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Abstract 8 

Cancer genomics has produced extensive information on cancer-associated genes but the 9 

number and specificity of cancer driver mutations remains a matter of debate. We constructed 10 

a bipartite network in which 7665 tumors from 30 cancer types are connected via shared 11 

mutations in 198 previously identified cancer-associated genes. We show that 27% of the 12 

tumors can be assigned to statistically supported modules, most of which encompass 1-2 13 

cancer types. The rest of the tumors belong to a diffuse network component suggesting lower 14 

gene-specificity of driver mutations. Linear regression of the mutational loads in cancer-15 

associated genes was used to estimate the number of drivers required for the onset of 16 

different cancers. The mean number of drivers is ∼2, with a range of 1 to 5. Cancers that are 17 

associated to modules had more drivers than those from the diffuse network component, 18 

suggesting that unidentified and/or interchangeable drivers exist in the latter.   19 
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Introduction 20 

Cancer develops as a result of accumulation of somatic mutations that impair cell division 21 

checkpoints, resulting in abnormal cell proliferation and eventually tumorigenesis1, 2. Such 22 

mutations are called “drivers” because they are thought to drive their carrier towards a 23 

cancerous state. Characterization of driver mutations is central to understanding the early 24 

steps of tumor progression3, 4. During the last decade, comparative analyses of large collections 25 

of cancer genomes have led to the identification of overlapping sets of genes that are typically 26 

associated to cancer, i.e. harbor a significant excess of mutations in tumors and show 27 

signatures of positive selection5-10. The continued identification of cancer-associated genes 28 

provides insights into the processes and pathways involved in tumorigenesis, as well as 29 

possible therapy targets11-16. Like any other gene in the genome, cancer-associated genes are 30 

expected to accumulate passenger mutations that do not contribute to or even hinder cancer 31 

progression17. Therefore, although cancer-associated genes harbor numerous driver 32 

mutations, only a fraction of the mutations found in these genes are actual drivers10. 33 

Distinguishing driver mutations from passenger ones poses a formidable challenge for cancer 34 

genomics. The number of driver mutations required for the onset of cancer is a fundamental 35 

question that remains a matter of  debate3, 9, 18-20. Classical approaches to this problem use age 36 

incidence curves to infer the number of rate-limiting steps in tumorigenesis, each of which is 37 

assumed to be associated with a unique driver mutation; these estimates, however, are 38 

sensitive to changes in mutation and replication rates during tumor progression19-22. A 39 

modified method has been proposed that compares the incidence of cancer across risk groups 40 

with different mutation rates, but this approach applies only to cancers with relatively well-41 

defined risk groups, such as lung and colorectal cancer18. Recent measurements of selection in 42 

cancer genomes have provided quantitative estimates of the number of positively selected 43 

mutations, i.e. drivers,  per tumor ranging from <1 in thyroid and testicular cancers to >10 in 44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2017. ; https://doi.org/10.1101/237016doi: bioRxiv preprint 

https://doi.org/10.1101/237016
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

endometrial and colorectal cancers9. Given the novelty of these findings, a comparison with 45 

independent inference approaches appears highly desirable. 46 

A second major question about cancer driver mutations refers to their specificity in different 47 

cancer types. Some tumors show recurrent mutation patterns, such as the oncogenic fusion 48 

BCR-ABL in chronic myeloid leukemia23 or the inactivation of specific tumor suppressors such 49 

as, for example, RB1 in retinoblastoma24. Other tumors appear to result from interchangeable 50 

mutations in a pool of genes involved in key signaling pathways, such as the receptor tyrosine 51 

kinase/RAS/RAF pathway in lung adenocarcinoma25. Between these two extremes, 52 

intermediate degrees of specificity are observed in many cancer types8, 26, 27.  Furthermore, 53 

although numerous recent studies on cancer mutational landscapes have yielded extensive  54 

lists of genes that are mutated in various cancers28-30, a quantitative understanding of the 55 

extent to which the current tumor classification captures the existence of specific sets of driver 56 

mutations is lacking. 57 

Here, we combine tools for network analysis and multivariate statistics to assess the number 58 

and specificity of cancer driver mutations in 30 cancer types. We show that an unsupervised 59 

community detection approach applied to the bipartite network of somatic mutations in 60 

cancer recovers modules consisting of mutually specific tumors and genes that (i) are 61 

consistent with the tumor histology and (ii) are enriched in putative driver mutations.   We 62 

used multivariate statistical analysis to estimate the characteristic number of driver mutations 63 

in cancer-associated genes required for the onset of each cancer type. Notably, the average 64 

age of onset for different cancer types correlates with the predicted number of drivers. 65 

Furthermore, cancers that are not associated with the specific modules in the gene-tumor 66 

network appear later in life than expected based on the general trend. 67 

  68 
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 69 

Results 70 

Cancer mutational landscape as a partially modular network 71 

Somatic mutations in a set of tumors can be collectively represented as a bipartite network, 72 

that is, a network with two classes of nodes. In such a network, nodes of one class correspond 73 

to tumor samples and nodes of the other class correspond to cancer-associated genes. 74 

