in209

young children (Marshall et al., 2002; Orekhova et al., 2006). Sets of contiguous210

frequency bands with significant correlations were found in the ICOH and PSI211

connectivity measures, and are reported together as a single frequency range.212

Overlapping correlations retained at significant levels after partial correlation213

correcting for age are also reported for the MST using a modified Kendall’s τ .214

Similarly, significant correlations between the CST metrics and z-int are215

shown in Table 3. Several significant CST metrics exist in the lower frequency216

range (< 9 Hz), indicating a potential sensitivity of the CST to lower frequen-217

cies. No sets of continuous frequency bands were discovered, but several sets218

were trending towards this phenomenon within ICOH. Multiple overlapping cor-219

relations remaining after partial correlation correction for age from the modified220

τ in the CST at lower frequencies indicate additional sensitivity.221

Both the MST and CST demonstrate high sensitivity in the phase-dependent222

measures (PSI, WPLI) compared to the standard ICOH.223

3.2. KNN Classification224

Based upon the possible sensitivity of the CST, a preliminary classification225

scheme assessed the potential predictive qualities of the CST network metrics226

in identifying CI classes. The relative quality of the classifications are examined227

using classification accuracy and total ‘cost’ (i.e. penalty for misidentification)228

(Zhou and Liu, 2010).229

The subset of CST metrics for classification, identified from significant cor-230

relations and chosen via cross-validated feature selection, included five network231

metrics across the three connectivity measures. For ICOH, the identified subset232

selected was the betweenness centrality at ranges 11-13 and 19-21 Hz along-233

side the clustering coefficient at a range of 15-17 Hz. The subset also included234

the PSI average degree at 13-15 Hz and the WPLI variance degree from 1-3235

Hz. These results indicate specifically which network metrics, from a machine-236

learning perspective, contributed the most information for building an accurate237

classification model.238

The resulting confusion matrix from the 5-fold cross-validated, cost-sensitive239

classification analysis is seen in Table 4.240

The overall classification accuracy was 70.5% with a total ‘cost-penalty’,241

based on Table 1, of 38 points. The expected random classification accuracy is242

based on the distribution of individuals belonging to each class, i.e. 31, 7 and 13243

children for the normal, mild/moderate and severe classes respectively. Random244

accuracy would be expected at 45.4%, with cost-penalty varying depending on245

misclassification distributions. Using the average misclassification penalty and246

the percentage of children who would be misidentified (approximately 23 of the247

51 subjects), the cost-penalty would be at least 65 points. Naive classification248
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assumes all subjects belong to a single class only. Selecting for the normal,249

mild/moderate and severe classes provides classification accuracies of 60.8%,250

13.7%, and 25.5% respectively. Similarly, the total cost-penalty for each naive251

classification would be 100, 90.5 and 84.5 points respectively. The results indi-252

cate gains in classification accuracy and a reduced total penalty as compared to253

both random and naive classification.254

Using 5-fold cross-validation, the results provide a decent classification on255

two tiers. First, the proposed classifier is able to generally identify cognitively256

normal from impaired children (both mild/moderate and severe). Of all im-257

paired children, only three are misidentified as within the normal range, giving258

a sensitivity of 85%, while only five normal children are misidentified as gener-259

ally impaired (either mild/moderate or severe), giving a specificity of approx-260

imately 84%. The second tier of the classifier attempts to separate out cases261

of mild/moderate impairment from severe impairment. Despite being less well262

defined than the general case, the simple classifier is still able to identify > 50%263

of the remaining cases as the correct impairment. Improving this second tier of264

classification through more complex methods is a consideration for future work.265

