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Abstract
Handling the vast amounts of single-cell RNA-sequencing and CyTOF

data, which are now being generated in patient cohorts, presents a compu-
tational challenge due to the noise, complexity, sparsity and batch effects
present. Here, we propose a unified deep neural network-based approach
to automatically process and extract structure from these massive datasets.
Our unsupervised architecture, called SAUCIE (Sparse Autoencoder for
Unsupervised Clustering, Imputation, and Embedding), simultaneously
performs several key tasks for single-cell data analysis including 1) clus-
tering, 2) batch correction, 3) visualization, and 4) denoising/imputation.
SAUCIE is trained to recreate its own input after reducing its dimen-
sionality in a 2-D embedding layer which can be used to visualize the
data. Additionally, it uses two novel regularizations: (1) an information
dimension regularization to penalize entropy as computed on normalized
activation values of the layer, and thereby encourage binary-like encodings
that are amenable to clustering and (2) a Maximal Mean Discrepancy
penalty to correct batch effects. Thus SAUCIE has a single architecture
that denoises, batch-corrects, visualizes and clusters data using a unified
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representation. We show results on artificial data where ground truth
is known, as well as mass cytometry data from dengue patients, and
single-cell RNA-sequencing data from embryonic mouse brain.

1 Introduction
Vast amounts of high-dimensional, high-throughput, single-cell data measuring
various aspects of cells including mRNA molecules, proteins, epigenetic marks and
histone modifications are being generated via new technologies. Furthermore, the
number of patients included in large-scale studies of single-cell data for comparing
across populations or disease conditions is rapidly increasing. Processing data
of this dimensionality and scale is an inherently difficult prospect, especially
considering the degree of noise, batch effects, artifacts, sparsity and heterogeneity
in the data. Here, we propose a deep learning approach to process and analyze
this type of data (single-cell data from a cohort of patients).

While traditional deep learning methods aim to automate predictive and
generative tasks, we utilize deep learning in an exploratory fashion, to reveal
the structure of multi-sample data without supervision. We base our approach
on the autoencoder. An autoencoder is a neural network that learns to recreate
its own input via a low-dimensional bottleneck layer that learns meaningful
representations of the data and enables a denoised recreation of the input [1, 2,
3, 4]. If the low-dimensional bottleneck is chosen to be 2-D, then it naturally
serves as a visualization of these meaningful representations as well. Since neural
networks learn their own features, they can reveal structure that other 2-D
visualization methods that require a definition of distance in the original data
space cannot [5].

SAUCIE leverages the ability of an autoencoder to denoise, impute, and
visualize, and adds carefully-designed regularizations to perform batch correction
and clustering, which are essential tasks in single-cell data analysis. We introduce
two novel regularizations: 1) information dimension regularization which allows
us to recover cluster structure in a hidden layer of the autoencoder, and 2) a
maximal mean discrepancy regularization that constrains the embedding layers
such that different samples (of the same experimental condition) overlap with
each other to perform batch correction. SAUCIE, like other modern neural
networks, is also scalable to large datasets due to its massive parallelizability [6].

2 Results

2.1 SAUCIE architecture
SAUCIE is based on the autoencoder neural network framework for unsupervised
learning, which learns to reconstruct its input after passing it through a low-
dimensional bottleneck layer. The bottleneck layer forces the autoencoder to
learn compressed representations of the input and find high-level relationships
between parts of the input space. The overall structure of an autoencoder
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Figure 1: SAUCIE’s neural network framework.

can be divided into two parts: an encoder network that maps the input space
to the low-dimensional representation, and a decoder network that maps the
low-dimensional representation back to the original input space. The general
architecture of SAUCIE (Figure 1) is as follows:

1. An input layer

2. A variable number of encoder layers

3. A sparse encoder layer for clustering

4. An embedding layer for visualization

5. A corresponding decoder symmetric to the encoder

6. An output layer for the reconstruction.

Different layers of SAUCIE are used for different analysis tasks. A sparse encoder
layer for unsupervised clustering, an embedding layer for visualization and batch
normalization, and the output layer for reconstruction of denoised and imputed
input values. Thus SAUCIE uses a unified representation and framework for
many tasks, thereby increasing the coherence between tasks. For instance, the
visualization and clustering in SAUCIE correspond with each other as they are in
subsequent layers. We developed and implemented novel regularizations designed
to restrict the representations in particular layers to achieve particular tasks.
These regularizations used together form a pipeline for using neural networks to
analyze biological data.
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2.2 Multitask training by sequential optimization
To perform multiple tasks, SAUCIE uses the single architecture as described
above, but is run and optimized twice sequentially. The first run imputes noisy
values and corrects batch effects in the original data, while also providing two-
dimensional coordinates for visualization. This preprocessed data is then run
through SAUCIE again to pick out clusters. The two different runs are done by
optimizing two different objective functions. In the following, we describe the
optimization of each run over a single batch of n data points. However, the full
optimization of each run independently utilizes multiple (mini-)batches in order
to converge and minimize the described loss functions.