Mutations are represented as edges that connect each tumor sample with the genes mutated 75 

in it; conversely, each gene is linked to the tumors in which it carries a mutation(s). Using this 76 

approach, we built the network of somatic mutations from The Cancer Genome Atlas (TCGA), a 77 

collection that consists of 7665 tumor samples from 30 cancer types (Fig. 1A), focusing on 78 

coding mutations in 198 recurrently mutated cancer genes (see Methods). 79 

Within the bipartite network framework, the association between mutually specific sets of 80 

genes and cancer types becomes manifest by the existence of groups of nodes (tumors and 81 

genes) that are densely connected with members of the same group but poorly connected 82 

with the rest of the network. Such groups are called “modules”, and a network with such 83 

structure is said to be modular31. We tested the modular nature of the cancer mutation 84 

network by computing its Barber’s modularity index32 and comparing it with 200 random 85 

networks with the same degree distribution (Fig. 1B). The result of this comparison supported  86 

the existence of a significant degree of mutual specificity between cancer types and cancer-87 

associated genes (p<10-20, Welch’s T-test), which demonstrates the ability of the network 88 

approach to detect a well known feature of cancer mutational landscapes3, 8, 26,  89 

To further investigate the specificity of the mutation landscapes, we identified the modules of 90 

the network and assessed their statistical significance. To that end, we first applied a battery of 91 

module detection algorithms and then pruned all genes and tumors for which the specificity 92 

patterns were compatible with a random null model (see Methods). The analysis revealed the 93 
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existence of 12 modules with a significance threshold p < 0.05. Each of these modules contains 94 

tumors and genes that are mutually specific, i.e. tumors in a module typically harbor mutations 95 

in genes from the same module, whereas the constituent genes are more frequently mutated 96 

in tumors that belong to the same module. Overall, the statistically significant modules 97 

comprise 27% of the samples and 66 (33%) cancer associated genes (Table 1). 98 

Before proceeding with a more detailed dissection of the genes and cancer types represented 99 

in each module, we evaluated their biological relevance by characterizing the mutations that 100 

correspond to intra- and inter-module connections. To that end, we split the cancer associated 101 

genes into oncogenes and tumor suppressor genes (TSG), and calculated the fraction of 102 

truncating mutations (with respect to all small nonsynonymous mutations) and deletions (with 103 

respect to all copy number variants) in each of these genes, in samples assigned to the same 104 

module as the gene (intra-module links), and in samples assigned to a different module (inter-105 

module links). We found that intra-module connections include a significantly greater fraction 106 

of truncating mutations in TSG than inter-module connections, whereas the opposite holds for 107 

oncogenes (Fig. 1C). A similar trend is observed in copy number variation data: intra-module 108 

connections encompass a significantly higher fraction of TSG loss and oncogene amplification 109 

compared to inter-module connections. Overall, intra-module connections are significantly 110 

enriched in putative driver mutations including truncating mutations and gene loss in TSG, and 111 

missense mutations and amplification in oncogenes. Thus, mutations that affect mutually 112 

specific genes and tumors (i.e. genes and samples from the same module) are more likely to be 113 

cancer drivers than those affecting genes and samples that belong to different modules. 114 

Nevertheless, deviations with respect to the baseline fraction of truncating mutations in non-115 

cancer-associated genes indicate that some mutations involving genes and tumors from 116 

different modules are also relevant for tumor progression. Such deviations remain after 117 

removing the most widespread cancer genes across tissues (TP53, PIK3CA, and ARID1A), 118 

indicating that potential inter-module drivers are not limited to such genes (Supplementary 119 
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Fig. S1). A closer inspection of inter-module mutations highlights oncogenes BRAF and IDH1 as 120 

major sources of inter-module driver mutations in melanomas and acute myeloid leukemia, 121 

respectively, with missense mutations representing 96% of the coding mutations in both genes 122 

compared to the 84% baseline. Similarly, tumor suppressor genes STAG2, KDM6A, PIK3R1, 123 

MAP3K1, and CDH1, with 50-60% of truncating mutations (16%  baseline),  constitute probable 124 

inter-module drivers, with MAP3K1 and CDH1 being more relevant in breast cancer. 125 

Specificity modules for cancer types and cancer-associated genes 126 

As shown in Table 1, the composition of the gene-sample specificity modules strongly 127 

correlates with the histological classification of tumors. Most modules include tumors from 128 

one or two cancer types, together with genes for which mutation frequencies are significantly 129 

higher in cancers of those types (Fig. 2). The mutual specificity analysis recovers some well-130 

established features of cancer mutational landscapes, such as the association between thyroid 131 

cancer and BRAF, or between colorectal cancer and APC, KRAS, TP53, and SMAD4. The 132 

colorectal cancer module includes two additional genes that are mutated in a smaller fraction 133 

of samples, namely, ubiquitin ligase FBXW7 and transcription factor TCF7L2. Most samples 134 

from pancreatic adenocarcinoma cluster in the same module as colorectal cancer, in 135 

agreement with a significant excess of mutations in KRAS, TP53 and SMAD4 in both tumor 136 

types. Acute myeloid leukemia constitutes a single module, with the genes DNMT3A, FLT3 and 137 

NPM1 mutated in >30% samples, and CEBPA, IDH2, RUNX1 and WT1 mutated at lower 138 

frequencies. Testicular germ cell cancer, head and neck squamous cell carcinoma, and 139 

urothelial bladder carcinoma also form separate modules which, however, comprise a smaller 140 

fraction of the samples from each cancer type. The sets of associated genes include KIT in 141 

testicular cancer; NOTCH1, CASP8, HLA-A and HRAS in head and neck cancer; and FGFR3, 142 

KDM6A and STAG2 in bladder cancer. Clear cell kidney carcinoma clusters with genes VHL, 143 

PBRM1, SETD2 and BAP1, among others. Some samples from mesothelioma and papillary 144 
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kidney carcinoma are also assigned to that module, mostly because of mutations in SETD2 and 145 

BAP1. 146 

Notably, some cancer types are distributed among more than one module. Thus, glioblastoma 147 

is represented in two modules, one characterized by mutations in EGFR and PTEN, and the 148 

other by mutations in IDH1, ATRX and TP53.  Such subdivision is consistent with previous 149 

reports, which relate the second group with the glioblastoma-CpG island methylator 150 

phenotype33-35. The same module also includes most samples from lower grade glioma and 151 

some representatives from sarcoma (though the latter typically lack mutations in IDH1). 152 