4. Discussion266

This paper aimed to describe a new set of techniques based on signal and267

network analysis for identifying possible markers of cognitive impairment in268

preschool children with epilepsy. Although the exact reason for CI in epilepsy is269

less well understood, clinical observations and investigations indicate it is likely270

multifactorial, based upon underlying aetiology, seizure type and frequency,271

EEG background, etc., with variations relating to the severity of CI within272

these categories. Early identification of CI is critical but difficult for preschool273

children compared to older children with epilepsy, as school settings may provide274

easier recognition of CI. EEG network analysis as a tool thus may help predict CI275

better within these groups for preschool children, which in turn help clinicians276

inform parents and target early interventions.277

The proposed methodology represents a scientifically sound and clinically278

relevant option for characterizing networks of interest reflecting CI in CWEOE.279

The results indicate a substantial pool of potential characteristics might be280

identified using the proposed methods with several network analysis and filter-281

ing combinations. The breadth of these combinations emphasizes the general282

suitability of networks in identifying possible cognitive impairment markers in283

CWEOE, and demonstrates for the first time preliminary identification of such284

profiles in preschool children.285

Flexibility in sensitivity and robustness of particular networks to features286

of interest is an advantage of this analysis. For instance, the sensitivity of287

phase-dependent connectivity measures, e.g. PSI and WPLI, was more preva-288

lent compared to standard ICOH. This is not surprising as phase-oriented mea-289

sures were developed to improve upon phase ambiguities in traditional ICOH290

measurements (Nolte et al., 2008; Haufe et al., 2013). In addition, the sensitivity291

of PSI in picking up significant correlations can be attributed in part to its equal292
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treatment of small phase differences in leading and lagging signals (Nolte et al.,293

2008). Such small phase differences contribute equally in PSI, while counting294

for proportionally less in the WPLI by definition (Vinck et al., 2011; Stam et al.,295

2007). By construction, the WPLI results are substantially more robust to noise296

and small perturbations in phase, through proportionally reflecting phase dif-297

ferences in network connections with appropriate weights, providing results for298

only large phase differences. Together these measures reflect trade-off choices299

between sensitivity and robustness for network analysis.300

Of interest for paediatric populations is the CST’s capability to identify301

low frequency correlations in phase-dependent coherency measures. Both the302

PSI and WPLI demonstrate sensitivity to lower frequencies, not present in the303

ICOH or MST in general. This is critical considering that in preschool children304

lower frequencies typically contain the bands of interest present in adult EEGs,305

e.g. the delta/theta/alpha bands (Marshall et al., 2002; Orekhova et al., 2006).306

During development these bands shift to higher frequencies (Chiang et al., 2011),307

reflecting a large scale reorganization of the endogenous brain electric fields308

and suggesting a transition to more functionally integrated and coordinated309

neuronal activity (Miskovic et al., 2015). The (low) chance of all such significant310

findings being spurious is of less detriment than the potential loss of impact for311

disregarding the findings if at least one of them is true. The sensitivity to312

detect network disruptions already present in these critical bands in CWEOE313

provide high value in adjusting potential therapeutic and treatment strategies314

for clinicians.315

The identified subset of metrics for classification provide additional informa-316

tion. All of the features in the subset reflected distribution measures of hub-like317

network structures in the brain, relating to the balance between heterogeneity318

and centrality within the network. The implicated metrics, other than the vari-319

ance degree, corresponded to measures identifying local, centralized ‘critical’320

nodes in a network. Their negative correlation to the z-int imply that children321

with more locally centralized brain networks, and consequently with less well322

distributed hub-like structures, are more likely to have corresponding cognitive323

impairment. This is reasonable, since if there exists a small set of central, critical324

hubs responsible for communication across the brain, disruption of these criti-325

cal points (e.g. due to seizure activity) would have severely negative effects on326

communication connections. This is also supported by the negative correlation327

in the variance degree metric in the WPLI. The variance degree can be inter-328

preted as a measure of a network’s heterogeneity (Snijders, 1981). As such, the329

negative variance degree in the low (1-3 Hz) frequency range may reflect stunted330

cognitive development, as normal maturation is associated with reduced acti-331

vation in low frequencies (Matsuura et al., 1985; Marshall et al., 2002; Amador332

et al., 1989; Orekhova et al., 2006; Gasser et al., 1988), implying a decrease333