For the first run, formally let X be an n × d input batch, where each row
is a single data point, and d is the number of features in the data. It is passed
through a cascade of encoding linear and nonlinear transformations before
reaching the first visualization layer that computes visualizable 2D coordinates,
denoted V ∈ Rn×2, for the data point in the batch. Then, a cascade of decoding
transformations reconstruct the denoised batch X̂, which has the same dimensions
as the input X and is optimized to reconstruct it.

For the second run, the cleaned batch X̂ is passed through encoding trans-
formations until it reaches a visualization layer. However, in this case, we also
consider an intermediate clustering layer that outputs near-binary activations
B ∈ Rn×dB , where dB is the number of hidden nodes in the layer, which will
be used to encode cluster assignments, as described below. The activations in
B then pass to the second visualization layer, whose output will be denoted by
V ′ ∈ Rn×2. Finally, the second decoding transformation leads to a reconstruction
X̃ that has the same dimensions as X̂ (and X) and is optimized to reconstruct
the cleaned batch.

The loss function of both runs starts with a reconstruction loss Lr forcing
the autoencoder to learn to reconstruct its input at the end. SAUCIE uses the
standard mean-squared error loss (e.g., Lr(X, X̂) = 1

n

∑n
i=1 ‖xi− x̂i‖2, where xi

and x̂i are the i-th row of X and X̂ correspondingly), but this can be substituted
with any other loss function that may be appropriate for the data. For the
first run, we add to this loss a regularization term Lb that enables SAUCIE to
perform batch correction. This regularization is computed from the visualization
layer to ensure consistency across subsampled batches. The resulting total loss
is then

L = Lr(X, X̂) + λb · Lb(V ).

The loss function of the second run then optimizes Lr along with two regulariza-
tion terms Lc and Ld that together enable SAUCIE to learn clusters:

L = Lr(X̂, X̃) + λc · Lc(B) + λd · Ld(B, X̂).

The first term Lc guides SAUCIE to learn binary representations via the activa-
tions in B using a novel information dimensionality penalty that we introduce in
this paper. The second term Ld encourages interpretable clusters that contain
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similar points by penalizing intra-cluster distances in the cleaned batch X̂, which
is fixed for this second run.

2.2.1 MMD regularization for batch correction

A major challenge in the analysis of single-cell data is dealing with so-called
batch effects, which result from technical variability between replicates of an
experiment. Combining replicates often results in technical and experimental
artifacts being the dominant source of variability in the data, even though this
variability is entirely artificial. This experimental noise can come in the form
of dropout, changes of scale, changes of location, or even more complicated
differences in the distributions of each batch. It is infeasible to parametrically
address all of the potential differences explicitly, such as assuming measurements
are drawn from a Gaussian distribution. Instead of addressing specific models of
noise, SAUCIE minimizes a distance metric between distributions. The batch
correction term Lb calculates the Maximal Mean Discrepancy [7] (MMD) between
batches:

Lb = Σi 6=refMMD(Vref , Vi),

where Vref is the visualization layer of one of the replicates arbitrarily chosen
to be the reference batch. MMD compares the average distance of each point
to other points in its own batch with the distance to points in the other batch.
MMD is zero only when two distributions are equal. Thus minimizing this
metric encourages SAUCIE to align each batch. MMD has been used effectively
to remedy batch effects in residual networks, but here SAUCIE uses it in a
feedforward autoencoder and combines it with other tasks of interest in biological
exploratory data analysis [8].

The choice of reference does not affect the degree to which two distributions
can be aligned, but a reference batch is necessary because the encoding layers of
a standard network will be encouraged to embed different batches in different
places in the visualization layer. It does this because the decoder is required
to make its reconstruction X̂ match the original data in X (which includes the
batch effects). To remedy this, SAUCIE’s decoder is required to reconstruct the
reference batch exactly as usual, but all other batches must only be reconstructed
to preserve the pairwise distances between points in the batch. Consequently,
the MMD regularization term will be minimized when batches are aligned, and
the decoder need only be able to reconstruct the exact values of the reference
batch and the relative values of the non-reference batches. The non-reference
batches will be aligned to the reference batch in such a way as to preserve its
internal structure as best as possible.