Similarly, melanoma is divided into tumors with mutated BRAF on a low mutational 153 

background, which cluster with thyroid cancer, and samples with mutations in a larger set of 154 

genes (including NRAS, KDR, ILR7, PTPRB), which constitute a separate module. Finally, breast 155 

cancer splits between a breast cancer-only module characterized by mutations in GATA3 and 156 

TBX3, and a larger module that includes uterine (endometrial and carcinosarcoma) and 157 

prostate cancers, with PIK3CA as the signature gene. In terms of histological types, the PIK3CA 158 

module is significantly enriched in lobular breast tumors (46% compared to 13% in the 159 

GATA3/TBX3 module and 17% in the entire dataset, Chi-squared test p < 10-6). In terms of the 160 

molecular subtypes, both modules include breast tumors that mostly belong to the luminal 161 

subtype (estrogen receptor-positive), whereas most of the basal-like breast tumors are not 162 

assigned to any significant module (Chi-squared test p < 10-10).  163 

Among all the modules, the one that combines breast, uterine and prostate cancers stands out 164 

for its size and diversity. This module contains the largest number of genes, with many of those 165 

mutated in less than 30% of the samples. Moreover, two of its constituent histologies, breast 166 

cancer and uterine carcinosarcoma, are split between this and other modules. To further 167 

dissect the specificity of the mutations affecting these cancer types, we reanalyzed the 168 

subnetwork composed by all cancer genes and samples from breast, prostate and uterine 169 

(endometrial and carcinosarcoma) cancers. This analysis yielded 4 significant modules that are 170 
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dominated by each of the 4 cancer types. The list of module-specific genes is consistent with 171 

the findings of the global analysis. Notably, the re-analysis places most breast cancer samples 172 

in a single module with genes CDH1, PIK3CA, GATA3 and TBX3, whereas uterine 173 

carcinosarcoma clusters with genes FBXW7, PPP2RIA and TP53 (the samples without 174 

mutations in PPP2RIA were formerly assigned to the colorectal cancer module). Specific 175 

modules for prostate and endometrial cancer are also clearly delineated, the former with SPOP 176 

and FOXA1, the latter with ARID1A, CTNNB1, PI3KR1 and PTEN, among other genes. 177 

Two major modes of driver accumulation 178 

The statistically significant modules of mutual tumor-gene specificity include 27% of the 179 

tumors in the TGCA. There are at least two alternative explanations for why 73% of samples 180 

remain unassigned. The first possibility is that, despite having mutational patterns compatible 181 

with one of the modules, the unassigned samples do not reach the required threshold of 182 

statistical significance. That would be the case if mutations affecting module-specific genes 183 

occurred in non-coding regions, involved copy number variants, or else, if mutations occurred 184 

in functionally equivalent genes not included in our list of cancer-associated genes. The second 185 

possibility is that unassigned samples account for exchangeability of cancer-associated genes. 186 

Under such a scenario, some cancer types might not be specifically associated to any set of 187 

genes. 188 

To evaluate the first possibility, we built a set of “best-match extended” modules by attaching 189 

unassigned samples and genes to the module with which they shared most connections 190 

(Supplementary Table S2). We would expect that, if the specific association between tumors 191 

and genes held for most samples within a cancer type, the extended modules would recover 192 

unassigned samples from the same cancer types as those already assigned to the original 193 

modules. Indeed, the best-match extended modules cluster >75% of the samples from rectum, 194 

pancreas, kidney (clear cell), acute myeloid leukemia, thyroid and melanoma, and 50-75% of 195 

the samples from lower grade glioma, mesothelioma, colon and endometrial cancer in a 196 
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tissue-specific way (Fig. 3A). In contrast, cancer types that were absent from the original 197 

modules appear distributed among multiple extended modules, with typically <25% of the 198 

samples assigned to the same module (Fig. 3B). The only exception is ovarian cancer, which 199 

does not appear in any of the significant modules although 70% of the samples are recovered 200 

as members of the same extended module as lower grade glioma. The apparent cause is the 201 

tight association between ovarian cancer and TP53, which is mutated in almost 90% of 202 

samples, against a low background of somatic mutations36. 203 

We confirmed the existence of a diffuse (non-specific) mode of driver accumulation by running 204 

the module detection pipeline without removal of non-significant members. The resulting set 205 

of “statistically relaxed” modules consists of 12 modules with a counterpart among the original 206 

(statistically significant) modules, 16 minor modules with a single gene each and small sample 207 

sizes, and a giant, non-significant module that includes 20% of the samples and 90 (45%) genes 208 

(Supplementary Table S3). The appearance of non-significant (pseudo-)modules is a well-209 

known artifact that results from applying module detection algorithms to large networks with 210 

partial or no modular structure37, 38. In the context of cancers and the associated genes, the 211 

giant pseudo-module accounts for the non-modular (diffuse) component of the cancer 212 

mutation network, which comprises exchangeable cancer genes that are not specifically 213 

associated to particular groups of tumors. Cancer types differ with respect to their 214 

contribution to this component. Thus, only 10-20% of samples from cancer types that are 215 

represented in the original modules are assigned to the diffuse component, whereas the 216 

fraction rises to more than 25% in other cancers (p < 0.01, Wilcoxon test; Fig. 3A and B).  217 