in local connectivity and heterogeneity of the networks. This compliments the334

above conclusions, suggesting a sensitivity in the likely well-centralized networks335

to significant disruptions by epilepsy. The disrupted networks may then be re-336

flected by the continued heterogeneity and local connectivity of low frequency337

structures in impaired children.338
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Furthermore, being able to predict the likely degree of cognitive impair-339

ment using the identified markers could provide an additional tool for clini-340

cians. Specifically, being able to pair specific network features to an effective341

prediction of CI would allow clinicians to retain the interpretability of the cho-342

sen network features while providing a tool to quickly and objectively separate343

similar cases. To this end, the cost-sensitive, simple KNN classifier explored in344

this work illustrates a primitive step towards this aim. The proposed classifier345

and associated methods provide considerable results of approximately 85% and346

84% sensitivity and specificity, respectively, to general impairment while still347

relatively accurately separating sub-classifications of impairment.348

The automated nature of the processing chain and its use of routinely ac-349

quired EEG data makes the proposed methods an attractive proposition for350

clinical applications. The NEUROPROFILE cohort was advantageous in that351

formal neuropsychological testing was coupled with EEG recordings, making it352

ideal for this investigation. Future work could include alternative narrow-band353

frequency binning and less strict automated rejection methods. Significant cor-354

relations across sets of consecutive (and nearly consecutive) frequency bands355

indicate likely targets for potential follow-up studies. Further development of356

a more complex classification scheme could help improve the second tier sep-357

aration of cognitive impairment types (e.g. mild/moderate from severe). In-358

vestigations into correlations to brain abnormalities on MRI could also provide359

additional validation of the results. Replication of these methods using another360

large dataset may also bolster the generalizability of the techniques.361

4.1. Limitations362

There are limitations associated with these results. Although this novel363

study used routine clinical EEGs used in the diagnosis of incidence cases of364

early onset epilepsy, the three classes of normal, mild/moderate and severe im-365

pairment were unbalanced; this occurred naturally. The majority of the sample366

was taken from a population-based cohort, and mitigating potential influences367

from imbalanced data was taken into account as much as possible when con-368

ducting the research, e.g. through cost-sensitive analysis. Imbalanced data is369

not uncommon, and the unbalanced distribution of CI may reflect findings in a370

population-based sample, i.e. the full NEUROPROFILES data (Hunter et al.,371

2015).372

Also, although all the patients had early onset epilepsy (i.e. before five years373

of age), the epilepsy type and aetiologies were heterogenous. Thus we are unable374

to determine if the model and methods used have greater or lesser predictive375

value in specific subsets. Testing in a larger, more homogeneous sample would376

provide clarification.377

5. Conclusions378

This study introduced a novel processing chain based on network analysis for379

identifying markers of cognitive impairment in preschool CWEOE for the first380
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time. Results from the study demonstrate these network markers in identifying381

critical structures of CWEOE with CI and illustrate their potential predictive382

abilities using preliminary classification techniques.383
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Figure 1: Flowchart of data processing chain for an individual child. ICOH = Imaginary part
of coherency, PSI = Phase-slope index, WPLI = Weighted phase-lag index, MST = Minimum
Spanning Tree, CST = Cluster-Span Threshold
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Figure 2: Illustration of all graph analysis metrics for the Minimum Spanning Tree (MST)
and Cluster-Span Threshold (CST) networks using simple example graphs. Nodes (dots)
represent EEG channel electrodes. Edges (lines) represent functional interactions between
EEG channels identified by a connectivity measure, e.g. ICOH/PSI/WPLI.
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Multi-class Classification Cost Matrix
CI-Predicted Class

Normal Mild/Mod. Severe

CI-True
Class

Normal 0 2.5 2.5
Mild/Mod. 5 0 1

Severe 5 1 0

Table 1: Weighted cost matrix for misclassification of cognitive impairment (CI) for normal
(±1 SD), mild/moderate (−1 to −2 SD) and severe (< −2 SD) classes. Rows represent true
class labels, with columns as the predicted classification labels.
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MST analysis of z-int score
Network Type Network Measurement Frequency Range(s) (Hz) Correlation (τ̄ ± SD)