2.2.2 Information dimension regularization for clustering

We consider the task of clustering data points by interpreting the sparse layer B
in the network as encoding cluster assignments. We note that common activation
functions that are used to introduce nonlinearities in neural networks (including
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SAUCIE), such as hyperbolic tangent or sigmoid, provide a natural threshold for
binarizing neuron activation to be either zero or one. Indeed, such functions are
monotone and asymptotically tend to constant upper and lower bounds away
from the origin. Therefore, we use their inflection point, or the midpoint between
the upper and lower bounds, as a threshold to binarize the activations in B. This
results in an interpretable clustering layer that creates ‘digital’ cluster codes out
of an ‘analog’ encoder layer, thus providing a binary code for each input point of
the network. These binary codes are in turn used as cluster identifiers in order
to group data points with the same code into a single cluster.

In order to automatically learn an appropriate granularity of clusters, we
developed a novel regularization that encourages near-binary activations and
minimizes the information (i.e., number of clusters) in the clustering layer. Our
regularization is inspired by the von Neumann (or spectral) entropy of a linear
operator [9], which is computed as the Shannon entropy of their normalized
eigenvalues [10, 11]. This entropy serves as a proxy for the numerical rank of the
operator [12], and thus provides an estimation of the essential dimensionality of
its range. In our case, we extend this notion to the nonlinear transformation
of the neural network by treating neurons as our equivalent of eigenvalues, and
computing the entropy of their total activation over a batch. We call this
entropy ‘information dimension’ (ID) and the corresponding ID regularization
aims to minimize this entropy while still encoding sufficient information to allow
reconstruction of the input data points.

The ID regularization is computed from the clustering layer activations in
B by first computing the activation of each neuron j as aj =

∑n
i=1Bij , then

normalizing these activations to form an activation distribution ~p = ~a/‖~a‖1, and
finally computing the entropy of this activation distribution as

Lc(B) = −
k∑

j=1

pj log pj .

By penalizing the entropy of neuron activations, this regularization encourages
a sparse and binary encoding. This counters the natural tendency of neural
networks to maximize the amount of captured (i.e., encoded) information by
spreading activations out across a layer evenly. By forcing the activations to
be concentrated in just a few distinct neurons, different inputs end up being
represented with rather similar activation patterns, and thus naturally clustered.
When combined with the reconstruction loss, the network will retain enough
information in the sparse layer for the decoder to reconstruct the input, keeping
similar points in the same cluster.

2.2.3 Intracluster distance regularization

SAUCIE learning digital codes creates an opportunity to interpret them as
clusters, but these clusters wouldn’t necessarily be comprised of only similar
points. To emphasize that inputs only be represented by the same digital code
if they are similar to each other, SAUCIE also penalizes intracluster pairwise
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distances. Beyond suffering reconstruction loss, using the same code for points
that are far away from each other will now incur an even greater loss.

This loss is calculated as the euclidean distance between points with the
same binary code:

Ld(B, X̂) =
∑

i,j:bi=bj

‖x̂i − x̂j‖2

where x̂i, x̂j and bi, bj are the i-th and j-th rows of X̂ and B, respectively.
Since ID regularization is minimized by using the same code to represent

all inputs, this term acts as an opposing balance. Intracluster distances are
minimized when all points are in a cluster by themselves. Together with the
reconstruction penalty, these terms encourage SAUCIE to learn clusters that
are composed of as many points as possible that are near to each other.

An additional benefit of clustering via regularization is that not only does
the number of clusters not needed be set a priori, but by changing the value of
λc the level of granularity of the clustering can be controlled, so both coarse
clustering and fine clustering can be obtained to further add insight into the
underlying structure of the data.

2.3 Experimental setting
We test SAUCIE on an artificial dataset where the ground truth is known, and
on two mass cytometry datasets and two single-cell RNA-sequencing datasets.
The mass cytometry datasets come from patients with the dengue and a healthy
control patient while the single-cell RNA-sequencing datasets are two mouse brain
embryo datasets, one from Yale University and the other the openly available
1.3 million cell 10xGenomics Megacell dataset 1. Details on the training process
can be found in the methods section.

2.3.1 Validation on artificial data

The artificial data tests both SAUCIE’s ability to correct batch effects and cluster.
It is comprised of a set of 10 separable 100-dimensional multivariate Gaussians
divided into batches. For the first experiment, these 10 Gaussians were divided
into 5 batches. This tests the case where there are two underlying Gaussian
populations, but batch effects have shifted the measurements so that the two
populations look different in each batch. SAUCIE’s goal would be to align all
5 batches so that the true underlying two populations emerge via clustering.
Figure 2 shows the two-step process of first aligning the batches by running
SAUCIE with MMD regularization and then using the reconstructed values of
that run as the input to another run through SAUCIE with ID regularization.