Taken together, these findings indicate that cancer types can be conceptually split into two 218 

major groups: (i) those that accumulate driver mutations in specific sets of cancer genes and 219 

are accordingly clustered into distinct modules (Table 1), and (ii) those that accumulate 220 

exchangeable driver mutations in a non-tissue-specific manner, such as stomach and lung 221 

cancers. Although most cancer types can be clearly placed in one of those two extreme 222 
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categories, there are some mixed cases (Fig. 3C).  For example, bladder cancer generates its 223 

own module that includes genes KDM6A, FGFR3 and STAG2. However, only 10% of bladder 224 

tumors are assigned to that module (30% in the best-match extension), whereas about 40% 225 

belong to the diffuse component. Similar, albeit less extreme, trends are observed for head 226 

and neck and testicular cancers. Such a mixed mutational landscape, modular for some subsets 227 

of the samples, but non-specific for others, seems to mirror the heterogeneity of these cancer 228 

types.  229 

Copy number alterations 230 

We further explored the specificity of driver events by jointly considering somatic mutations 231 

and copy number alterations that affect cancer-associated genes. To reduce the number of 232 

non-informative connections, only amplifications of oncogenes and losses of tumor suppressor 233 

genes were added to the network of somatic mutations. The addition of copy number 234 

alterations does not significantly change the results described so far (Supplementary Tables S4 235 

and S5). The same significant modules are recovered, although their composition in terms of 236 

cancer types is slightly less clean. Besides the modules described above, the addition of the 237 

copy number alterations resulted in 5 new modules, none of which showed an obvious 238 

correspondence with a particular cancer type. Four of these modules are associated with arm-239 

level alterations affecting chromosome arms 7q (genes BRAF, EZH2, MET, and SMO), 9q (genes 240 

ABL1, GNAQ, and KLF4), and 17p (genes MAP2K4 and NCOR1), and X chromosome region Xp11 241 

(genes BCOR, GATA1, KDM5C, and KDM6A). The fifth of these new modules accounts for 242 

frequent loss of 56 cancer-associated genes (mostly tumor suppressors) distributed across the 243 

genome. Overall, the inclusion of oncogene amplifications and TSG losses does not reveal the 244 

existence of specific modules that were not already detected by the analysis of somatic 245 

mutations, although this outcome could be biased by the fact that most cancer-associated 246 

genes in our study were identified through mutations. The minor changes in the network 247 

structure caused by the inclusion of copy number alterations seem related to the 248 
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chromosomal location of cancer genes and the opposite trends towards amplification and 249 

deletion in oncogenes and TSG, respectively. 250 

Average number of driver mutations 251 

Identification of driver mutations is confounded by the numerous passenger mutations that 252 

are typically found in cancer genomes. Passenger mutations in the coding regions appear to 253 

dominate even in cancer-associated genes9, 39,  resulting in a strong correlation between the 254 

number of mutations in cancer-associated and other genes (R = 0.87, p < 10-20, Supplementary 255 

Fig. S2). To obtain an estimate of the number of driver mutations in different tumors, we built 256 

a general linear model, with the number of coding mutations (substitutions and small indels) in 257 

cancer-associated genes as the dependent variable, the number of coding mutations in 258 

putative passenger genes as explanatory variable, and the cancer type as grouping factor. Due 259 

to the pervasive abundance of passenger mutations, a major feature of the model is the strong 260 

correlation between mutations in cancer-associated and non-cancer-associated genes. In this 261 

context, the intercepts (which depend on the cancer type) can be interpreted as the excess of 262 

mutations in cancer-associated genes that is not attributable to the same causes that lead to 263 

the accumulation of mutations in non-cancer-associated genes. Thus, these intercepts 264 

constitute a proxy for the number of driver mutations in cancer-associated genes. 265 

We found that 75% of the variance in the number of mutations in cancer-associated genes is 266 

explained by the number of mutations in passenger genes (ANCOVA, p < 10-20), which is 267 

indicative of a common trend of mutation accumulation in both gene classes (Fig. 4A). 268 

Considering all tumors together and controlling for the non-uniform abundances of different 269 

cancer types, the mean number of driver mutations per tumor was estimated as 1.82 ± 0.07 270 

(95% confidence interval). Differences in the intercepts across tumor classes are statistically 271 

significant but explain only 4% of the total variability in the data (Fig. 4A and B, Supplementary 272 

Table S6). Such low explanatory power could be due to the heterogeneity of the samples 273 

within the same cancer type and possible occurrence of driver mutations in non-coding regions 274 
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or in genes that do not belong to our list of 198 cancer-associated genes; indeed, 12% of the 275 

samples lack coding mutations in these genes. Both limitations can be mitigated by analyzing 276 

only samples from significant modules, which represent more homogeneous subsets of tumors 277 

enriched in putative driver mutations. Thus, to assess how the number of driver mutations 278 

varies across tumors, we repeated the regression analysis with the samples that were assigned 279 

to significant modules, using both the assignment to the modules and the cancer type as the 280 

grouping variables (Fig. 4A, Supplementary Table S7). In samples from significant modules, 281 

differences in the number of drivers across cancer types explain 20% of the observed variance 282 

in the number of mutations in cancer-associated genes. The predicted number of driver 283 

mutations in these samples ranges from values near 1 in glioblastoma, thyroid carcinoma and 284 

the subset of melanoma with low mutational load, to values around 5 in bladder, endometrial 285 

and head and neck cancers (Fig. 4C). The average number of drivers per tumor in colorectal 286 

cancer is 3.66 ± 0.27, consistent with previous estimates based on epidemiological models18, 40 287 

and measures of positive selection in cancer-associated genes9. Notably, the estimates of the 288 

average number of driver mutations in the two groups of melanomas differ by almost 2 289 