ICOH Diameter – –
ICOH Maximum Degree – –
ICOH Leaf Fraction – –
ICOH Betweenness Centrality 13-17 Hz −0.231± 0.001
PSI Diameter 9-19 Hz 0.239± 0.032†∗

PSI Maximum Degree 11-13 Hz −0.232± 0.000∗

PSI Maximum Degree 15-17 Hz −0.258± 0.000†∗

PSI Maximum Degree 21-23 Hz −0.219± 0.000
PSI Leaf Fraction 11-13 Hz −0.201± 0.000
PSI Leaf Fraction 15-19 Hz −0.246± 0.003
PSI Betweenness Centrality 9-13 Hz −0.218± 0.012∗

PSI Betweenness Centrality 17-19 Hz −0.259± 0.000†∗

WPLI Diameter – –
WPLI Maximum Degree 29-31 Hz −0.310± 0.000†∗

WPLI Leaf Fraction – –
WPLI Betweenness Centrality 23-25 Hz 0.223± 0.000

Table 2: Summary of Kendall’s τ correlation trends between various graph metrics and the
z-int score using the Minimum Spanning Tree (MST). For all values |τ | was between 0.201 and
0.310; mean = 0.239± 0.0278 and uncorrected p < 0.05. Significant values across contiguous
narrow-band frequencies have been grouped together for ease of interpretation.
† Significant with Bonferroni correction at the level of frequencies.
∗ Significant after partial correlation correction to age of subjects, via modified τ with uncor-
rected p < 0.05.
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CST analysis of z-int score
Network Type Network Measurement Frequency Range(s) (Hz) Correlation (τ̄ ± SD)

ICOH Clustering Coefficient 15-17 Hz −0.290± 0.000†∗

ICOH Average Degree – –
ICOH Variance of Degree 13-15 Hz −0.200± 0.000
ICOH Variance of Degree 21-23 Hz −0.203± 0.000
ICOH Betweenness Centrality 11-13 Hz −0.273± 0.000†∗

ICOH Betweenness Centrality 15-17 Hz −0.241± 0.000
ICOH Betweenness Centrality 19-21 Hz −0.203± 0.000
PSI Clustering Coefficient – –
PSI Average Degree 13-15 Hz −0.210± 0.000
PSI Variance of Degree 15-17 Hz −0.277± 0.000†∗

PSI Variance of Degree 21-23 Hz −0.217± 0.000
PSI Betweenness Centrality 5-7 Hz 0.204± 0.000∗

PSI Betweenness Centrality 15-17 Hz −0.248± 0.000
WPLI Clustering Coefficient 1-3 Hz −0.236± 0.000∗

WPLI Clustering Coefficient 17-19 Hz 0.287± 0.000†∗

WPLI Average Degree – –
WPLI Variance of Degree 1-3 Hz −0.236± 0.000∗

WPLI Betweenness Centrality – –

Table 3: Summary of Kendall’s τ correlation trends between various graph metrics and the
z-int score using the Cluster-Span Threshold (CST).For all values |τ | was between 0.201 and
0.290; mean = 0.237 ± 0.033, and uncorrected p < 0.05. Significant values across contiguous
narrow-band frequencies have been grouped together for ease of interpretation.
† Significant with Bonferroni correction at the level of frequencies.
∗ Significant after partial correlation correction to age of subjects, via modified τ with uncor-
rected p < 0.05.
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Confusion Matrix from Classification Results
CI-Predicted Class

Normal Mild/Mod. Severe

CI-True
Class

Normal 26 2 3
Mild/Mod. 2 3 2

Severe 1 5 7

Table 4: Resulting confusion matrix from the 5-fold cross-validated, cost-sensitive classifica-
tion scheme for all n = 51 children based on costs in Table 1. Rows represent true class labels,
with columns as the predicted labels from the classification.
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