After successfully aligning and clustering a simple underlying population of
only two Gaussians obfuscated by batch effects, the next test creates a more

1https://support.10xgenomics.com/single-cell-gene-expression/datasets
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Figure 2: SAUCIE first aligns the clusters of each batch with MMD regularization,
and then successfully recovers the underlying clusters from the reconstruction
with ID regularization.

complex underlying population by dividing the 10 Gaussians into 2 batches
each with 5 Gaussians. Figure 2 shows SAUCIE correct the batch effects and
successfully cluster this more complex scenario, as well.

The ID regularization is encouraging SAUCIE to organize the activations of
its neurons as intended, as the histogram of the activations in the clustering layer
shows in Figure 3. After transforming the hyperbolic tangent’s activations from
[-1,1] to [0,1] by a shift of positive 1 and a division by 2 and using a threshold
of .5, all activations are either near 0 or near 1. ID regularization achieves this
while neither no regularization nor penalizing the L1-norm of the activations [11]
does.

Clusters by ID Regularization

ID Regularization
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Figure 3: ID regularizations encourage activations near 0 or near 1 more than
no regularization or L1-regularization.
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Before SAUCIE After ComBat After SAUCIE
MMD2(Batch1, Batch2) 1.21467 0.02742 0.00004
10-kNN in same batch 99.58% 81.44% 50.51%
30-kNN in same batch 98.48% 81.88% 50.18%
50-kNN in same batch 98.42% 70.36% 50.49%

Table 1: SAUCIE corrects the batch effects more thoroughly than ComBat.

Spike-ins (Without MMD) Spike-ins (With MMD)

SAUCIE 1 SAUCIE 1

SA
U

CI
E 

2

SA
U

CI
E 

2

Figure 4: Left: batch effects separate the two batches. Right: SAUCIE learns to
align them.

2.3.2 Cytometry: dengue patients

We examine SAUCIE’s batch correction on real biological data from mass
cytometry of peripheral blood mononuclear cells (PBMC) from dengue patients
that were introduced (in vitro) to strains of the Zika virus obtained from the
lab of Dr. Ruth Montgomery at Yale University. The measurements were done
in multiple runs both in the same day and across multiple days and have large
batch effects (Figure 4). Table 1 quantifies the batch effect between two sets
of 20,000 cells from distinct batches. One metric is MMD while the other is
measuring on average how many of each cell’s nearest neighbors belong to the
same batch, for different values of k. When the batches are perfectly mixed, 50%
of each cell’s nearest neighbors should belong to the same batch, while when the
batches are completely separate, nearly 100% will be. SAUCIE is compared to
a leading tool used for batch correction, ComBat [13]. SAUCIE outperforms
ComBat at aligning these samples by all metrics.

SAUCIE learned a mapping that aligns the data from different runs. As a
preprocessing step, the output of this batch correction can be sent through other
models, including SAUCIE with ID regularization to obtain clusters.

As an initial exploratory step, SAUCIE’s embedding can also be visualized.
The ID regularization has an impact on the embedding, creating more distinct
and separate clusters as it increases (Figure 5).

For the clustering considered here, we use a coarse-grained clustering obtained
with a high coefficient for ID regularization (0.5). If instead other granularities
were desired, lower coefficients could be used and the impact of this parameter
on the number of clusters is shown in Figure 3(D).

Figure 6(A) details the mean expression of each channel z-scored by cluster,
which can then be used for further biological analysis. For example, clusters
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Figure 5: The effect on the embedding of increasing ID reg.

Figure 6: Heatmaps of SAUCIE’s clusters on cytometry data.

have markers associated with different kinds of cells. Cluster 2, 6, and 14 are
CD14+, consistent with monocytes. Clusters 3 and 18, being CD45RO+, are
consistent with memory Tregs. The highly HLA-DR+ of cluster 10 point to
activated Tregs, meanwhile. These cluster associations can help with identifying
cells of interest for more investigation.

2.3.3 Cytometry: healthy patients

Another cytometry dataset comes from a healthy patient used as part the control
process for clinical trials from Dr. Susan Kaech at Yale University. SAUCIE picks
out clusters that look coherent as viewed on a TSNE embedding, similar to those
of another clustering method, Louvain. One heuristic for measuring the general
quality of a clustering is modularity. Louvain directly optimizes for this, which
may not lead to the most desirable result. However, any reasonable clustering
would have relatively high modularity, albeit not necessarily the highest. It is
notable that SAUCIE’s clusters have high modularity without explicitly targeting
this in its task.