(2.55±0.58 vs 0.68±0.39, respectively), which could be related to the higher mutation burden 290 

observed in the first group. 291 

Overall, both the number of drivers and the fraction of mutations that are inferred to be 292 

drivers tend to be larger in samples from the significant, specific modules. Moreover, the 293 

estimated number of driver mutations in these samples closely matches the average number 294 

of module-specific (i.e. intra-module) mutations per tumor (Fig. 4D, Spearman’s rho = 0.772, p 295 

< 0.001). These two findings indicate that modules are held together by genes that carry actual 296 

driver mutations in the cancer types that belong to the respective modules. Deviations from 297 

the 1:1 trend in Fig. 4D reveal three exceptional cases of limited correspondence between the 298 

number of module-specific mutations and the number of estimated drivers. First, the average 299 

number of module-specific mutations in bladder and head and neck cancers notably falls 300 
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below the estimated number of drivers, suggesting the existence of driver mutations in genes 301 

that do not belong to the module. Second, the number of module-specific mutations in the 302 

high-mutation melanoma module is larger than the number of drivers, suggesting that some of 303 

the mutations in genes from this module are passengers. 304 

There is a strong positive correlation between the estimated number of drivers in a cancer 305 

type and the average age at which the respective cancers are diagnosed (Fig. 4E). This result 306 

holds regardless of whether the number of drivers is estimated for the complete set of 307 

samples of the given cancer type (Spearman’s rho = 0.527, p = 0.003) or for the samples 308 

assigned to significant modules only (rho = 0.693, p = 0.005). After controlling for the 309 

differences in the number of drivers, cancer types that are and are not associated with 310 

significant modules (i.e. with and without specific sets of cancer-associated genes) significantly 311 

differ in the average diagnosis age, the former appearing earlier in life (ANCOVA on rank-312 

transformed data, p = 0.036, difference = 6.7 rank units). 313 

 314 

Discussion 315 

It is a well-established fact that tumors accumulate recurrent mutations in some genes more 316 

often than in others. This phenomenon underlies the discovery of oncogenes and tumor 317 

suppressor genes and has led to the identification of central pathways for tumorigenesis and 318 

tumor progression7, 8, 10, 12, 41. Here we went a step further and tested to what extent the 319 

association between genes and cancer types is mutually specific and suffices to define 320 

coherent, biologically meaningful groups of tumors. Although related to previous research on 321 

detection of significantly mutated genes and tumor classification26, 42, 43, our approach differed 322 

in three major aspects. First, tumor samples were not classified a priori based on their 323 

histology, which enabled us to test if different cancer types are distinguishable through 324 

comparison of their mutational landscapes alone. Second, genes and samples are jointly 325 

clustered in a single step, so that the resulting network modules reflect mutual specificity. 326 
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Third, because our network-based clustering is conducive to rigorous statistical testing, we 327 

could discriminate between cancer types that do and do not show a significant degree of 328 

specificity in their sets of mutated genes. 329 

Previous studies involving 12 major cancer types have shown that tissue-specific clusters can 330 

be automatically identified from genomic and transcriptomic features, suggesting the 331 

existence of a consistent molecular basis for a tissue-based classification of tumors26. Our 332 

analysis provides a generalization of that result to a more diverse dataset that included 30 333 

cancer types and 198 cancer-associated genes, revealing major differences among cancer 334 

types. Thus, colorectal, pancreatic, endometrial, kidney (clear cell), breast, thyroid, and brain 335 

cancers, acute myeloid leukemia, sarcoma, mesothelioma, melanoma and uterine 336 

carcinosarcoma are significantly associated with mutations in tissue-specific sets of genes. In 337 

contrast, stomach, esophagus and lung cancers, among others, follow a more diffuse, less 338 

specific mode of driver accumulation. Some cancers, such as bladder, prostate, testicular 339 

(germ cell), and head-and-neck squamous cancer, show a mixed picture, with a significant 340 

specificity of mutations observed only in a fraction of samples. 341 

The observed specificity patterns of cancer-associated genes could originate from at least two, 342 

not mutually exclusive, causes. Biases in mutation and/or repair could make some tissues 343 

more prone to accumulating mutations in certain genes (e.g. due to differences in 344 

transcription levels, chromatin configuration and exposure to mutational processes) although  345 

such biases are unlikely to account for the large differences observed across cancer types44. A 346 

more important factor is the tissue-specificity of the pathways that control cell proliferation, 347 

which have to be overcome for tumor progression through mutations in different genes45. This 348 

view is supported by experimental research on the functional mechanisms by which APC and 349 

KRAS mutations lead to colorectal cancer46, 47 and combined VHL-BAP1 mutations lead to clear-350 

cell renal cell carcinoma48. Along similar lines, recent analysis of synonymous and non-351 

synonymous substitutions in cancer genomes has shown that positive selection promotes 352 
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fixation of somatic mutations in a gene-and-tissue-specific manner, implying that selection 353 

pressures during tumorigenesis are tissue-specific9. 354 

The absence of detectable specificity patterns in some cancers might be affected by inherent 355 

limitations of community detection algorithms on large, partially modular networks, such as 356 

the one we analyzed here. In particular, small sample size could compromise the identification 357 

of modules for thymoma, adrenocortical, cervical, and kidney (chromophobe) carcinomas. 358 

Additionally, it could be hard to find specificity patterns in cancers with high mutational load, 359 

such as lung and stomach cancer, due to their low signal (drivers) to noise (passengers) ratio. 360 

Nonetheless, the detection of significant modules for bladder cancer and melanoma, which 361 

both have high mutational loads3, 49, implies that a high mutation burden does not critically 362 

affect the performance of the module detection algorithm. Finally, relevant specificity modules 363 

based on copy number variation or gene rearrangements could remain undetected if these 364 

large-scale mutations involve genes that are not considered here. It should be noted that the 365 

absence of specific sets of driver genes for some cancer types does not imply that such cancers 366 

cannot be clustered on the basis of other molecular features, as it has been shown for lung 367 

adenocarcinoma and lung squamous carcinoma based on transcriptomics26. 368 

The second major theme of this study is the estimation of the number of driver mutations 369 

affecting cancer-associated genes in different cancer types. By comparing the number of 370 

mutations in cancer-associated and other genes, we inferred an average of approximately 2 371 

driver mutations in cancer genes per tumor, with significant variation (from <1 to >5) across 372 

cancer types. Our results generally agree with previously reported numbers based of 373 

mutations under positive selection, providing an independent support for such values9. 374 

Remarkably, there is a connection between driver mutations and tissue-specific, cancer-375 

associated genes. Specifically, the number of driver mutations in different cancer types shows 376 

a 1:1 correspondence (some minor variations notwithstanding) with the number of intra-377 

module mutations, that is, with the number of mutations in tissue-specific genes. 378 
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We further show that the number of driver mutations strongly and positively correlates with 379 

the mean age of cancer onset, as one would expect if the number of driver mutations was 380 

proportional (yet not necessarily equal) to the number of rate-limiting steps in tumorigenesis19, 381 

21. Supporting this view, many of the tissue-specific, cancer-associated genes detected in this 382 

study are targets of mutations that appear as early clonal events in the trunk of single-tumor 383 

evolutionary trees and likely reflect crucial steps in tumor progression50. That is, for example, 384 

the case of VHL and PBRM1 in clear-cell renal cell carcinoma (often accompanied by parallel 385 

subclonal mutations in SETD2)51; DNMT3A and NPM1 in acute myeloid leukemia (often with 386 

parallel subclonal mutations in FLT3)52; KRAS, TP53 and SMAD4 in pancreatic cancer53; and 387 

APC, KRAS and TP53 in colorectal cancer54. 388 

We also found an intriguing link between cancer onset and the specificity of cancer-associated 389 

genes: cancer types that carry mutations in specific genes tend to appear earlier in life than 390 

expected given their estimated number of driver mutations. We suspect that this difference 391 

could be explained by the requirement for additional driver mutations in genes that are 392 

currently not classified as cancer-associated in the case of the non-specific cancer types and/or 393 

by stronger effects of driver mutations in the modular group of cancers.  394 

 395 

 396 

The results of this work show that rigorous statistical methods for community detection in 397 

bipartite networks can shed light on the relationships between different types of tumors and 398 

cancer-associated genes. The modularity of the gene-cancer network analyzed here is 399 

relatively low, with only about one in four tumor samples included in significant modules. This 400 

fraction is likely to increase as more tumors are sequenced and additional cancer-associated 401 

genes are identified. Nevertheless, the good agreement between the numbers of driver 402 

mutations estimated here and those obtained by other methods, as well as the significant 403 

difference in the cancer onset age between the modules and the diffuse component of the 404 
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network, suggest that the difference between the two modes of carcinogenesis revealed by 405 

this analysis withstands the test of time. This distinction between tumors caused by driver 406 

mutations in limited sets of tissue-specific genes and those caused by mutations in 407 

interchangeable genes that are only weakly linked to specific tumor types could have 408 

important implications for understanding cancer evolution as well as diagnostic and 409 

therapeutic approaches.  410 

 411 

Methods 412 

Data: tumors and mutations 413 

TCGA public mutation calls were downloaded from the tcga-data.nci.nih.gov ftp site on 414 

January 2016. Mutations were reannotated with the Ensembl Variant Effect Predictor (VEP) 415 

software55;  information on the affected gene, type of mutation and coarse-grained impact was 416 

collected. The classification of genes into oncogenes and tumor suppressors was extracted 417 

from Ref 56. 418 

Network construction 419 

An unweighted, undirected, bipartite network of somatic mutations in cancers was built by 420 

connecting tumor sample nodes to gene nodes whenever a small mutation in the coding 421 

region was identified in a given gene in a given sample. For this purpose, the following were 422 

considered as coding mutations: missense and nonsense substitutions, loss of a stop codon, 423 

mutations affecting splice donor or acceptor sites, in-frame and out-of-frame indels. To keep 424 

the network size tractable and maximize the signal-to-noise ratio, only genes with a known 425 

association with cancer were included in the network. Specifically, we used the list of 198 426 

cancer genes reported in Ref 3, which includes the curated list of 174 mutated genes from the 427 

COSMIC database (version 73)28 and any other gene from the Cancer Gene Census database 428 

found recurrently mutated in Ref 7.  Samples without any mutation in cancer genes and 429 
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samples with >3000 coding mutations (hypermutators) were excluded from the network. The 430 

resulting network consisted of a single connected component with 7665 samples and 198 431 

genes, with a density of connections of 0.019. 432 

Module detection 433 

Following recent methodological advances in network analysis, a consensus clustering 434 

approach was used to identify the modules of the network57. In the first step, maximization of 435 

Barber’s modularity index was performed in 200 replicas of the network with the software 436 

MODULAR (simulated annealing algorithm, default parameters)58, which yielded 200 437 

alternative partitions. To test, from a global perspective, if the cancer mutation network has a 438 

significant modular structure, we generated 200 random bipartite networks with the same 439 

gene- and sample-degree distributions, ran MODULAR on them, and compared the 440 

modularities of the resulting partitions with those of the cancer mutation network, using a 441 

Welch’s T-test. In the second step, the 200 alternative partitions of the cancer mutation 442 

network were used to build a consensus matrix by assigning to each pair of nodes a value 443 

equal to the fraction of replicas in which both nodes were assigned to the same module. A 444 

distance matrix was then defined as one minus the consensus matrix, and the consensus 445 

partition was finally obtained by performing hierarchical clustering on the distance matrix 446 