The heatmap showing mean expression profiles of each cluster can then be
used for further exploratory analysis, for example seeing which markers are
correlated, leading to the next steps of biological inquiry.
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Figure 7: Relationships between variables lost to dropout are restored in
SAUCIE’s reconstruction.

Modularity SAUCIE Louvain
Dengue Patients .85 .96
Healthy Patients .77 .92

Mouse Brain Embryo .78 .93
10xGenomics Megacell .90 .92

Table 2: Louvain directly optimizes modularity, a heuristic that may not lead to
the best clustering. SAUCIE’s clusters are still reasonable and coherent by this
metric despite a completely independent optimization procedure.

2.3.4 scRNA-seq: Mouse brain embryo

SAUCIE’s ability to restore variable relationships lost to noise is explored in a
dataset of cells from mouse brain embryos collected by Dr. James Noonan at
Yale University. Single-cell RNA-seq data is afflicted with abundant dropout,
where variables are erroneously measured at 0 due to instrument-induced noise.
Dropout obscures true relationships between variables, but because SAUCIE
learns the low-dimensional manifold and reconstructs smoothed data, these
relationships can be recovered. Figure 7 illustrates that SAUCIE projects the
anomalous points back to the manifold and restores the relationships that can
be seen from non-zero points.

2.3.5 scRNA-seq: 10xGenomics Megacell

Finally, we consider the 1.3 million cells from the 10xGenomics Megacell dataset.
The size of this publicly available dataset does not present a problem for SAUCIE,
and as with the previous data, the clustering results look coherent as visualized
on a TSNE embedding. As measured by modularity, SAUCIE almost matches
Louvain’s value despite not explicitly targeting the heuristic in any way.
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Figure 8: A comparison of three different visualization methods on the cytometry
datasets (A) and (B) and the single cell RNA-seq datasets (C) and (D).

Figure 9: A comparison of visualizations of SAUCIE’s clusters and Louvain’s
clusters on TSNE’s embedding.
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Figure 10: A comparison of visualizations of SAUCIE’s clusters and Louvain’s
clusters on SAUCIE’s embedding.

3 Discussion
Deep neural networks have been shown to be effective in processing massive
datasets such as in the context of images and search engines. Here we apply, for
the first time, a deep learning approach in an unsupervised fashion to large-scale
single-cell data. As single-cell datasets become larger both in terms of cells and
experimental samples (batches), scalability of analysis methods becomes key.
The GPU-based parallelizable approach that training of neural networks offer
makes deep learning especially suited for finding structure in single-cell data.
We have presented SAUCIE, a new autoencoder framework, that performs four
key tasks in single-cell data analysis: 1) data imputation, 2) clustering, 3) batch
correction, 4) visualization. These tasks are normally performed by separate
algorithms which often entail re-representation as graphs or diffusion operators
which may not scale. Additionally, different methods chosen for the different
tasks may make incompatible assumptions as a result of the different internal
representations. SAUCIE shows the versatility of neural networks in being able to
perform these varied tasks and detect emergent patterns in biological data based
on novel regularizations simultaneously, thus operating on a single representation
of the data. Each of the four analyses outcomes are thus guaranteed to reveal
structure that is compatible between the tasks, e.g. the 2D visualization will
show the same clusters that the clustering method finds. While these four tasks
present the main types of analysis currently performed on single-cell data, we
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believe that using our framework, and neural networks in general, additional
tasks can be performed on the data, such as the inference of gene logic, artificial
generation of data, and others.

4 Methods

4.1 Autoencoders
In vanilla autoencoders, the network only minimizes reconstruction loss. Min-
imization is done by backpropagating gradients stochastically on minibatches
of input examples one at a time. Unlike SAUCIE’s regularizations, typical
autoencoders only use information from one point at a time. SAUCIE leverages
that minibatches act as samples from the whole data space, and thus sample
statistics can be calculated across individual inputs in a minibatch and included
in the loss. This gives access to a richer set of functions than regularizations
which are calculated from each input point independently.

4.2 Training
Training was performed with minibatches of 256, mean-squared-error for the
reconstruction error function, and the optimizer chosen is ADAM with learning
rate .001. All regularizations are applied to the 256-dimensional encoder layer,
which uses a hypberbolic tangent activation. The 2-dimensional embedding
layer uses a linear activation, while all other layers use a leaky rectified linear
activation.

5 Software
SAUCIE is written in Python using the Tensorflow library for deep learning. The
source code is available at https://github.com/KrishnaswamyLab/SAUCIE/.
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