(UPGMA method, implemented by the ‘linkage’ function in MATLAB version R2015a). The 447 

number of clusters was chosen to maximize the Barber’s modularity index of the consensus 448 

partition with respect to the original network. We refer to the clusters in this consensus 449 

partition as the “unfiltered modules”. 450 

To evaluate the significance of each module separately and filter out the genes and samples 451 

that do not follow a modular pattern, we ran the software OSLOM on the original network 452 

with the options -singlet -r 0 -hr 0 -t 0.05 -hint, using the unfiltered modules as the reference 453 

partition38. The significance threshold was set to 0.05. With these settings, OSLOM evaluates 454 

the probability that nodes from a random (non-modular) network display the connection 455 
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patterns observed in the reference partition and removes those nodes that do not reach the 456 

required significance threshold. The result is a filtered partition that only includes nodes 457 

(genes and samples) with a statistically significant modular structure. As an additional output, 458 

OSLOM returns an “extended” partition in which the nodes that do not reach the significance 459 

threshold are reassigned to the module that minimizes their p-value. We refer to the modules 460 

in such partition as the “extended modules”. 461 

To test whether the results were robust to the choice of the network partitioning method, we 462 

repeated the network analysis using Infomap as the module detection software59, both in the 463 

first and second steps of the consensus clustering pipeline (in this case,  all entries with values 464 

>0.4 in the consensus matrix were set to 0, and Infomap was run on the network defined by 465 

the consensus matrix constructed with this threshold). Both the unipartite and bipartite 466 

versions of Infomap (options set to find hard partitions with 2 levels of hierarchy) were run, 467 

followed by the assessment of module significance with OSLOM. In all cases, the results were 468 

similar to those presented here (Supplementary Table S8). 469 

Estimation of the number of driver mutations 470 

To estimate the number of driver mutations in different cancer types, we considered all small 471 

coding mutations affecting cancer-associated and non-cancer-associated genes. The function 472 

‘aoctool’ in MATLAB R2015a was used to fit the number of mutations in cancer genes to a 473 

“parallel lines” linear model with cancer type and number of mutations in non-cancer-474 

associated genes as independent variables. The statistical significance of the model 475 

parameters was evaluated with an ANCOVA, with cancer types as factors and the number of 476 

mutations in non-cancer-associated genes as covariable. The entire analysis was carried out 477 

twice. First, all the samples in the dataset, classified into cancer types, were analyzed. Then, 478 

the analysis was limited to the samples that were represented in any of the significant 479 

modules. Under the second approach, cancer types represented by fewer than 20 samples 480 
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were excluded, and cancer types assigned to more than one significant module were split to 481 

obtain module-specific estimates.  482 

The association between the number of drivers and the age of diagnosis was initially evaluated 483 

through a Spearman’s correlation analysis. To further assess whether cancer types associated 484 

or not to significant modules differ in their age of diagnosis while controlling for the number of 485 

driver mutations, an ANCOVA was performed on the rank-converted data, with the number of 486 

drivers as a covariable and the inclusion into a significant module as a binary factor.  487 
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Figure legends 627 

Figure 1: Modular structure of the cancer mutation network. (a) Bipartite network of somatic 628 

mutations in tumors from the TGCA. Samples are arranged by cancer type along the x axis; 629 

cancer-associated genes are sorted by module along the y axis. Samples from the same cancer 630 

type and genes from the same module are sorted by degree. The upper and left semi-axes 631 

contain genes and samples that belong to statistically significant modules. The rest of nodes 632 

(lower and right semi-axes) were assigned to the “best-match” extended module with which 633 

they share the highest similarity (see text). Links connect samples and genes affected by at 634 

least one nonsynonymous somatic mutation. Links between two nodes from the same module 635 

(intra-module links) are drawn in distinctive colors; inter-module links appear in gray. Cancer 636 

type abbreviations are given in Supplementary Table S1. (b) The modularity of the whole 637 

cancer mutation network was quantified by its Barber’s modularity index (Qb) and compared 638 

to 200 random networks with the same degree distribution. The modularity distribution for 639 

the cancer mutation network results from 200 realizations of the community detection 640 

algorithm, each yielding slightly different sets of modules. The lack of overlap reveals a highly 641 

significant (p<10-20, Welch’s T-test) modular structure for the cancer mutation network. (c) 642 

Differences in the functional spectrum of mutations between intra-module and inter-module 643 

links (significant modules only). Among small, coding mutations, truncating mutations typically 644 

constitute intra-module links in tumor suppressor genes (TSG) and inter-module links in 645 

oncogenes (OG). Among copy number variants, severe losses are typically observed among 646 

TSG and samples from the same module, whereas OG losses are typically observed in samples 647 

that belong to a different module. Asterisk indicate the level of statistical significance  648 

(* p<0.05, *** p<10-5).  649 

Figure 2: Cancer genes mutated at significantly distinct rates in different modules and cancer 650 

types. Tumors that do and do not belong to specificity modules are shown in (a) and (b), 651 

respectively. Only genes that belong to specificity modules are shown. Significance was 652 
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evaluated with a two-tailed Fisher’s exact test; red (blue) indicates a higher (lower) than 653 

average prevalence of mutations. 654 

Figure 3: Classification of cancer types according to the gene-specificity of their driver 655 

mutations. (a,b) Fraction of samples assigned to statistically significant (solid bars) and best-656 

match extended modules (semi-transparent bars), obtained by reassigning non-significant 657 

samples and genes to the significant modules with which they share the largest number of 658 

connections. The black diamond symbol indicates the fraction of samples assigned to the 659 

largest non-significant pseudo-module. Cancer types without major contributions to any 660 

significant module are shown in (b); bar colors refer to the best-match extended module that 661 

contains most samples from each type. (c) Principal component analysis of cancer types based 662 

on the fraction of samples assigned to statistically significant modules, best-match extended 663 

modules, and the largest non-significant pseudo-module. The percentages of the total variance 664 

explained by the first and second components are 88.5% and 8.6%, respectively. Special cases 665 

discussed in the text are labeled: OV, ovarian; HNSC, head-neck; PRAD, prostate; BLCA, 666 

bladder; TGCT, testis. 667 

Figure 4: Estimation of the average number of driver mutations per tumor. (a) Regression 668 

between the number of coding mutations in cancer-associated (y-axis) and non-cancer-669 

associated (x-axis) genes. Colored circles correspond to samples from significant modules. The 670 

solid lines show the fit to the ANCOVA model 𝑦 = (𝛼 + 𝛼𝑖) + 𝛽𝑥 + 𝜖 when considering all 671 

samples (gray), or samples from significant modules (colored). All colored lines have identical 672 

slope, but differ in their intercept, and the same holds for gray lines. The values of the slope 673 

are 0.0186 (gray) and 0.0147 (colored), with global R2 = 0.75 and 0.52, respectively (p < 10-20 in 674 

both cases). The intercepts, that correspond to the estimated number of driver mutations, are 675 

represented in (b) (all cancer types) and (c) (members of significant modules); error bars 676 

represent 95% confidence intervals. The number of drivers correlates with the number of 677 

intra-module mutations (d) (Spearman’s rho = 0.772, p < 0.001) and with the age at diagnosis 678 
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(e) (Spearman’s rho = 0.527, p = 0.003). Solid lines in (e) are fits to the curve 𝑦 =
𝑎𝑇𝑥

1+𝑎𝑥
 derived 679 

from the model of Armitage and Doll19, where 𝑇 = 75 is the average lifespan in the absence of 680 

cancer and 𝑎 is the proportionality constant between the number of drivers and rate-limiting 681 

steps (light gray, 𝑎 = 2.5, all tumors; dark gray, 𝑎 = 1.5, tumors from significant modules).  682 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 19, 2017. ; https://doi.org/10.1101/237016doi: bioRxiv preprint 

https://doi.org/10.1101/237016
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

Tables 683 

Table 1: Composition of the 12 statistically significant modules in the cancer mutation 684 

network.  Samples are grouped by cancer type; the number in parentheses indicates the 685 

fraction of samples from that class that are present in the module (only classes represented by 686 

>5% of their samples are shown). Kidney-RCC: kidney renal clear cell carcinoma, kidney-RP: 687 

Kidney renal papillary cell carcinoma, AML: acute myeloid leukemia, LGG: brain lower grade 688 

glioma, uterus-CS: Uterine Carcinosarcoma. 689 

 
Cancer types Genes (in >30% samples) Genes (in <30% samples) 

1 Bladder (10%) FGFR3, KDM6A, STAG2 ERCC2, EP300 

2 Breast (12%) GATA3, TBX3 
 

3 Endometrium (57%), uterus-CS (24%), breast 
(17%), prostate (6%), stomach (6%) 

ARID1A, PIK3CA, PTEN BCOR, CBFB, CCND1, CDH1, 
CTNNB1, FGFR2, FOXA1, 
MAP2K4, MAP3K1, MAX, 
MED12, PIK3R1, PPP2RIA, 
RUNX1, SPOP 

4 Colon (41%), rectum (62%), pancreas (36%), 
uterus-CS (11%) 

APC1, KRAS, TP53 FBXW7, SMAD4, TCF7L2 

5 Glioblastoma (13%) EGFR PTEN 

6 LGG (38%), sarcoma (9%), glioblastoma3 (6%) ATRX, IDH12, TP53 
 

7 Head-neck (6%) CASP8, HLA-A, HRAS, 
NOTCH1 

 

8 Kidney-RCC (40%), mesothelioma (16%), 
kidney-RP (6%) 

PBRM1, SETD2, VHL ATM, BAP1, KDM5C, NF2, 
PTPN11 

9 AML (38%) DNMT3A, FLT3, NPM1 CEBPA, IDH2, RUNX1, WT1 

10 Testis (25%) KIT 
 

11 Melanoma (14%) IL7R, KDR, NRAS, PDGFRA, 
PTPRB 

CARD11, CBLB, MET, PPP6C, 
RAC1 

12 Thyroid (72%), melanoma (15%) BRAF AKT1 

 690 

1Mutations in APC are typically absent from pancreatic cancer.  691 

2Mutations in IDH1 are typically absent from sarcoma. 692 

3 Glioblastoma samples in this module belong to the glioblastoma-CpG island methylator 693 

phenotype subtype.  694 
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Table 2: Modules in the subnetwork of breast, prostate, endometrial and uterine cancers. 695 

Numbers indicate the percentage of samples from a given cancer type associated to the 696 

module. 697 

Genes 
Breast 

(%) 
Prostate 

 (%) 
Endometrium 

 (%) 
Uterus-CS 

 (%) 

CBFB, CDH1, GATA3, MAP2K4, 
MAP3K1, PIK3CA, RUNX1, 
TBL1XR1, TBX3 

30 2 2 0 

ARID1A, BCOR, CCND1, CIC, 
CTNNB1, CUX1, ESR1, FGFR2, 
KRAS, MAX, PIK3CA, PIK3R1, PTEN 

1 1 43 7 

FOXA1, SPOP 3 26 2 5 

FBXW7, PPP2RIA, TP53 11 6 15 55 
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